1
|
Majhi B, Bora A, Palit S, Dev S, Majumdar P, Dutta S. Metal-free internal nucleophile-triggered domino route for synthesis of fused quinoxaline [1,4]-diazepine hybrids and the evaluation of their DNA binding properties. Bioorg Chem 2024; 151:107694. [PMID: 39151388 DOI: 10.1016/j.bioorg.2024.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024]
Abstract
An unprecedented metal-free synthesis of fused quinoxaline 1,5-disubstituted-[1,4]-diazepine hybrids have been reported under mild conditions through a domino intermolecular SNAr followed by an internal nucleophile-triggered intramolecular SNAr pathway. Our strategy offers the flexibility for the introduction of a broad variety of functionalities at the N-1 position of fused diazepine moiety by using suitable diamine tails to design structurally diverse scaffolds. The DNA binding properties of representative quinoxaline diazepine hybrids were studied using UV-vis absorbance and EtBr displacement assay and were found to be governed by the functionalities at the N-1 position. Interestingly, compound 11f containing the N-1 benzyl substitution demonstrated significant DNA binding (KBH ∼ 2.15 ± 0.25 × 104 M-1 and Ksv ∼ 12.6 ± 1.41 × 103 M-1) accompanied by a bathochromic shift (Δλ ∼ 5 nm). In silico studies indicated possible binding of diazepine hybrid 11f at the GC-rich major groove in the ct-DNA hexamer duplex and showed comparable binding energies to that of ethidium bromide. The antiproliferative activity of compounds was observed in the given order in different cell lines: (HeLa > HT29 > SKOV 3 > HCT116 > HEK293). Lead compound 11f demonstrated maximum cytotoxicity (IC50 value of 13.30 μM) in HeLa cell lines and also caused early apoptosis-mediated cell death in cancer cell lines. We envision that our work will offer newer methodologies for the construction of fused quinoxaline 1,5-disubstituted-[1,4]-diazepine class of molecules.
Collapse
Affiliation(s)
- Bhim Majhi
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Achyut Bora
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Subhadeep Palit
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samrat Dev
- Mrinalini Dutta Mahavidyapith, Vidyapith Rd, Pratiraksha Nagar, Kolkata 700051, India
| | - Papiya Majumdar
- Department of Chemistry, Sister Nivedita University, DG 1/2, Newtown, Kolkata 700156, India
| | - Sanjay Dutta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
2
|
Synthesis, antitumor activities and functional mechanism of purine derivatives harboring phenyl moieties through three carbon bridges. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
3
|
Soofi A, Rezaei-Tavirani M, Safari-Alighiarloo N. In silico screening of inhibitors against human dihydrofolate reductase to identify potential anticancer compounds. J Biomol Struct Dyn 2023; 41:14497-14509. [PMID: 36883866 DOI: 10.1080/07391102.2023.2183038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023]
Abstract
In all species, dihydrofolate reductase (DHFR) is an essential enzyme that regulates the cellular amount of tetrahydrofolate. Human DHFR (hDHFR) activity inhibition results in tetrahydrofolate depletion and cell death. This property has made hDHFR a therapeutic target for cancer. Methotrexate is a well-known hDHFR inhibitor, but its administration has shown some light to severe adverse effects. Therefore, we aimed to find new potential hDHFR inhibitors using structure-based virtual screening, ADMET prediction, molecular docking, and molecular dynamics simulations. Here, we used the PubChem database to find all compounds with at least 90% structural similarity to known natural DHFR inhibitors. To explore their interaction pattern and estimate their binding affinities, the screened compounds (2023) were subjected to structure-based molecular docking against hDHFR. The fifteen compounds that showed higher binding affinity to the hDHFR than the reference compound (methotrexate) displayed important molecular orientation and interactions with key residues in the enzyme's active site. These compounds were subjected to Lipinski and ADMET prediction. PubChem CIDs: 46886812 and 638190 were identified as putative inhibitors. In addition, molecular dynamics simulations revealed that the binding of compounds (CIDs: 46886812 and 63819) stabilized the hDHFR structure and caused minor conformational changes. Our findings suggest that two compounds (CIDs: 46886812 and 63819) could be promising potential inhibitors of hDHFR in cancer therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
El-Gazzar YI, Ghaiad HR, El Kerdawy AM, George RF, Georgey HH, Youssef KM, El-Subbagh HI. New quinazolinone-based derivatives as DHFR/EGFR-TK inhibitors: Synthesis, molecular modeling simulations, and anticancer activity. Arch Pharm (Weinheim) 2023; 356:e2200417. [PMID: 36257809 DOI: 10.1002/ardp.202200417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023]
Abstract
New 2-mercapto-quinazolin-4-one analogs were synthesized and tested for their in vitro anticancer activity, dihydrofolate reductase (DHFR) inhibition, and epidermal growth factor tyrosine kinase (EGFR-TK) inhibition activities. Compound 24, which is characterized by a 2-benzyl-thio function, showed broad-spectrum anticancer activity with high safety profile and selectivity index. The concentrations of 24 causing 50% growth inhibition (GI50 ) and total cell growth inhibition (TGI) and its lethal concentration 50 (LC50 ) were 15.1, 52.5, and 91.2 µM, respectively, using 5-fluorouracil as a positive control. Also, it showed EGFR-TK inhibitory activity with IC50 = 13.40 nM compared to gefitinib (IC50 = 18.14 nM) and DHFR inhibitory potency with 0.30 μM compared to methotrexate (MTX; IC50 = 0.08 μM). In addition, compound 24 caused cell cycle arrest and apoptosis on COLO-205 colon cancer cells. Compounds 37, 21, and 54 showed remarkable DHFR inhibitory activity with IC50 values of 0.03, 0.08, and 0.08 μM, respectively. The inhibitory properties of these compounds are due to an electron-withdrawing group on the quinazolinone ring, except for compound 54. In a molecular modeling study, compound 24 showed the same binding mode as gefitinib as it interacted with the amino acid Lys745 via π-π interaction. Compound 37 showed a similar binding mode as MTX through the binding interaction with Lys68, Asn64 via hydrogen bond acceptor, and Phe31 via arene-arene interaction. The obtained model and substitution pattern could be used for further development.
