1
|
Carpinteyro Diaz AE, Herfindal L, Holmelid B, Brede C, Andersen HL, Vedeler A, Fossen T. Cytotoxic Natural Products from the Jurassic Relict Osmunda regalis L. Molecules 2024; 29:4247. [PMID: 39275095 PMCID: PMC11397566 DOI: 10.3390/molecules29174247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
The Jurassic relict Royal fern, Osmunda regalis L., is widely distributed across temperate zones in the Northern and Southern hemispheres. Even though this species has been utilised for centuries as a medicinal plant, its phytochemical composition mainly remains unknown. As part of our ongoing research to identify potential lead compounds for future anticancer drugs, 17 natural products were characterised from the aerial parts of Osmunda regalis L. Fifteen of these compounds were identified in this species for the first time, including the six previously undescribed compounds kaempferol 3-O-(2''-O-(2'''-α-rhamnopyranosyl)-β-glucopyranosyl)-β-glucopyranoside, quercetin 3-O-(2''-O-(2'''-α-rhamnopyranosyl)-β-glucopyranosyl)-β-glucopyranoside, kaempferol 3-O-(2''-O-(2'''-α-rhamnopyranosyl-6'''-O-(E)-caffeoyl-)-β-glucopyranosyl)-β-glucopyranoside, 3-methoxy-5-hydroxy-4-olide, 4-hydroxy-3-(3'-hydroxy-4'-(hydroxyethyl)-oxotetrafuranone-5-methyl tetrahydropyranone, and 4-O-(5-hydroxy-4-oxohexanoyl) osmundalactone. The molecular structures were determined by combining several 1D and 2D NMR experiments, circular dichroism spectroscopy, and HRMS. Determination of cytotoxicity against AML MOLM-13, H9c2, and NRK cell lines showed that two isolated lactones exhibited significant cytotoxic activity.
Collapse
Affiliation(s)
| | - Lars Herfindal
- Department of Clinical Science and Centre for Pharmacy, University of Bergen, N-5009 Bergen, Norway
| | - Bjarte Holmelid
- Department of Chemistry and Centre for Pharmacy, University of Bergen, N-5007 Bergen, Norway
| | - Cato Brede
- Department of Medical Biochemistry, Stavanger University Hospital, N-4011 Stavanger, Norway
| | - Heidi Lie Andersen
- University Gardens, University of Bergen, Allégt. 41, N-5007 Bergen, Norway
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Torgils Fossen
- Department of Chemistry and Centre for Pharmacy, University of Bergen, N-5007 Bergen, Norway
| |
Collapse
|
2
|
Wang P, Zhang M, Zhao SF, Zhang ZR, Liu GL, Chi Z, Chi ZM. Liamocins overproduction via the two-pH stage fermentation and anti-Aspergillus flavus activity of Massoia lactone. Biotechnol J 2024; 19:e2300675. [PMID: 38404053 DOI: 10.1002/biot.202300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Aureobasidium melanogenum was found to be grown the best at the constant pH 7.0 and to produce the highest amount of liamocins at the constant pH 3.0. Therefore, the wild type strain A. melanogenum 9-1 and the engineered strain V33 constructed in the laboratory were grown at the constant pH 7.0 for 48 h, then, they were continued to be cultivated at the constant pH 3.0. Under such conditions, A. melanogenum 9-1 produced 36.51 ± 0.55 g L-1 of liamocin and its cell mass was 27.43 ± 0.63 and 6.00 ± 0.11 g L-1 of glucose was left in the finished medium within 168 h while the engineered strain V33 secreted 70.86 ± 2.04 g L-1 of liamocin, its cell mass was 31.63 ± 0.74 g L-1 , 0.16 ± 0.01 g L-1 of glucose was maintained in the finished medium. Then, Massoia lactone was released from the produced liamocins. The released Massoia lactone loaded in the nanoemulsions could be used to actively damage cell wall and cell membrane of both spores and mycelia of Aspergillus flavus, leading to its cell necrosis. Massoia lactone loaded in the nanoemulsions also actively inhibited cell growth of A. flavus, its conidia production and aflatoxin biosynthesis on peanuts, indicating that Massoia lactone loaded in the nanoemulsions had highly potential application in controlling cell growth of A. flavus and aflatoxin biosynthesis in foods and feedstuffs.
