1
|
Silva-Reis SC, Correia XC, Costa-Almeida HF, Pires-Lima BL, Maronde D, Costa VM, García-Mera X, Cruz L, Brea J, Loza MI, Rodríguez-Borges JE, Sampaio-Dias IE. Stapling Amantadine to Melanostatin Neuropeptide: Discovery of Potent Positive Allosteric Modulators of the D 2 Receptors. ACS Med Chem Lett 2023; 14:1656-1663. [PMID: 38116429 PMCID: PMC10726482 DOI: 10.1021/acsmedchemlett.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
This work describes the synthesis and pharmacological and toxicological evaluation of melanostatin (MIF-1) bioconjugates with amantadine (Am) via a peptide linkage. The data from the functional assays at human dopamine D2 receptors (hD2R) showed that bioconjugates 1 (EC50 = 26.39 ± 3.37 nM) and 2 (EC50 = 17.82 ± 4.24 nM) promote a 3.3- and 4.9-fold increase of dopamine potency, respectively, at 0.01 nM, with no effect on the efficacy (Emax = 100%). In this assay, MIF-1 was only active at the highest concentration tested (EC50 = 23.64 ± 6.73 nM, at 1 nM). Cytotoxicity assays in differentiated SH-SY5Y cells showed that both MIF-1 (94.09 ± 5.75%, p < 0.05) and carbamate derivative 2 (89.73 ± 4.95%, p < 0.0001) exhibited mild but statistical significant toxicity (assessed through the MTT reduction assay) at 200 μM, while conjugate 1 was found nontoxic at this concentration.
Collapse
Affiliation(s)
- Sara C. Silva-Reis
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- UCIBIO/REQUIMTE,
Laboratory of Toxicology, Department of Biological Sciences, Faculty
of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Xavier C. Correia
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- UCIBIO/REQUIMTE,
Laboratory of Toxicology, Department of Biological Sciences, Faculty
of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Hugo F. Costa-Almeida
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- UCIBIO/REQUIMTE,
Laboratory of Toxicology, Department of Biological Sciences, Faculty
of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Beatriz L. Pires-Lima
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Daiane Maronde
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Vera M. Costa
- UCIBIO/REQUIMTE,
Laboratory of Toxicology, Department of Biological Sciences, Faculty
of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory
of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Xerardo García-Mera
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Luís Cruz
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - José Brea
- Innopharma
Screening Platform, Biofarma Research group, Centre of Research in
Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - María Isabel Loza
- Innopharma
Screening Platform, Biofarma Research group, Centre of Research in
Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Ivo E. Sampaio-Dias
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Chang Z, Wang S, Huang J, Chen G, Tang Z, Wang R, Zhao D. Copper catalyzed Shono-type oxidation of proline residues in peptide. SCIENCE ADVANCES 2023; 9:eadj3090. [PMID: 37703373 PMCID: PMC10881060 DOI: 10.1126/sciadv.adj3090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023]
Abstract
Since the initial report in 1975, the Shono oxidation has become a powerful tool to functionalize the α position of amines, including proline derivatives, by electrochemical oxidation. However, the application of electrochemical Shono oxidations is restricted to the preparation of simple building blocks and homogeneous Shono-type oxidation of proline derivatives remains challenging. The late-stage functionalization at proline residues embedded within peptides is highly important as substitutions about the proline ring are known to affect biological and pharmacological activities. Here, we show that homogenous copper-catalyzed oxidation conditions complement the Shono oxidation and this general protocol can be applied to a series of formal C-C coupling reactions with a variety of nucleophiles using a one-pot procedure. This protocol shows good tolerance toward 19 proteinogenic amino acids and was used to functionalize several representative bioactive peptides, including captopril, enalapril, Smac, and endomorphin-2. Last, peptide cyclization can also be achieved by using an appropriately positioned side-chain hydroxyl moiety.