Collapse
Affiliation(s)
- Yomna I El-Gazzar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Heba R Ghaiad
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU), Cairo, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan H Georgey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Khairia M Youssef
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Vásquez AF, Gómez LA, González Barrios A, Riaño-Pachón DM. Identification of Active Compounds against Melanoma Growth by Virtual Screening for Non-Classical Human DHFR Inhibitors. Int J Mol Sci 2022; 23:13946. [PMID: 36430425 PMCID: PMC9694616 DOI: 10.3390/ijms232213946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Antifolates such as methotrexate (MTX) have been largely known as anticancer agents because of their role in blocking nucleic acid synthesis and cell proliferation. Their mechanism of action lies in their ability to inhibit enzymes involved in the folic acid cycle, especially human dihydrofolate reductase (hDHFR). However, most of them have a classical structure that has proven ineffective against melanoma, and, therefore, inhibitors with a non-classical lipophilic structure are increasingly becoming an attractive alternative to circumvent this clinical resistance. In this study, we conducted a protocol combining virtual screening (VS) and cell-based assays to identify new potential non-classical hDHFR inhibitors. Among 173 hit compounds identified (average logP = 3.68; average MW = 378.34 Da), two-herein, called C1 and C2-exhibited activity against melanoma cell lines B16 and A375 by MTT and Trypan-Blue assays. C1 showed cell growth arrest (39% and 56%) and C2 showed potent cytotoxic activity (77% and 51%) in a dose-dependent manner. The effects of C2 on A375 cell viability were greater than MTX (98% vs 60%) at equivalent concentrations and times. Our results indicate that the integrated in silico/in vitro approach provided a benchmark to identify novel promising non-classical DHFR inhibitors showing activity against melanoma cells.
Collapse
Affiliation(s)
- Andrés Felipe Vásquez
- Grupo de Diseño de Productos y Procesos (GDPP), School of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
- Naturalius SAS, Bogotá 110221, Colombia
| | - Luis Alberto Gómez
- Laboratorio de Fisiología Molecular, Instituto Nacional de Salud, Bogotá 111321, Colombia
- Department of Physiological Sciences, School of Medicine, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Andrés González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), School of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Diego M. Riaño-Pachón
- Laboratório de Biologia Computacional, Evolutiva e de Sistemas, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba 05508-060, SP, Brazil
| |
Collapse
|
6
|
Ikram M, Shahid H, Haider J, Haider A, Naz S, Ul-Hamid A, Shahzadi I, Naz M, Nabgan W, Ali S. Nb/Starch-Doped ZnO Nanostructures for Polluted Water Treatment and Antimicrobial Applications: Molecular Docking Analysis. ACS OMEGA 2022; 7:39347-39361. [PMID: 36340133 PMCID: PMC9631753 DOI: 10.1021/acsomega.2c05569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
Nb/starch-doped ZnO quantum dots (QDs) were prepared by a coprecipitation route. A fixed quantity of starch (st) and different concentrations (2 and 4%) of niobium (Nb) were doped in a ZnO lattice. To gain a better understanding of synthesized nanostructures, a systematic study was carried out utilizing several characterization methods. The goal of this research was to undertake methylene blue (MB) dye degradation with a synthetic material and also study its antibacterial properties. The phase structure, morphology, functional groups, optical properties, and elemental compositions of synthesized samples were investigated. Our study showed that ZnO QDs enhanced photocatalytic activity (PCA), resulting in effective MB degradation, in addition to showing good antimicrobial activity against Gram-negative relative to Gram-positive bacteria. Molecular docking study findings were in good agreement with the observed in vitro bactericidal potential and suggested ZnO, st-ZnO, and Nb/st-ZnO as possible inhibitors against dihydrofolate reductase (DHFRE. coli) and DNA gyraseE. coli.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Punjab, Pakistan
| | - Huma Shahid
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, 54000Lahore, Pakistan
| | - Junaid Haider
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin300308, China
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan66000, Pakistan
| | - Sadia Naz
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin300308, China
| | - Anwar Ul-Hamid
- Core
Research Facilities, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran31261, Saudi Arabia
| | - Iram Shahzadi
- Punjab University
College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore54000, Pakistan
| | - Misbah Naz
- Department
of Chemistry, Division of Science & Technology, University of Education, Lahore54770, Pakistan
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av
Països Catalans 26, 43007Tarragona, Spain
| | - Salamat Ali
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, 54000Lahore, Pakistan
| |
Collapse
|
7
|
Bhathiwal AS, Bendi A, Tiwari A. A study on synthesis of benzodiazepine scaffolds using biologically active chalcones as precursors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Snizhko AD, Kyrychenko AV, Gladkov ES. Synthesis of Novel Derivatives of 5,6,7,8-Tetrahydroquinazolines Using α-Aminoamidines and In Silico Screening of Their Biological Activity. Int J Mol Sci 2022; 23:3781. [PMID: 35409144 PMCID: PMC8999073 DOI: 10.3390/ijms23073781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
α-Aminoamidines are promising reagents for the synthesis of a diverse family of pyrimidine ring derivatives. Here, we demonstrate the use of α-aminoamidines for the synthesis of a new series of 5,6,7,8-tetrahydroquinazolines by their reaction with bis-benzylidene cyclohexanones. The reaction occurs in mild conditions and is characterized by excellent yields. It has easy workup, as compared to the existing methods of tetrahydroquinazoline preparation. Newly synthesized derivatives of 5,6,7,8-tetrahydroquinazoline bear protecting groups at the C2-tert-butyl moiety of a quinazoline ring, which can be easily cleaved, opening up further opportunities for their functionalization. Moreover, molecular docking studies indicate that the synthesized compounds reveal high binding affinity toward some essential enzymes of Mycobacterial tuberculosis, such as dihydrofolate reductase (DHFR), pantothenate kinase (MtPanK), and FAD-containing oxidoreductase DprE1 (MtDprE1), so that they may be promising candidates for the molecular design and the development of new antitubercular agents against multidrug-resistant strains of the Tubercle bacillus. Finally, the high inhibition activity of the synthesized compounds was also predicted against β-glucosidase, suggesting a novel tetrahydroquinazoline scaffold for the treatment of diabetes.
Collapse
Affiliation(s)
- Arsenii D. Snizhko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine; (A.D.S.); (A.V.K.)
| | - Alexander V. Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine; (A.D.S.); (A.V.K.)
| | - Eugene S. Gladkov
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine; (A.D.S.); (A.V.K.)