Collapse
Affiliation(s)
- Peng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mei Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shou-Feng Zhao
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Zhao-Rui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Lee Y, Park SJ, Kim K, Kim TO, Lee SE. Antifungal and Antiaflatoxigenic Activities of Massoia Essential Oil and C10 Massoia Lactone against Aflatoxin-Producing Aspergillus flavus. Toxins (Basel) 2023; 15:571. [PMID: 37755997 PMCID: PMC10537029 DOI: 10.3390/toxins15090571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Fungal infection and mycotoxin contamination are major hazards to the safe storage and distribution of foods and feeds consumed by humans and livestock. This study investigated the antifungal and antiaflatoxigenic activities of massoia essential oil (MEO) and its major constituent, C10 massoia lactone (C10), against aflatoxin B (AFB)-producing Aspergillus flavus ATCC 22546. Their antifungal activities were evaluated using a disc diffusion assay, agar dilution method, and a mycelial growth inhibition assay with the AFB analysis using liquid chromatography triple quadrupole mass spectrometry. MEO and C10 exhibited similar antifungal and antiaflatoxigenic activities against A. flavus. C10 was a primary constituent in MEO and represented up to 45.1% of total peak areas analyzed by gas chromatography-mass spectrometry, indicating that C10 is a major compound contributing to the antifungal and antiaflatoxigenic activities of MEO. Interestingly, these two materials increased AFB production in A. flavus by upregulating the expression of most genes related to AFB biosynthesis by 3- to 60-fold. Overall, MEO and C10 could be suitable candidates as natural preservatives to control fungal infection and mycotoxin contamination in foods and feeds as Generally Recognized As Safe (GRAS) in the Flavor and Extract Manufacturers Association of the United States (FEMA), and MEO is a more suitable substance than C10 because of its wider range of uses and higher allowed concentration than C10.
Collapse
Affiliation(s)
- Yubin Lee
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Soo Jean Park
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| | - Kyeongnam Kim
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Tae-Oh Kim
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Sung-Eun Lee
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Production of liamocins by Aureobasidium spp. with potential applications. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Beyond the Bark: An Overview of the Chemistry and Biological Activities of Selected Bark Essential Oils. Molecules 2022; 27:molecules27217295. [PMID: 36364121 PMCID: PMC9654741 DOI: 10.3390/molecules27217295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Essential oils have been used by indigenous peoples for medicinal purposes since ancient times. Their easy availability played an important role. Even today, essential oils are used in various fields—be it as aromatic substances in the food industry, as an aid in antibiotic therapy, in aromatherapy, in various household products or in cosmetics. The benefits they bring to the body and health are proven by many sources. Due to their complex composition, they offer properties that will be used more and more in the future. Synergistic effects of various components in an essential oil are also part of the reason for their effectiveness. Infectious diseases will always recur, so it is important to find active ingredients for different therapies or new research approaches. Essential oils extracted from the bark of trees have not been researched as extensively as from other plant components. Therefore, this review will focus on bringing together previous research on selected bark oils to provide an overview of barks that are economically, medicinally, and ethnopharmaceutically relevant. The bark oils described are Cinnamomum verum, Cedrelopsis grevei, Drypetes gossweileri, Cryptocarya massoy, Vanillosmopsis arborea and Cedrus deodara. Literature from various databases, such as Scifinder, Scopus, Google Scholar, and PubMed, among others, were used.
Collapse
|
6
|
Making of Massoia Lactone-Loaded and Food-Grade Nanoemulsions and Their Bioactivities against a Pathogenic Yeast. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nanoemulsions (NEs) have been made for improving the delivery and disperse of bioactive compounds. In this study, it was found that the best ingredients for the stable Massoia lactone-loaded and food-grade NEs making were 560.0 µL of Tween-80, 240.0 µL of Span-80 and 200.0 µL of Massoia lactone. Then, 9.0 mL of distilled water was titrated into the mixture under continuous magnetic stirring (750 rotations min−1) with about 2 drops per second for 20 min. Finally, the system was treated by ultrasonication using an ultrasonic generator (180 W and 22 KHz) for 5 min. All the prepared particles with a mean droplet diameter of 43 nm were spherical, had uniform size distribution and were equally distributed in the Massoia lactone-loaded NEs. The obtained Massoia lactone-loaded nanoemulsions (NEs) were very stable without changes of the mean droplet diameter and polydispersity indexes (PDI) for over two months under different conditions. As with free Massoia lactone, Massoia lactone loaded in the NEs had high anti-fungal activity against Metschnikowia bicuspidate LIAO, a pathogenic yeast causing milky disease in the Chinese mitten crab by damaging its cell membrane and causing cellular necrosis. Massoia lactone loaded in the NEs also had the DPPH radical scavenging activity and the hydroxyl radical scavenging activity.