Collapse
Affiliation(s)
- Zhe Chang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Si Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jialin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Geshuyi Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhanyong Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Silva-Reis SC, Sampaio-Dias IE, Costa VM, Correia XC, Costa-Almeida HF, García-Mera X, Rodríguez-Borges JE. Concise Overview of Glypromate Neuropeptide Research: From Chemistry to Pharmacological Applications in Neurosciences. ACS Chem Neurosci 2023; 14:554-572. [PMID: 36735764 PMCID: PMC9936549 DOI: 10.1021/acschemneuro.2c00675] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative diseases of the central nervous system (CNS) pose a serious health concern worldwide, with a particular incidence in developed countries as a result of life expectancy increase and the absence of restorative treatments. Presently, treatments for these neurological conditions are focused on managing the symptoms and/or slowing down their progression. As so, the research on novel neuroprotective drugs is of high interest. Glypromate (glycyl-l-prolyl-l-glutamic acid, also known as GPE), an endogenous small peptide widespread in the brain, holds great promise to tackle neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's, s well as other CNS-related disorders like Rett and Down's syndromes. However, the limited pharmacokinetic properties of Glypromate hinder its clinical application. As such, intense research has been devoted to leveraging the pharmacokinetic profile of this neuropeptide. This review aims to offer an updated perspective on Glypromate research by exploring the vast array of chemical derivatizations of more than 100 analogs described in the literature over the past two decades. The collection and discussion of the most relevant structure-activity relationships will hopefully guide the discovery of new Glypromate-based neuroprotective drugs.
Collapse
Affiliation(s)
- Sara C. Silva-Reis
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal,UCIBIO/REQUIMTE,
Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ivo E. Sampaio-Dias
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal,
| | - Vera M. Costa
- UCIBIO/REQUIMTE,
Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal,Associate
Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Xavier Cruz Correia
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
| | - Hugo F. Costa-Almeida
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
| | - Xerardo García-Mera
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Kaczor AA, Wróbel TM, Bartuzi D. Allosteric Modulators of Dopamine D 2 Receptors for Fine-Tuning of Dopaminergic Neurotransmission in CNS Diseases: Overview, Pharmacology, Structural Aspects and Synthesis. Molecules 2022; 28:molecules28010178. [PMID: 36615372 PMCID: PMC9822192 DOI: 10.3390/molecules28010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Allosteric modulation of G protein-coupled receptors (GPCRs) is nowadays a hot topic in medicinal chemistry. Allosteric modulators, i.e., compounds which bind in a receptor site topologically distinct from orthosteric sites, exhibit a number of advantages. They are more selective, safer and display a ceiling effect which prevents overdosing. Allosteric modulators of dopamine D2 receptor are potential drugs against a number of psychiatric and neurological diseases, such as schizophrenia and Parkinson's disease. In this review, an insightful summary of current research on D2 receptor modulators is presented, ranging from their pharmacology and structural aspects of ligand-receptor interactions to their synthesis.
Collapse
Affiliation(s)
- Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence: ; Tel.: +48-81-448-72-73
| | - Tomasz M. Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
5
|
Madhu P, Sivakumar P, Sribalan R, Arumugam SM. Highly selective and sensitive “on‐off” fluorescent chemosensor for Fe
3+
ions crafted by benzofuran moiety in both experimental and theoretical methods. LUMINESCENCE 2022; 37:1064-1072. [DOI: 10.1002/bio.4258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Affiliation(s)
- P. Madhu
- Research and Development Centre Bharathiar University Coimbatore Tamil Nadu India
- Department of Chemistry Thiruvalluvar Government Arts College Rasipuram Tamil Nadu India
| | - P. Sivakumar
- Department of Chemistry Arignar Anna Government Arts College Namakkal Tamil Nadu India
| | | | - Senthil M. Arumugam
- School of chemistry Madurai Kamaraj University Madurai Tamil Nadu India
- Chemical Engineering division, Center of innovative and applied bio‐processing (CIAB) Mohali Punjab India
| |
Collapse
|
6
|
Sampaio-Dias IE, Silva-Reis SC, Pires-Lima BL, Correia XC, Costa-Almeida HF. A Convenient On-Site Oxidation Strategy for the N-Hydroxylation of Melanostatin Neuropeptide Using Cope Elimination. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1695-1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA convenient synthetic protocol for the unprecedented N-hydroxylation of proline residue in Melanostatin (MIF-1) neuropeptide is reported. This methodology is grounded on the incorporation of N-(cyanoethyl)prolyl residue followed by on-site oxidation by Cope elimination with m-chloroperbenzoic acid, exploring the unrecognized dual role of the cyanoethyl group as an effective N-protecting group under peptide synthesis conditions and as a suitable leaving group during the chemoselective on-site N-oxidation. Following this protocol N-hydroxy-MIF-1 is obtained in 78% global yield from N-(cyanoethyl)-l-proline. This synthetic approach opens a new avenue for access to N-hydroxylated Melanostatin analogues with direct application in neurochemistry and Parkinson’s research.