- State Scientific Institution “Institute for Single Crystals”, National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine
| |
Collapse
|
9
|
Ibrahim TS, Moustafa AH, Almalki AJ, Allam RM, Althagafi A, Md S, Mohamed MFA. Novel chalcone/aryl carboximidamide hybrids as potent anti-inflammatory via inhibition of prostaglandin E2 and inducible NO synthase activities: design, synthesis, molecular docking studies and ADMET prediction. J Enzyme Inhib Med Chem 2021; 36:1067-1078. [PMID: 34027787 PMCID: PMC8158245 DOI: 10.1080/14756366.2021.1929201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 11/06/2022] Open
Abstract
Two series of chalcone/aryl carboximidamide hybrids 4a-f and 6a-f were synthesised and evaluated for their inhibitory activity against iNOS and PGE2. The most potent derivatives were further checked for their in vivo anti-inflammatory activity utilising carrageenan-induced rat paw oedema model. Compounds 4c, 4d, 6c and 6d were proved to be the most effective inhibitors of PGE2, LPS-induced NO production, iNOS activity. Moreover, 4c, 4d, 6c and 6d showed significant oedema inhibition ranging from 62.21% to 78.51%, compared to indomethacin (56.27 ± 2.14%) and celecoxib (12.32%). Additionally, 4c, 6a and 6e displayed good COX2 inhibitory activity while 4c, 6a and 6c exhibited the highest 5LOX inhibitory activity. Compounds 4c, 4d, 6c and 6d fit nicely into the pocket of iNOS protein (PDB ID: 1r35) via the important amino acid residues. Prediction of physicochemical parameters exhibited that 4c, 4d, 6c and 6d had acceptable physicochemical parameters and drug-likeness. The results indicated that chalcone/aryl carboximidamides 4c, 4d, 6c and 6d, in particular 4d and 6d, could be used as promising lead candidates as potent anti-inflammatory agents.
Collapse
Affiliation(s)
- Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amr H. Moustafa
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Ahmad J. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasha M. Allam
- Pharmacology Department, National Research Centre, Cairo, Egypt
| | - Abdulhamid Althagafi
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdouh F. A. Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| |
Collapse
|
10
|
Chawla P, Teli G, Gill RK, Narang RK. An Insight into Synthetic Strategies and Recent Developments of Dihydrofolate Reductase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202102555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Pooja Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
- Pooja Chawla Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga 142001 Punjab India
| | - Ghanshyam Teli
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
| | - Rupinder Kaur Gill
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
| | - Raj Kumar Narang
- Department of Pharmaceutics ISF College of Pharmacy Moga Punjab India
| |
Collapse
|
11
|
Farooq S, Ngaini Z. Chalcone derived benzoheterodiazepines for medicinal applications:
A Two‐pot
and
one‐pot
synthetic approach. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Malaysia
| |
Collapse
|
12
|
Ewida MA, Ewida HA, Ahmed MS, Allam HA, ElBagary RI, George RF, Georgey HH, El-Subbagh HI. Nanomolar potency of imidazo[2,1-b]thiazole analogs as indoleamine 2,3-dioxygenase inhibitors. Arch Pharm (Weinheim) 2021; 354:e2100202. [PMID: 34313342 DOI: 10.1002/ardp.202100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
Novel series of imidazo[2,1-b]thiazole analogs were designed, synthesized, and biologically evaluated as indoleamine 2,3-dioxygenase (IDO1) inhibitors. Imidazo[2,1-b]thiazoles 6, 7, and 8 showed inhibitory profiles against IDO1 at IC50 values of 68.48, 82.39, and 48.48 nM, respectively, compared with IDO5L at IC50 67.40 nM. Benzo[d]imidazo[2,1-b]thiazoles 17, 20, and 22 showed promising IDO1 inhibition at IC50 values of 53.58, 53.16, and 57.95 nM, respectively. Compound 7 showed a growth-inhibitory profile at GI of 39.33% against the MCF7 breast cancer cell line, while 8 proved lethal to ACHN renal cancer cells. Cells treated with compounds 17 and 22 showed a typical apoptosis pattern of DNA fragments that reflected the G0/G1, S, and G2/M phases of the cell cycle, together with a pre-G1 phase corresponding to apoptotic cells, which indicates that cell growth arrest occurred at the S phase. Molecular modeling simulations validated the potential of benzo[d]imidazo[2,1-b]thiazole analogs to chelate iron(III) within the IDO1 binding pocket and, hence, to have a better binding affinity via hydrophobic-hydrophobic interactions.
Collapse
Affiliation(s)
- Menna A Ewida
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Heba A Ewida
- Department of Pharmacology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Mahmoud S Ahmed
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ramzia I ElBagary
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan H Georgey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
3-Methyl-imidazo[2,1-b]thiazole derivatives as a new class of antifolates: Synthesis, in vitro/in vivo bio-evaluation and molecular modeling simulations. Bioorg Chem 2021; 115:105205. [PMID: 34329992 DOI: 10.1016/j.bioorg.2021.105205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022]
Abstract
Inhibiting the Dihydrofolate reductase (DHFR) enzyme has been validated in multiple clinical manifestations related to bacterial infection, malaria, and multiple types of cancer. Herein, novel series of 3-methyl-imidazo[2,1-b] thiazole-based analogs were synthesized and biologically evaluated for their in vitro inhibitory profile towards DHFR. Compounds 22 and 23 exhibited potent inhibitory profile targeting DHFR (IC50 0.079 and 0.085 µM, respectively comparable to MTX IC50 0.087 µM). Compounds 22 and 23 showed promising cytotoxicity against MCF7 breast cancer cell lines inducing cell cycle arrest and apoptosis. Furthermore, Compound 23 showed its potential to reduce body weight and tumor volume significantly, using Ehrlich ascites carcinoma (EAC) solid tumor animal model of breast cancer, compared to control-treated groups. Further, molecular modeling simulations validated the potential of 22 and 23 to have high affinity binding towards Arg22 and Phe31 residues via π-π interaction and hydrogen bonding within DHFR binding pocket. Computer-assisted ADMET study suggested that the newly synthesized analogs could have high penetration to the blood brain barrier (BBB), better intestinal absorption, non-inhibitors of CYP2D6, adequate plasma protein binding and good passive oral absorption. The obtained model and pattern of substitution could be used for further development of DHFR inhibitors.