Collapse
|
7
|
Zheng A, Wang S, Zhou T, Chen Y, Ke X, Chen H, Tan H. Bioinspired syntheses of cryptoflavanones C and D, oboflavanones A and B, and cryptoyunnanones G and H enabled by an acid-triggered cascade sequence. Org Chem Front 2022. [DOI: 10.1039/d1qo01837j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Collective total syntheses of oboflavanones A-B, cryptoflavanones C-D, and cryptoyunnanones G-H via a bioinspired acid-triggered olefin isomerization/hemiacetalization/dehydration/formal [3 + 3]-type cycloaddition cascade process are presented.
Collapse
Affiliation(s)
- Anquan Zheng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Key Laboratory of South China Agricultural Plant Molecular Analysis, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sasa Wang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Tingting Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Key Laboratory of South China Agricultural Plant Molecular Analysis, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yan Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xin Ke
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Huiyu Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Key Laboratory of South China Agricultural Plant Molecular Analysis, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
8
|
Kang XX, Jia SL, Wei X, Zhang M, Liu GL, Hu Z, Chi Z, Chi ZM. Liamocins biosynthesis, its regulation in Aureobasidium spp., and their bioactivities. Crit Rev Biotechnol 2021; 42:93-105. [PMID: 34154468 DOI: 10.1080/07388551.2021.1931017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Liamocins synthesized by Aureobasidium spp. are glycolipids composed of a single mannitol or arabitol headgroup linked to either three, four or even six 3,5-dihydroxydecanoic ester tail-groups. The highest titer of liamocin achieved was over 40.0 g/L. The substrates for liamocins synthesis include glucose, sucrose, xylose, mannitol, and others. The Pks1 is responsible for the biosynthesis of the tail-group 3,5-dihydroxydecanoic acid, both mannitol dehydrogenase (MDH) and mannitol 1-phosphate 5-dehydrogenase (MPDH) catalyze the mannitol biosynthesis and the arabitol biosynthesis is controlled by arabitol dehydrogenase (ArDH). The ester bond formation between 3,5-dihydroxydecanoic acid and mannitol or arabitol is catalyzed by the esterase (Est1). Liamocin biosynthesis is regulated by the specific transcriptional activator (Gal1), global transcriptional activator (Msn2), various signaling pathways, acetyl-CoA flux while Pks1 activity is controlled by PPTase activity. The synthesized liamocins have high bioactivity against the pathogenic bacteria Streptococcus spp. and some kinds of cancer cells while Massoia lactone released liamocins which exhibited obvious antifungal and anticancer activities. Therefore, liamocins and Massoia lactone have many applications in various sectors of biotechnology.
Collapse
Affiliation(s)
- Xin-Xin Kang
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, China
| | - Shu-Lei Jia
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, China
| | - Xin Wei
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, China
| | - Mei Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, China
| | - Guang-Lei Liu
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Zhen-Ming Chi
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
9
|
Development of cellulose nanocrystal-stabilized Pickering emulsions of massoia and nutmeg essential oils for the control of Aedes albopictus. Sci Rep 2021; 11:12038. [PMID: 34103581 PMCID: PMC8187374 DOI: 10.1038/s41598-021-91442-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
We investigated the larvicidal potential of 10 plant essential oils (EOs) against the Asian tiger mosquito Aedes albopictus. Among the EOs, larvicidal activity against Ae. albopictus was strongest in those derived from massoia (Massoia aromatica) and nutmeg (Myristica fragrans). Larvicidal activities of massoia and nutmeg EOs against Ae. albopictus were 95.0% and 85.0% at 50 μg/mL, respectively. A total of 4 and 14 compounds were identified from massoia and nutmeg, respectively, and two massoia lactones, C10 and C12, were isolated from massoia EO. Among the identified compounds, benzyl salicylate, terpinolene, C12 massoia lactone, sabinene, benzyl benzoate, methyl eugenol, and C10 massoia lactone exhibited the strong larvicidal activity. Cellulose nanocrystal (CNC)-stabilized Pickering emulsions of massoia and nutmeg EOs were developed to overcome the insolubility of EOs in water. CNC/massoia and CNC/nutmeg emulsions were stable for at least 10 days, and larvicidal activities of CNC/massoia PE and CNC/nutmeg were higher than those of crude massoia and nutmeg EOs. This study presents a CNC-stabilized PE, a suitable formulation for EOs, as a potential larvicide against Ae. albopictus.