Collapse
|
7
|
Sampaio-Dias IE, Reis-Mendes A, Costa VM, García-Mera X, Brea J, Loza MI, Pires-Lima BL, Alcoholado C, Algarra M, Rodríguez-Borges JE. Discovery of New Potent Positive Allosteric Modulators of Dopamine D 2 Receptors: Insights into the Bioisosteric Replacement of Proline to 3-Furoic Acid in the Melanostatin Neuropeptide. J Med Chem 2021; 64:6209-6220. [PMID: 33861612 DOI: 10.1021/acs.jmedchem.1c00252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The control of Parkinson's disease (PD) is challenged by the motor and non-motor fluctuations as well as dyskinesias associated with levodopa long-term therapy. As such, pharmacological alternatives to reduce the reliance on this drug are needed. Melanostatin (MIF-1), a positive allosteric modulator (PAM) of D2 receptors (D2R), is being explored as a novel pharmacological approach focused on D2R potentiation. In this work, 3-furoic acid (3-Fu) was successfully employed as an l-proline (Pro) surrogate, affording two potent MIF-1 analogues, methyl 3-furoyl-l-leucylglycinate (4a) and 3-furoyl-l-leucylglycinamide (6a). In this series, the C-terminal carboxamide moiety was found crucial to enhancing the potency and toxicological profile, yet it is not considered a requisite for the PAM activity. Conformational analysis excludes 4a from adopting the claimed type II β-turn. The discovery and validation of 6a as a lead compound open a new avenue for the development of a novel class of anti-Parkinson therapeutics targeting the D2R.
Collapse
Affiliation(s)
- Ivo E Sampaio-Dias
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Ana Reis-Mendes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Xerardo García-Mera
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - José Brea
- Innopharma Screening Platform, Biofarma Research group, Centre of Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - María Isabel Loza
- Innopharma Screening Platform, Biofarma Research group, Centre of Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Beatriz L Pires-Lima
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Cristina Alcoholado
- Department of Cellular Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Manuel Algarra
- Department of Inorganic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - José E Rodríguez-Borges
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
8
|
Sampaio-Dias IE, Rodríguez-Borges JE, Yáñez-Pérez V, Arrasate S, Llorente J, Brea JM, Bediaga H, Viña D, Loza MI, Caamaño O, García-Mera X, González-Díaz H. Synthesis, Pharmacological, and Biological Evaluation of 2-Furoyl-Based MIF-1 Peptidomimetics and the Development of a General-Purpose Model for Allosteric Modulators (ALLOPTML). ACS Chem Neurosci 2021; 12:203-215. [PMID: 33347281 DOI: 10.1021/acschemneuro.0c00687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This work describes the synthesis and pharmacological evaluation of 2-furoyl-based Melanostatin (MIF-1) peptidomimetics as dopamine D2 modulating agents. Eight novel peptidomimetics were tested for their ability to enhance the maximal effect of tritiated N-propylapomorphine ([3H]-NPA) at D2 receptors (D2R). In this series, 2-furoyl-l-leucylglycinamide (6a) produced a statistically significant increase in the maximal [3H]-NPA response at 10 pM (11 ± 1%), comparable to the effect of MIF-1 (18 ± 9%) at the same concentration. This result supports previous evidence that the replacement of proline residue by heteroaromatic scaffolds are tolerated at the allosteric binding site of MIF-1. Biological assays performed for peptidomimetic 6a using cortex neurons from 19-day-old Wistar-Kyoto rat embryos suggest that 6a displays no neurotoxicity up to 100 μM. Overall, the pharmacological and toxicological profile and the structural simplicity of 6a makes this peptidomimetic a potential lead compound for further development and optimization, paving the way for the development of novel modulating agents of D2R suitable for the treatment of CNS-related diseases. Additionally, the pharmacological and biological data herein reported, along with >20 000 outcomes of preclinical assays, was used to seek a general model to predict the allosteric modulatory potential of molecular candidates for a myriad of target receptors, organisms, cell lines, and biological activity parameters based on perturbation theory (PT) ideas and machine learning (ML) techniques, abbreviated as ALLOPTML. By doing so, ALLOPTML shows high specificity Sp = 89.2/89.4%, sensitivity Sn = 71.3/72.2%, and accuracy Ac = 86.1%/86.4% in training/validation series, respectively. To the best of our knowledge, ALLOPTML is the first general-purpose chemoinformatic tool using a PTML-based model for the multioutput and multicondition prediction of allosteric compounds, which is expected to save both time and resources during the early drug discovery of allosteric modulators.