Collapse
|
14
|
Wróbel A, Drozdowska D. Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents. Curr Med Chem 2021; 28:910-939. [PMID: 31622199 DOI: 10.2174/0929867326666191016151018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances in the research of new DHFR inhibitors with potential anticancer activity. METHODS The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationships were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. RESULTS This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searches for about eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. CONCLUSION Thorough physicochemical characterization and biological investigations highlight the structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| |
Collapse
|
15
|
Cuthbertson CR, Arabzada Z, Bankhead A, Kyani A, Neamati N. A Review of Small-Molecule Inhibitors of One-Carbon Enzymes: SHMT2 and MTHFD2 in the Spotlight. ACS Pharmacol Transl Sci 2021; 4:624-646. [PMID: 33860190 DOI: 10.1021/acsptsci.0c00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming is a key hallmark of cancer and shifts cellular metabolism to meet the demands of biomass production necessary for abnormal cell reproduction. One-carbon metabolism (1CM) contributes to many biosynthetic pathways that fuel growth and is comprised of a complex network of enzymes. Methotrexate and 5-fluorouracil were pioneering drugs in this field and are still widely used today as anticancer agents as well as for other diseases such as arthritis. Besides dihydrofolate reductase and thymidylate synthase, two other enzymes of the folate cycle arm of 1CM have not been targeted clinically: serine hydroxymethyltransferase (SHMT) and methylenetetrahydrofolate dehydrogenase (MTHFD). An increasing body of literature suggests that the mitochondrial isoforms of these enzymes (SHMT2 and MTHFD2) are clinically relevant in the context of cancer. In this review, we focused on the 1CM pathway as a target for cancer therapy and, in particular, SHMT2 and MTHFD2. The function, regulation, and clinical relevance of SHMT2 and MTHFD2 are all discussed. We expand on previous clinical studies and evaluate the prognostic significance of these critical enzymes by performing a pan-cancer analysis of patient data from the The Cancer Genome Atlas and a transcriptional coexpression network enrichment analysis. We also provide an overview of preclinical and clinical inhibitors targeting the folate pathway, the methionine cycle, and folate-dependent purine biosynthesis enzymes.
Collapse
Affiliation(s)
- Christine R Cuthbertson
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Zahra Arabzada
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Sedenkova KN, Vasilenko DA, Zverev DV, Sadovnikov KS, Gracheva YA, Grishin YK, Kuznetsova TS, Milaeva ER, Averina EB. Novel 8-arylidenetetrahydroquinazoline N-oxides: synthesis, photophysical properties and biological evaluation. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Al-Rashood ST, Elshahawy SS, El-Qaias AM, El-Behedy DS, Hassanin AA, El-Sayed SM, El-Messery SM, Shaldam MA, Hassan GS. New thiazolopyrimidine as anticancer agents: Synthesis, biological evaluation, DNA binding, molecular modeling and ADMET study. Bioorg Med Chem Lett 2020; 30:127611. [DOI: 10.1016/j.bmcl.2020.127611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
|
18
|
Hassan AS, Askar AA, Naglah AM, Almehizia AA, Ragab A. Discovery of New Schiff Bases Tethered Pyrazole Moiety: Design, Synthesis, Biological Evaluation, and Molecular Docking Study as Dual Targeting DHFR/DNA Gyrase Inhibitors with Immunomodulatory Activity. Molecules 2020; 25:molecules25112593. [PMID: 32498469 PMCID: PMC7321065 DOI: 10.3390/molecules25112593] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
A series of Bis-pyrazole Schiff bases (6a–d and 7a–d) and mono-pyrazole Schiff bases (8a–d and 9a–d) were designed and synthesized through the reaction of 5-aminopyrazoles 1a–d with aldehydes 2–5 using mild reaction condition with a good yield percentage. The chemical structure of newly formed Schiff bases tethered pyrazole core was confirmed based on spectral and experimental data. All the newly formed pyrazole Schiff bases were evaluated against eight pathogens (Gram-positive, Gram-negative, and fungi). The result exhibited that, most of them have good and broad activities. Among those, only six Schiff bases (6b, 7b, 7c, 8a, 8d, and 9b) displayed MIC values (0.97–62.5 µg/mL) compared to Tetracycline (15.62–62.5 µg/mL) and Amphotericin B (15.62–31.25 µg/mL), MBC values (1.94–87.5 µg/mL) and selectivity to tumor cell than normal cells. Immunomodulatory activities showed that the promising Schiff bases increase the immunomodulator effect of defense cell and the Schiff base 8a is the highest one by (Intra. killing activity = 136.5 ± 0.3%) having a pyrazole moiety as well as amide function (O=C-NH2) and piperidinyl core. Furthermore, the most potent one exhibited broad activity depending on both MIC and MBC values. Moreover, to study the mechanism of these pyrazole Schiff bases, two active Schiff bases 8a and 9b from six derivatives were introduced to study the enzyme assay as dihydrofolate reductase (DHFR) on E. coli organism and DNA gyrase with two different organisms, S. aureus and B. subtilis, to determine the inhibitory activities with lower values in the case of DNA gyrase (8a and 9b) or nearly as DHFR compound 9b, while pyrazole 8a showed excellent inhibitory against all enzyme assay. The molecular docking study against dihydrofolate reductase and DNA gyrase were performed to study the binding between active site in the pocket with the two Schiff bases (8a and 9b) that exhibited good binding affinity with different bond types as H-bonding, aren-aren, and arene-cation interaction as well as study the physicochemical and pharmacokinetic properties of the two active Schiff bases 8a and 9b.
Collapse
Affiliation(s)
- Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki 12622, Cairo, Egypt
- Correspondence: (A.S.H.); (A.A.A.); (A.R.); Tel.: +20-100-664-5444 (A.S.H.); +20-101-081-5102 (A.A.A.); +20-100-934-1359 (A.R.)
| | - Ahmed A. Askar
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
- Correspondence: (A.S.H.); (A.A.A.); (A.R.); Tel.: +20-100-664-5444 (A.S.H.); +20-101-081-5102 (A.A.A.); +20-100-934-1359 (A.R.)
| | - Ahmed M. Naglah
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.N.); (A.A.A.)