Collapse
|
10
|
Barbosa SM, Abreu NDC, de Oliveira MS, Cruz JN, Andrade EHDA, Menezes Neto MA, Cajueiro Gurgel ES. Effects of light intensity on the anatomical structure, secretory structures, histochemistry and essential oil composition of Aeollanthus suaveolens Mart. ex Spreng. (Lamiaceae). BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Metschnikowia bicuspidate associated with a milky disease in Eriocheir sinensis and its effectitve treatment by Massoia lactone. Microbiol Res 2020; 242:126641. [PMID: 33191103 DOI: 10.1016/j.micres.2020.126641] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/04/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
The pathogenic yeast strain LIAO causing the milky disease in the Chinese mitten crab belonged to one member of Metschnikowia bicuspidate which could grow well at different temperatures from 28 to 4 °C. It was also found that the pathogenic yeast strain LIAO could grow in the extracts of the muscle, gill, heart tissues, intestinal tracts of the healthy Chinese mitten crabs by using the reducing sugars, amino acids and other nutrients in them. Massoia lactone released from liamocins produced by Aureobasidium melanogenum had high anti-fungal activity against the pathogenic yeast strain LIAO and M. bicuspidate WCY isolated from the diseased marine crabs. The minimal inhibitory concentrations (MIC) and the minimal fungicidal concentration (MFC) in the liquid culture against the pathogenic yeast strain LIAO were 0.15 mg/mL and 0.34 mg/mL, respectively. Massoia lactone as a bio-surfactant could damage the cell membrane, even break the whole cells of the pathogenic yeast strain LIAO and cause cellular necrosis of the pathogenic yeast LIAO. Therefore, Massoia lactone could be used to effectively kill the pathogenic yeast strains and as an effectitve treatment for milky disease in the Chinese mitten crab.
Collapse
|
12
|
Genetic evidences for the core biosynthesis pathway, regulation, transport and secretion of liamocins in yeast-like fungal cells. Biochem J 2020; 477:887-903. [PMID: 32003433 DOI: 10.1042/bcj20190922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022]
Abstract
So far, it has been still unknown how liamocins are biosynthesized, regulated, transported and secreted. In this study, a highly reducing polyketide synthase (HR-PKS), a mannitol-1-phosphate dehydrogenase (MPDH), a mannitol dehydrogenase (MtDH), an arabitol dehydrogenase (ArDH) and an esterase (Est1) were found to be closely related to core biosynthesis of extracellular liamocins in Aureobasidium melanogenum 6-1-2. The HR-PKS was responsible for biosynthesis of 3,5-dihydroxydecanoic acid. The MPDH and MtDH were implicated in mannitol biosynthesis and the ArDH was involved in arabitol biosynthesis. The Est1 catalyzed ester bond formation of them. A phosphopantetheine transferase (PPTase) activated the HR-PKS and a transcriptional activator Ga11 activated expression of the PKS1 gene. Therefore, deletion of the PKS1 gene, all the three genes encoding MPDH, MtDH and ArDH, the EST1, the gene responsible for PPTase and the gene for Ga11 made all the disruptants (Δpks13, Δpta13, Δest1, Δp12 and Δg11) totally lose the ability to produce any liamocins. A GLTP gene encoding a glycolipid transporter and a MDR1 gene encoding an ABC transporter took part in transport and secretion of the produced liamocins into medium. Removal of the GLTP gene and the MDR1 gene resulted in a Δgltp1 mutant and a Δmdr16 mutant, respectively, that lost the partial ability to secrete liamocins, but which cells were swollen and intracellular lipid accumulation was greatly enhanced. Hydrolysis of liamocins released 3,5-dihydroxydecanoic acid, mannitol, arabitol and acetic acid. We proposed a core biosynthesis pathway, regulation, transport and secretion of liamocins in A. melanogenum.