Collapse
Affiliation(s)
- Ivo E. Sampaio-Dias
- LAQV/REQUIMTE, Dept. of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE, Dept. of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Víctor Yáñez-Pérez
- Dept. of Organic Chemistry II, University of Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Sonia Arrasate
- Dept. of Pharmacology, Faculty of Medicine and Nursing, University of Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Javier Llorente
- Dept. of Pharmacology, Faculty of Medicine and Nursing, University of Basque Country (UPV-EHU), 48940 Leioa, Spain
- Dept. of Pharmacology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José M. Brea
- Innopharma Screening Platform, Biofarma Research group, Centre of Research in Molecular Medicine and Chronic Diseases CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Harbil Bediaga
- Dept. of Organic Chemistry II, University of Basque Country (UPV-EHU), 48940 Leioa, Spain
- Dept. of Physical Chemistry, University of Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Dolores Viña
- Dept. of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Centre of Research in Molecular Medicine and Chronic Diseases CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Isabel Loza
- Innopharma Screening Platform, Biofarma Research group, Centre of Research in Molecular Medicine and Chronic Diseases CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Olga Caamaño
- Dept. of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xerardo García-Mera
- Dept. of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Humberto González-Díaz
- Dept. of Organic Chemistry II, University of Basque Country (UPV-EHU), 48940 Leioa, Spain
- Basque Center for Biophysics (CSIC UPV/EHU), University of Basque Country (UPV-EHU), 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
9
|
Ortega-Tenezaca B, Quevedo-Tumailli V, Bediaga H, Collados J, Arrasate S, Madariaga G, Munteanu CR, Cordeiro MND, González-Díaz H. PTML Multi-Label Algorithms: Models, Software, and Applications. Curr Top Med Chem 2020; 20:2326-2337. [DOI: 10.2174/1568026620666200916122616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
By combining Machine Learning (ML) methods with Perturbation Theory (PT), it is possible
to develop predictive models for a variety of response targets. Such combination often known as
Perturbation Theory Machine Learning (PTML) modeling comprises a set of techniques that can handle
various physical, and chemical properties of different organisms, complex biological or material
systems under multiple input conditions. In so doing, these techniques effectively integrate a manifold
of diverse chemical and biological data into a single computational framework that can then be applied
for screening lead chemicals as well as to find clues for improving the targeted response(s).
PTML models have thus been extremely helpful in drug or material design efforts and found to be
predictive and applicable across a broad space of systems. After a brief outline of the applied methodology,
this work reviews the different uses of PTML in Medicinal Chemistry, as well as in other
applications. Finally, we cover the development of software available nowadays for setting up PTML
models from large datasets.