- Peptide Chemistry Department, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.N.); (A.A.A.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
- Correspondence: (A.S.H.); (A.A.A.); (A.R.); Tel.: +20-100-664-5444 (A.S.H.); +20-101-081-5102 (A.A.A.); +20-100-934-1359 (A.R.)
| |
Collapse
|
19
|
Sedenkova KN, Terekhin AV, Abdrashitova IV, Vasilenko DA, Sadovnikov KS, Gracheva YA, Grishin YK, Holt T, Kutateladze AG, Kuznetsova TS, Milaeva ER, Averina EB. Dichotomy in the reactivity of 2-methyltetrahydroquinazoline 1-oxides towards aldehydes: An unprecedented condensation with simultaneous reduction of the N-oxide fragment. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Arora N, Dhiman P, Kumar S, Singh G, Monga V. Recent advances in synthesis and medicinal chemistry of benzodiazepines. Bioorg Chem 2020; 97:103668. [PMID: 32106040 DOI: 10.1016/j.bioorg.2020.103668] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Benzodiazepines (BZDs) represent a diverse class of bicyclic heterocyclic molecules. In the last few years, benzodiazepines have emerged as potential therapeutic agents. As a result, several mild, efficient and high yielding protocols have been developed that offer access to various functionalized benzodiazepines (BZDs). They are known to possess a wide array of biological activities such as anxiolytic, anticancer, anticonvulsant, antipsychotics, muscle relaxant, anti-tuberculosis, and antimicrobial activities. The fascinating spectrum of biological activities exhibited by BZDs in various fields has prompted the medicinal chemist to design and discover novel benzodiazepine-based analogs as potential therapeutic candidates with the desired biological profile. In this review, an attempt has been made by to summarize (1) Recent advances in the synthetic chemistry of benzodiazepines which enable their synthesis with desired substitution pattern; (2) Medicinal chemistry of BZDs as therapeutic candidates with promising biological profile including insight of mechanistic studies; (3) The correlation of biological data with the structure i.e. structure-activity relationship studies were also included to provide an insight into the rational design of more active agents.
Collapse
Affiliation(s)
- Nidhi Arora
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, G.T. Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Prashant Dhiman
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, G.T. Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Shubham Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, G.T. Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, G.T. Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, G.T. Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|
21
|
Alrohily WD, Habib ME, El-Messery SM, Alqurshi A, El-Subbagh H, Habib ESE. Antibacterial, antibiofilm and molecular modeling study of some antitumor thiazole based chalcones as a new class of DHFR inhibitors. Microb Pathog 2019; 136:103674. [DOI: 10.1016/j.micpath.2019.103674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 11/17/2022]
|
22
|
Gao T, Zhang C, Shi X, Guo R, Zhang K, Gu J, Li L, Li S, Zheng Q, Cui M, Cui M, Gao X, Liu Y, Wang L. Targeting dihydrofolate reductase: Design, synthesis and biological evaluation of novel 6-substituted pyrrolo[2,3-d]pyrimidines as nonclassical antifolates and as potential antitumor agents. Eur J Med Chem 2019; 178:329-340. [PMID: 31200235 DOI: 10.1016/j.ejmech.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
A novel series of 6-substituted pyrrolo[2,3-d]pyrimidines with reversed amide moieties from the lead compound 1a were designed and synthesized as nonclassical antifolates and as potential antitumor agents. Target compounds 1-9 were successfully obtained through two sequential condensation reactions from the key intermediate 2-amino-6-(2-aminoethyl)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one. In preliminary antiproliferation assay, all compounds demonstrated submicromolar to nanomolar inhibitory effects against KB tumor cells, whereas compounds 1-3 also exhibited nanomolar antiproliferative activities toward SW620 and A549 cells. In particular, compounds 1-3 were significantly more potent than the positive control methotrexate (MTX) and pemetrexed (PMX) to A549 cells. The growth inhibition induced cell cycle arrest at G1-phase with S-phase suppression. Along with the results of nucleoside protection assays, inhibition assays of dihydrofolate reductase (DHFR) clearly elucidated that the intracellular target of the designed compounds was DHFR. Molecular modeling studies suggested two binding modes of the target compounds with DHFR.
Collapse
Affiliation(s)
- Tianfeng Gao
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Congying Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiaowei Shi
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ran Guo
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Kai Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jianmin Gu
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Lin Li
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Shuolei Li
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Qianqian Zheng
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mengyu Cui
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Miao Cui
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xingmei Gao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, Shijiazhuang, 050017, PR China.
| |
Collapse
|
23
|
Ballini R, Palmieri A. Formation of Carbon‐Carbon Double Bonds: Recent Developments
via
Nitrous Acid Elimination (NAE) from Aliphatic Nitro Compounds. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roberto Ballini
- Green Chemistry GroupSchool of Sciences and TechnologyChemistry DivisionUniversity of Camerino Via S. Agostino n. 1 62032 Camerino (MC) Italy
| | - Alessandro Palmieri
- Green Chemistry GroupSchool of Sciences and TechnologyChemistry DivisionUniversity of Camerino Via S. Agostino n. 1 62032 Camerino (MC) Italy
| |
Collapse
|
24
|
DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents. Molecules 2019; 24:molecules24061140. [PMID: 30909399 PMCID: PMC6471984 DOI: 10.3390/molecules24061140] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.
Collapse
|
25
|
Ewida MA, Abou El Ella DA, Lasheen DS, Ewida HA, El-Gazzar YI, El-Subbagh HI. Imidazo[2',1':2,3]thiazolo[4,5-d]pyridazinone as a new scaffold of DHFR inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg Chem 2018; 80:11-23. [PMID: 29864684 DOI: 10.1016/j.bioorg.2018.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 01/31/2023]
Abstract
New series of thiazolo[4,5-d]pyridazin and imidazo[2',1':2,3]thiazolo[4,5-d]pyridazin analogues were designed, synthesized and evaluated for their invitro DHFR inhibition and antitumor activity. Compounds 13 and 43 proved to be DHFR inhibitors with IC50 0.05 and 0.06 μM, respectively. 43 proved lethal to OVCAR-3 Ovarian cancer and MDA-MB-435 Melanoma at IC50 0.32 and 0.46 μM, respectively. The active compounds formed hydrogen bond at DHFR binding site between N1-nitrogen of the pyridazine ring with Glu30; the carbonyl group with Trp24, Arg70 or Lys64; π-cation interaction with Arg22 and π-π interaction with Phe31 residues. Ring annexation of the active 1,3-thiazole ring analogue 13 into the bicyclic thiazolo[4,5-d]pyridazine (18,19) or imidazo[2,1-b]thiazoles (23-25) decreased the DHFR inhibition activity; while the formation of the tricyclic imidazo[2',1':2,3]-thiazolo[4,5-d]pyridazine (43-54) increased potency. The obtained model could be useful for the development of new class of DHFR inhibitors.
Collapse
Affiliation(s)
- Menna A Ewida
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Dalal A Abou El Ella
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, 62511 Benisuef, Egypt
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba A Ewida
- Department of Pharmacology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Yomna I El-Gazzar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
26
|
Li H, Fang F, Liu Y, Xue L, Wang M, Guo Y, Wang X, Tian C, Liu J, Zhang Z. Inhibitors of dihydrofolate reductase as antitumor agents: design, synthesis and biological evaluation of a series of novel nonclassical 6-substituted pyrido[3,2-d]pyrimidines with a three- to five-carbon bridge. Bioorg Med Chem 2018; 26:2674-2685. [PMID: 29691154 DOI: 10.1016/j.bmc.2018.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 02/02/2023]
Abstract
Bridge homologation of the previously reported nonclassical two-carbon-bridged antifolate, 2,4-diamino-6-phenethylpyrido[3,2-d]pyrimidine (wm-5a), afforded the three-, four- and five-carbon-bridged antifolate analogues 3.1-3.5, 4.1-4.2 and 5.1-5.5. The target compounds, with substituents at various positions on the carbon bridges, were efficiently synthesized by aldol condensation or Wittig reaction and followed by reduction. Elongation of the two-carbon bridge to three-, four- or five-carbon bridges, and also saturation of the carbon bridges, provided compounds with good inhibitory activity against recombinant human DHFR (rhDHFR). Analogue 3.5, which has a three-carbon bridge, inhibited the proliferation of HL-60 and HCT116 cells to a greater extent than the other analogues. Compound 3.5 was also the most potent inhibitor of rhDHFR (IC50 = 0.06 μM), and was approximately 38-fold more potent than the two-carbon-bridged lead compound. Docking studies revealed that both the length and flexibility of the saturated carbon bridge in 3.5 were important for high potency. Flow cytometry studies indicated that compound 3.5 arrested HL-60 cells in the S-phase and induced apoptosis. Western blot analysis of HL-60 cells treated with 3.5 showed a dose-dependent upregulation of DHFR protein levels.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Perking University, 100191, China
| | - Fang Fang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Perking University, 100191, China
| | - Yunqi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Perking University, 100191, China
| | - Liangmin Xue
- Department of Chemical Biology, School of Pharmaceutical Sciences, Perking University, 100191, China
| | - Meng Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Perking University, 100191, China
| | - Ying Guo
- Department of Chemical Biology, School of Pharmaceutical Sciences, Perking University, 100191, China
| | - Xiaowei Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Perking University, 100191, China
| | - Chao Tian
- Department of Chemical Biology, School of Pharmaceutical Sciences, Perking University, 100191, China
| | - Junyi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Perking University, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, China
| | - Zhili Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Perking University, 100191, China.
| |
Collapse
|
27
|
Gupta T, Rohilla A, Pathak A, Akhtar MJ, Haider MR, Yar MS. Current perspectives on quinazolines with potent biological activities: A review. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1431282] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tanya Gupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Ankit Rohilla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - M. Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
28
|
de Oliveira Viana J, Scotti MT, Scotti L. Molecular Docking Studies in Multitarget Antitubercular Drug Discovery. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/7653_2018_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Novel 6-substituted benzoyl and non-benzoyl straight chain pyrrolo[2,3- d ]pyrimidines as potential antitumor agents with multitargeted inhibition of TS, GARFTase and AICARFTase. Eur J Med Chem 2017; 139:531-541. [DOI: 10.1016/j.ejmech.2017.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/25/2017] [Accepted: 08/11/2017] [Indexed: 11/21/2022]
|
30
|
Ewida MA, Abou El Ella DA, Lasheen DS, Ewida HA, El-Gazzar YI, El-Subbagh HI. Thiazolo[4,5-d]pyridazine analogues as a new class of dihydrofolate reductase (DHFR) inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg Chem 2017; 74:228-237. [PMID: 28865294 DOI: 10.1016/j.bioorg.2017.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/12/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
A new series of 1,3-thiazoles and thiazolo[4,5-d]pyridazine both bearing the 2-thioureido function were designed, synthesized and evaluated for their invitro DHFR inhibition and antitumor activities. Compound 26 proved to be the most active DHFR inhibitor (IC50 of 0.06μM). Compound 4, 20 and 21 showed in vitro antitumor activity against a collection of cancer cell lines. Compound 26 proved lethal to HS 578T breast cancer cell line with IC50 value of 0.8μM, inducing cell cycle arrest and apoptosis. Molecular modeling studies concluded that recognition with key amino acids Phe 31 and Arg 22 is essential for DHFR binding. The obtained model could be useful for the development of new class of DHFR inhibitors.
Collapse
Affiliation(s)
- Menna A Ewida
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Dalal A Abou El Ella
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba A Ewida
- Department of Pharmacology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Yomna I El-Gazzar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
31
|
El-Gazzar YI, Georgey HH, El-Messery SM, Ewida HA, Hassan GS, Raafat MM, Ewida MA, El-Subbagh HI. Synthesis, biological evaluation and molecular modeling study of new (1,2,4-triazole or 1,3,4-thiadiazole)-methylthio-derivatives of quinazolin-4(3 H )-one as DHFR inhibitors. Bioorg Chem 2017; 72:282-292. [DOI: 10.1016/j.bioorg.2017.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
32
|
Novel family of fused tricyclic [1,4]diazepines: Design, synthesis, crystal structures and molecular docking studies. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Wang M, Yang J, Yuan M, Xue L, Li H, Tian C, Wang X, Liu J, Zhang Z. Synthesis and antiproliferative activity of a series of novel 6-substituted pyrido[3,2-d]pyrimidines as potential nonclassical lipophilic antifolates targeting dihydrofolate reductase. Eur J Med Chem 2017; 128:88-97. [PMID: 28152430 DOI: 10.1016/j.ejmech.2017.01.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 10/20/2022]
Abstract
Dihydrofolate reductase (DHFR) has been a well-recognized target for the treatment of many diseases. Based on 8,10-dideazaminopterins, which are classical antifolates that potently inhibit DHFR, we have designed a series of novel 2,4-diamino-6-substituted pyrido[3,2-d]pyrimidines. By removing the glutamate moiety and introducing lipophilic groups, we hoped to improve passive diffuse through the cell membranes. The target compounds were efficiently synthesized using one-pot procedure and evaluated in vitro for DHFR inhibition and antitumor activity. Compounds 5e, 5h, 5i and 5k were the most potent inhibitors of recombinant human DHFR (rhDHFR) with IC50 values in the range 0.2-1.0 μM. Analysis using flow cytometric indicated that the effect of compound 5k on cell cycle progression was linked to induction of S phase arrest. Compounds 5g, 5h, 5i and 5k showed broad spectrum antitumor activity against four different tumor cell lines, with IC50 values in the range 0.07-23 μM. Molecular docking investigations showed that the trimethoyphenyl ring of compound 5k occupied a position near the cofactor-binding site in the rhDHFR-inhibitor complex, with close intermolecular contacts with Asp21, Phe31, Ser59, Ile60 and Pro61.