Collapse
Affiliation(s)
| | | | - Harbil Bediaga
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Jon Collados
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Gotzon Madariaga
- Department of Condensed Matter Physics, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, 15071 A Coruna, Spain
| | - M. Natália D.S. Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, University of Porto, 4169-007 Porto, Portugal
| | - Humbert González-Díaz
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
10
|
Sampaio-Dias IE, Silva-Reis SC, García-Mera X, Brea J, Loza MI, Alves CS, Algarra M, Rodríguez-Borges JE. Synthesis, Pharmacological, and Biological Evaluation of MIF-1 Picolinoyl Peptidomimetics as Positive Allosteric Modulators of D 2R. ACS Chem Neurosci 2019; 10:3690-3702. [PMID: 31347842 DOI: 10.1021/acschemneuro.9b00259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This work describes the synthesis and pharmacological evaluation of picolinoyl-based peptidomimetics of melanocyte stimulating hormone release inhibiting factor 1 (MIF-1) as dopamine modulating agents. Eight novel peptidomimetics were tested for their ability to enhance the maximal effect of tritiated N-propylapomorphine ([3H]-NPA) at dopamine D2 receptors (D2R). Methyl picolinoyl-l-valyl-l-alaninate (compound 6b) produced a statistically significant increase in the maximal [3H]-NPA response at 0.01 nM (11.9 ± 3.7%), which is close to the effect of MIF-1 in this assay at same concentration (18.3 ± 9.1%). Functional assays measuring cAMP mobilization in the presence of dopamine corroborate the activity of peptidomimetic 6b as a positive allosteric modulator (PAM) of D2R. In this assay, 6b produced a typical bell-shaped dose-response curve similar to that of the parent neuropeptide (18.3 ± 7.1% for 6b vs 15.4 ± 5.5% for MIF-1, both at 0.1 nM). Dose-response curves for dopamine in the presence of 6b show EC50 (0.33 ± 0.21 μM for 6b vs 0.17 ± 0.07 μM for MIF-1) and Emax (86.0 ± 5.4% for 6b vs 93.6 ± 4.4% for MIF-1) comparable to those of MIF-1, both at 0.01 nM. Furthermore, peptidomimetic 6b was tested for agonist activity at the human D2R and the results show that it displays no intrinsic agonism effect, endorsing its activity as a PAM of D2R. Cytotoxic and neurotoxic assays were performed for peptidomimetic 6b using HEK 293T cells and cortex neurons from 19 day old Wistar-Kyoto rat embryos, respectively, suggesting this analogue displays no toxicity effect in these assays up to 100 μM. Conformational energy minimization for 6b shows that this peptidomimetic cannot adopt the postulated type-II β-turn bioactive conformation, endorsing the possibility of an extended bioactive conformation as claimed by other researchers as a second bioactive conformation of MIF-1. Overall, the pharmacological and toxicological profile of peptidomimetic 6b together with its favorable druglike properties and structural simplicity makes it a potential lead compound for further development and optimization.
Collapse
Affiliation(s)
- Ivo E. Sampaio-Dias
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Sara C. Silva-Reis
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Xerardo García-Mera
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - José Brea
- Innopharma Screening Platform, Biofarma Research Group, Centre of Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - M. Isabel Loza
- Innopharma Screening Platform, Biofarma Research Group, Centre of Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Carla S. Alves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário
da Penteada, 9020-105 Funchal, Portugal
| | - Manuel Algarra
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário
da Penteada, 9020-105 Funchal, Portugal
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
11
|
Wold EA, Chen J, Cunningham KA, Zhou J. Allosteric Modulation of Class A GPCRs: Targets, Agents, and Emerging Concepts. J Med Chem 2019; 62:88-127. [PMID: 30106578 PMCID: PMC6556150 DOI: 10.1021/acs.jmedchem.8b00875] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) have been tractable drug targets for decades with over one-third of currently marketed drugs targeting GPCRs. Of these, the class A GPCR superfamily is highly represented, and continued drug discovery for this family of receptors may provide novel therapeutics for a vast range of diseases. GPCR allosteric modulation is an innovative targeting approach that broadens the available small molecule toolbox and is proving to be a viable drug discovery strategy, as evidenced by recent FDA approvals and clinical trials. Numerous class A GPCR allosteric modulators have been discovered recently, and emerging trends such as the availability of GPCR crystal structures, diverse functional assays, and structure-based computational approaches are improving optimization and development. This Perspective provides an update on allosterically targeted class A GPCRs and their disease indications and the medicinal chemistry approaches toward novel allosteric modulators and highlights emerging trends and opportunities in the field.