Collapse
Affiliation(s)
- Meng Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiajia Yang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mengmeng Yuan
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangmin Xue
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hao Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chao Tian
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaowei Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junyi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Zhili Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
34
|
El-Messery SM, Hassan GS, Nagi MN, Habib ESE, Al-Rashood ST, El-Subbagh HI. Synthesis, biological evaluation and molecular modeling study of some new methoxylated 2-benzylthio-quinazoline-4(3H)-ones as nonclassical antifolates. Bioorg Med Chem Lett 2016; 26:4815-4823. [PMID: 27554444 DOI: 10.1016/j.bmcl.2016.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 11/26/2022]
Abstract
A new series of 2,3,6-substituted-quinazolin-4-ones was designed, synthesized, and evaluated for their in vitro DHFR inhibition, antimicrobial, and antitumor activities. Compounds 28 and 61 proved to be active DHFR inhibitors with IC50 0.02 and 0.01μM, respectively. Molecular modeling studies concluded that recognition with the key amino acid Phe34 is essential for binding and hence DHFR inhibition. Compounds 34, 56 and 66 showed broad spectrum antimicrobial activity comparable to Gentamicin and Ciprofloxacin. Compounds 40 and 64 showed broad spectrum antitumor activity toward several tumor cell lines and proved to be 10 fold more active than 5-FU, with GI50 MG-MID values of 2.2 and 2.4μM, respectively.
Collapse
Affiliation(s)
- Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mahmoud N Nagi
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - El-Sayed E Habib
- Department of Pharmaceutics and Pharmaceutical Technology (Microbiology), College of Pharmacy, Taibah University, Almadinah Almunawwarah 344, Saudi Arabia; Department of Microbiology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Sarah T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University, 12311 Cairo, Egypt.
| |
Collapse
|
35
|
Tiwari SV, Seijas JA, Vazquez-Tato MP, Sarkate AP, Lokwani DK, Nikalje APG. Ultrasound Mediated One-Pot, Three Component Synthesis, Docking and ADME Prediction of Novel 5-Amino-2-(4-chlorophenyl)-7-Substituted Phenyl-8,8a-dihydro-7H-(1,3,4)thiadiazolo(3,2-α)pyrimidine-6-carbonitrile Derivatives as Anticancer Agents. Molecules 2016; 21:molecules21080894. [PMID: 27483213 PMCID: PMC6273159 DOI: 10.3390/molecules21080894] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 11/26/2022] Open
Abstract
Herein, we report an environmentally friendly, rapid, and convenient one-pot ultrasound-promoted synthesis of 5-amino-2-(4-chlorophenyl)-7-substituted phenyl-8,8a-dihydro-7H-(1,3,4)thiadiazolo(3,2-α)pyrimidine-6-carbonitrile derivatives. The in-vitro anticancer activities of these compounds were evaluated against four human tumor cell lines. Among all the synthesized derivatives, compound 4i, which has substituent 3-hydroxy-4-methoxyphenyl is found to have the highest GI50 value of 32.7 μM, 55.3 μM, 34.3 μM, 28.9 μM for MCF-7, K562, HeLa and PC-3 cancer cell lines respectively. A docking study of the newly synthesized compounds were performed, and the results showed good binding mode in the active site of thymidylate synthase enzyme. ADME properties of synthesized compounds were also studied and showed good drug like properties.
Collapse
Affiliation(s)
- Shailee V Tiwari
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baug, Aurangabad, Maharashtra 431001, India.
| | - Julio A Seijas
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad of Santiago De Compostela, Alfonso X el Sabio, Lugo 27002, Spain.
| | - M Pilar Vazquez-Tato
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad of Santiago De Compostela, Alfonso X el Sabio, Lugo 27002, Spain.
| | - Aniket P Sarkate
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India.
| | - Deepak K Lokwani
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India.
| | - Anna Pratima G Nikalje
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baug, Aurangabad, Maharashtra 431001, India.
| |
Collapse
|
36
|
Kemskii SV, Bol’but AV, Vovk MV. Synthesis of 4-hydrazinyl-1,6-dihydropyrazolo[3,4-e][1,4]diazepines and their hydrolytic recyclization to 5-amino-4-(1,2,4-triazin-3-yl)-1H-pyrazoles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s107042801510022x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Thermal stabilization of dihydrofolate reductase using monte carlo unfolding simulations and its functional consequences. PLoS Comput Biol 2015; 11:e1004207. [PMID: 25905910 PMCID: PMC4407897 DOI: 10.1371/journal.pcbi.1004207] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/20/2015] [Indexed: 12/28/2022] Open
Abstract
Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r = 0.65–0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations. All-atom molecular simulations have provided valuable insight into the workings of molecular machines and the folding and unfolding of proteins. However, commonly employed molecular dynamics simulations suffer from a limitation in accessible time scale, making it difficult to model large-scale unfolding events in a realistic amount of simulation time without employing unrealistically high temperatures. Here, we describe a rapid all-atom Monte Carlo simulation approach to simulate unfolding of the essential bacterial enzyme Dihydrofolate Reductase (DHFR) and all possible single point-mutants. We use these simulations to predict which mutants will be more thermodynamically stable (i.e., reside more often in the native folded state vs. the unfolded state) than the wild-type protein, and we confirm our predictions experimentally, creating several highly stable and catalytically active mutants. Thermally stable active engineered proteins can be used as a starting point in directed evolution experiments to evolve new functions on the background of this additional “reservoir of stability.” The stabilized enzyme may be able to accumulate a greater number of destabilizing yet functionally important mutations before unfolding, protease digestion, and aggregation abolish its activity.