Collapse
Affiliation(s)
- Eric A. Wold
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jianping Chen
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Kathryn A. Cunningham
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
12
|
Sampaio-Dias IE, Silva-Reis SC, Pinto da Silva L, García-Mera X, Maestro MA, Rodríguez-Borges JE. Mechanistic insights for the transprotection of tertiary amines with Boc2O via charged carbamates: access to both enantiomers of 2-azanorbornane-3-exo-carboxylic acids. Org Chem Front 2019. [DOI: 10.1039/c9qo00957d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of a synthetic methodology for the selective transprotection in hindered tertiary amines using Boc2O under N–C hydrogenolysis catalyzed by Pd/C: access to both enantiomers of 2-azanorbornane-3-exo-carboxylates.
Collapse
Affiliation(s)
- Ivo E. Sampaio-Dias
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Sara C. Silva-Reis
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP)
- Department of Chemistry and Biochemistry
- Faculty of Sciences of University of Porto
- 4169-007 Porto
- Portugal
| | - Xerardo García-Mera
- Department of Organic Chemistry
- Faculty of Pharmacy
- University of Santiago de Compostela
- Santiago de Compostela
- Spain
| | - Miguel A. Maestro
- Department of Chemistry-CICA
- Faculty of Sciences
- University of Coruña
- A Coruña
- Spain
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| |
Collapse
|
13
|
Ferreira da Costa J, Silva D, Caamaño O, Brea JM, Loza MI, Munteanu CR, Pazos A, García-Mera X, González-Díaz H. Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics. ACS Chem Neurosci 2018; 9:2572-2587. [PMID: 29791132 DOI: 10.1021/acschemneuro.8b00083] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Predicting drug-protein interactions (DPIs) for target proteins involved in dopamine pathways is a very important goal in medicinal chemistry. We can tackle this problem using Molecular Docking or Machine Learning (ML) models for one specific protein. Unfortunately, these models fail to account for large and complex big data sets of preclinical assays reported in public databases. This includes multiple conditions of assays, such as different experimental parameters, biological assays, target proteins, cell lines, organism of the target, or organism of assay. On the other hand, perturbation theory (PT) models allow us to predict the properties of a query compound or molecular system in experimental assays with multiple boundary conditions based on a previously known case of reference. In this work, we report the first PTML (PT + ML) study of a large ChEMBL data set of preclinical assays of compounds targeting dopamine pathway proteins. The best PTML model found predicts 50000 cases with accuracy of 70-91% in training and external validation series. We also compared the linear PTML model with alternative PTML models trained with multiple nonlinear methods (artificial neural network (ANN), Random Forest, Deep Learning, etc.). Some of the nonlinear methods outperform the linear model but at the cost of a notable increment of the complexity of the model. We illustrated the practical use of the new model with a proof-of-concept theoretical-experimental study. We reported for the first time the organic synthesis, chemical characterization, and pharmacological assay of a new series of l-prolyl-l-leucyl-glycinamide (PLG) peptidomimetic compounds. In addition, we performed a molecular docking study for some of these compounds with the software Vina AutoDock. The work ends with a PTML model predictive study of the outcomes of the new compounds in a large number of assays. Therefore, this study offers a new computational methodology for predicting the outcome for any compound in new assays. This PTML method focuses on the prediction with a simple linear model of multiple pharmacological parameters (IC50, EC50, Ki, etc.) for compounds in assays involving different cell lines used, organisms of the protein target, or organism of assay for proteins in the dopamine pathway.