Collapse
|
38
|
Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidines as potential nonclassical antifolates targeting both thymidylate and purine nucleotide biosynthesis. Eur J Med Chem 2015; 93:142-55. [PMID: 25668494 DOI: 10.1016/j.ejmech.2015.01.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 11/20/2022]
Abstract
A novel series of 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines were designed and synthesized as potential nonclassical antifolates targeting both thymidylate and purine nucleotide biosynthesis. Condensation of 2,4-diamino-6-hydroxypyrimidine with ethyl-4-chloroacetoacetate and subsequent hydrolysis afforded the key intermediate, 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidin-6-yl-acetic acid. Coupling with various amino acid methyl esters followed by saponification and condensation with 3-(aminomethyl)pyridine provided target compounds 1-9. The new compounds exhibited micromolar to submicromolar antiproliferative potencies against a panel of tumor cell lines including KB, A549 and HepG2. Growth inhibition of compound 2 toward KB cells resulted in cytotoxicity and G1/G2-phase accumulation, and was partially protected by excess thymidine and adenosine, but was completely reversed in the combination of thymidine and adenosine, indicating both thymidylate and de novo purine nucleotide synthesis as the targeted pathway. However, 5-aminoimidazole-4-carboxamide (AICA) protection was incomplete, suggesting inhibition of both glycinamide ribonucleotide formyltransferase (GARFTase) and AICA ribonucleotide formyltransferase (AICARFTase). The results of the docking studies show that 2 could bind and inhibit both thymidylate synthase (TS) and the two folate-dependent purine biosynthetic enzymes (GARFTase and AICARFTase), which is consistent with the results of in vitro metabolic assays. Our studies establish that compound 2 is an excellent lead analog as a multitargeted antifolate for further structure optimization.
Collapse
|
39
|
Ramírez J, Svetaz L, Quiroga J, Abonia R, Raimondi M, Zacchino S, Insuasty B. Synthesis of novel thiazole-based 8,9-dihydro-7H-pyrimido[4,5-b][1,4]diazepines as potential antitumor and antifungal agents. Eur J Med Chem 2015; 92:866-75. [PMID: 25638570 DOI: 10.1016/j.ejmech.2015.01.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/22/2015] [Accepted: 01/24/2015] [Indexed: 12/24/2022]
Abstract
A new series of novel thiazole-based 8,9-dihydro-7H-pyrimido[4,5-b][1,4]diazepines 6a-g and 7a-g were obtained with high regioselectivity from the reaction of triamino- or tetraaminopyrimidines 4 and 5 with α,β-unsaturated carbonyl compounds 3a-g based on 2,4-dichlorothiazol-5-carbaldehyde 1. Twelve of the synthesized compounds were selected and tested by US National Cancer Institute (NCI) for their antitumor activity against 60 different human tumor cell lines. Compounds 7d and 7g showed important GI50 ranges of 1.28-2.98 μM and 0.35-2.78 μM respectively under in vitro assays. In addition, 6a-g and 7a-g were tested for antifungal properties against the clinical important fungi Candida albicans and Cryptococcus neoformans. Although these compounds showed moderate activities against C. albicans, the 2-amino derivatives 7a-g and mainly 7a and 7b, showed high activity against standardized and clinical isolates of C. neoformans with MIC50 = 7.8-31.2 μg/mL, MIC80 = 15.6-31.2 μg/mL and MIC100 = 15.6-62.5 μg/mL. In addition, since both compounds were fungicide rather than fungistatic these thiazole-based 8,9-dihydro-7H-pyrimido[4,5-b][1,4]diazepines appear as good candidates for further development not only as antifungal but also as antitumor drugs.
Collapse
Affiliation(s)
- Juan Ramírez
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, AA 25360 Cali, Colombia
| | - Laura Svetaz
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Jairo Quiroga
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, AA 25360 Cali, Colombia
| | - Rodrigo Abonia
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, AA 25360 Cali, Colombia
| | - Marcela Raimondi
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Susana Zacchino
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Braulio Insuasty
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, AA 25360 Cali, Colombia.
| |
Collapse
|
40
|
Khan I, Ibrar A, Ahmed W, Saeed A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: the advances continue. Eur J Med Chem 2014; 90:124-69. [PMID: 25461317 DOI: 10.1016/j.ejmech.2014.10.084] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/10/2014] [Accepted: 10/31/2014] [Indexed: 12/18/2022]
Abstract
The presence of N-heterocycles as an essential structural motif in a variety of biologically active substances has stimulated the development of new strategies and technologies for their synthesis. Among the various N-heterocyclic scaffolds, quinazolines and quinazolinones form a privileged class of compounds with their diverse spectrum of therapeutic potential. The easy generation of complex molecular diversity through broadly applicable, cost-effective, practical and sustainable synthetic methods in a straightforward fashion along with the importance of these motifs in medicinal chemistry, received significant attention from researchers engaged in drug design and heterocyclic methodology development. In this perspective, the current review article is an effort to recapitulate recent developments in the eco-friendly and green procedures for the construction of highly challenging and potentially bioactive quinazoline and quinazolinone compounds in order to help medicinal chemists in designing and synthesizing novel and potent compounds for the treatment of different disorders. The key mechanistic insights for the synthesis of these heterocycles along with potential applications and manipulations of the products have also been conferred. This article also aims to highlight the promising future directions for the easy access to these frameworks in addition to the identification of more potent and specific products for numerous biological targets.
Collapse
Affiliation(s)
- Imtiaz Khan
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Aliya Ibrar
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Waqas Ahmed
- Office of Research, Innovation and Commercialization, University of Gujrat, Gujrat 50700, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
41
|
Methanol facilitated synthesis of 7-methoxy-2-thioxo-2,3-dihydro-1H-1,3-diazepin-4(7H)-ones from nitroallylic acetates and thiourea. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Al-Rashood ST, Hassan GS, El-Messery SM, Nagi MN, Habib ESE, Al-Omary FA, El-Subbagh HI. Synthesis, biological evaluation and molecular modeling study of 2-(1,3,4-thiadiazolyl-thio and 4-methyl-thiazolyl-thio)-quinazolin-4-ones as a new class of DHFR inhibitors. Bioorg Med Chem Lett 2014; 24:4557-4567. [DOI: 10.1016/j.bmcl.2014.07.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/28/2014] [Indexed: 11/16/2022]
|