Collapse
Affiliation(s)
- Joana Ferreira da Costa
- Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - David Silva
- Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Olga Caamaño
- Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José M. Brea
- CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Isabel Loza
- CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Cristian R. Munteanu
- Instituto de Investigacion Biomedica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, 15006, Spain
| | - Alejandro Pazos
- Instituto de Investigacion Biomedica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, 15006, Spain
- Computer Science Department, Faculty of Computer Science, University of A Coruna, 15071 A Coruña, Spain
| | - Xerardo García-Mera
- Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Humbert González-Díaz
- Department of Organic Chemistry II, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
14
|
Oliver M, Gadais C, García-Pindado J, Teixidó M, Lensen N, Chaume G, Brigaud T. Trifluoromethylated proline analogues as efficient tools to enhance the hydrophobicity and to promote passive diffusion transport of the l-prolyl-l-leucyl glycinamide (PLG) tripeptide. RSC Adv 2018; 8:14597-14602. [PMID: 35540789 PMCID: PMC9079923 DOI: 10.1039/c8ra02511h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 01/23/2023] Open
Abstract
The synthesis of four CF3-proline analogues of the PLG peptide is reported. Our results show that the incorporation of trifluoromethylated amino acids (Tfm-AAs) at the N-terminal position of a peptide significantly increases its hydrophobicity. In addition, depending on the relative configuration and the position of the CF3 group, Tfm-AAs can also promote passive diffusion transport.
Collapse
Affiliation(s)
- Martin Oliver
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise 5 mail Gay-Lussac, Neuville-sur-Oise 95031 Cergy-Pontoise France
| | - Charlène Gadais
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise 5 mail Gay-Lussac, Neuville-sur-Oise 95031 Cergy-Pontoise France
| | - Júlia García-Pindado
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST) C/ Baldiri Reixac 10 08028 Barcelona Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST) C/ Baldiri Reixac 10 08028 Barcelona Spain
| | - Nathalie Lensen
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise 5 mail Gay-Lussac, Neuville-sur-Oise 95031 Cergy-Pontoise France
| | - Grégory Chaume
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise 5 mail Gay-Lussac, Neuville-sur-Oise 95031 Cergy-Pontoise France
| | - Thierry Brigaud
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise 5 mail Gay-Lussac, Neuville-sur-Oise 95031 Cergy-Pontoise France
| |
Collapse
|
15
|
Synthesis and biological evaluation of new benzofuran carboxamide derivatives. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2015.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Sampaio-Dias IE, Sousa CAD, Silva-Reis SC, Ribeiro S, García-Mera X, Rodríguez-Borges JE. Highly efficient one-pot assembly of peptides by double chemoselective coupling. Org Biomol Chem 2017; 15:7533-7542. [DOI: 10.1039/c7ob01544e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and faster methodology for the assembly of oligopeptides by a three-step one-pot protocol with high yields and virtually no epimerization.
Collapse
Affiliation(s)
- Ivo E. Sampaio-Dias
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Carlos A. D. Sousa
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Sara C. Silva-Reis
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Sara Ribeiro
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Xerardo García-Mera
- Department of Organic Chemistry
- Faculty of Pharmacy
- University of Santiago de Compostela
- Santiago de Compostela
- Spain
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| |
Collapse
|
17
|
Sampaio-Dias IE, Sousa CAD, García-Mera X, Ferreira da Costa J, Caamaño O, Rodríguez-Borges JE. Novel l-prolyl-l-leucylglycinamide (PLG) tripeptidomimetics based on a 2-azanorbornane scaffold as positive allosteric modulators of the D2R. Org Biomol Chem 2016; 14:11065-11069. [DOI: 10.1039/c6ob02248k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacement of l-prolyl residue in the PLG sequence by an enantiopure (1R,3S,4S)-2-azanorbornane scaffold afforded active peptidomimetics compatible with suppression of the C-terminal carboxamide pharmacophore.
Collapse
Affiliation(s)
- Ivo E. Sampaio-Dias
- UCIBIO/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Carlos A. D. Sousa
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Xerardo García-Mera
- Department of Organic Chemistry
- Faculty of Pharmacy
- University of Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
| | | | - Olga Caamaño
- Department of Organic Chemistry
- Faculty of Pharmacy
- University of Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
| | - José E. Rodríguez-Borges
- UCIBIO/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| |
Collapse
|
18
|
V’yunova TV, Andreeva LA, Shevchenko KV, Shevchenko VP, Myasoedov NF. Peptide regulation of specific ligand-receptor interactions of GABA with the plasma membranes of nerve cells. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414040114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|