Collapse
|
13
|
Sang Q, Pan Y, Jiang Z, Wang Y, Zhang H, Hu P. HPLC determination of massoia lactone in fermented Cordyceps sinensis mycelium Cs-4 and its anticancer activity in vitro. J Food Biochem 2020; 44:e13336. [PMID: 32713040 DOI: 10.1111/jfbc.13336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
The fermentation product of Cordyceps sinensis mycelium Cs-4 was commonly used as alternative substitutes of natural C. sinensis. Massoia lactone is the dominant component in the volatile oil of Cs-4 mycelium. In this research, we present a high performance liquid chromatography (HPLC) method for the quantitation of massoia lactone in Cs-4 mycelium. The high and stable contents of massoia lactone with values of 2.98-3.77 mg/g, indicated that massoia lactone could be considered as a marker for the quality assessment of this product. The results of MTT and CCK-8 assay showed that Cs-4 mycelium volatiles exhibited cytotoxicity against eight malignant tumor cells (IC50 = 6.0-49.8 μg/ml) in comparison to the anticancer drug 5-fluorouracil (IC50 = 17.0-425.3 μg/ml), and massoia lactone might be the chemical basis for the anticancer effects of Cs-4 mycelium. Compared to the commercial drugs paclitaxel and docetaxel (IC50 = 253-1973 μg/ml), the Cs-4 mycelium volatiles and massoia lactone were discovered to possess inhibitory to taxol-resistant cell lines (IC50 = 1.5-8.6 μg/ml). PRACTICAL APPLICATIONS: Considering that there is still a lack of marker components distinctive to Cs-4 mycelium, the HPLC method represents a useful tool for the quality evaluation of Cs-4 mycelium. Moreover, the volatile oil of Cs-4 mycelium and massoia lactone have prominent anticancer property in vitro. It gives a clue that Cs-4 mycelium, the volatile oil and massoia lactone could be potentially employed in the food and medical industries for its anticancer applications.
Collapse
Affiliation(s)
- Qingni Sang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Yuerong Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Biological Evaluation of Arylsemicarbazone Derivatives as Potential Anticancer Agents. Pharmaceuticals (Basel) 2019; 12:ph12040169. [PMID: 31744203 PMCID: PMC6958387 DOI: 10.3390/ph12040169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
Fourteen arylsemicarbazone derivatives were synthesized and evaluated in order to find agents with potential anticancer activity. Cytotoxic screening was performed against K562, HL-60, MOLT-4, HEp-2, NCI-H292, HT-29 and MCF-7 tumor cell lines. Compounds 3c and 4a were active against the tested cancer cell lines, being more cytotoxic for the HL-60 cell line with IC50 values of 13.08 μM and 11.38 μM, respectively. Regarding the protein kinase inhibition assay, 3c inhibited seven different kinases and 4a strongly inhibited the CK1δ/ε kinase. The studied kinases are involved in several cellular functions such as proliferation, migration, cell death and cell cycle progression. Additional analysis by flow cytometry revealed that 3c and 4a caused depolarization of the mitochondrial membrane, suggesting apoptosis mediated by the intrinsic pathway. Compound 3c induced arrest in G1 phase of the cell cycle on HL-60 cells, and in the annexin V assay approximately 50% of cells were in apoptosis at the highest concentration tested (26 μM). Compound 4a inhibited cell cycle by accumulation of abnormal postmitotic cells at G1 phase and induced DNA fragmentation at the highest concentration (22 μM).
Collapse
|
15
|
Ochi R, Nishiwaki H, Yamauchi S. Syntheses and Phytotoxicity of All Stereoisomers of 6-(2-Hydroxy-6-phenylhex-1-yl)-5,6-dihydro-2 H-pyran-2-one and Determination of the Effect of the α,β-Unsaturated Carbonyl Structure and Hydroxy Group Bonding to Chiral Carbon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12558-12564. [PMID: 31609622 DOI: 10.1021/acs.jafc.9b05507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
All four stereoisomers of naturally occurring 6-(2-hydroxy-6-phenylhex-1-yl)-5,6-dihydro-2H-pyran-2-one (1) were synthesized by employing yeast-reduction products with high optical purity [from 95% enantiomeric excess (ee) to more than 99% ee], and then their phytotoxicities against lettuce and Italian ryegrass were evaluated. In the Italian ryegrass seedlings test, (6S,2'R)-1 showed the most potent and stereospecific activity against the shoots (IC50 = 260 μM) and roots (IC50 = 43.2 μM), with a significant difference from other stereoisomers. The highest seed germination inhibitory activity against Italian ryegrass seed was also observed in (6S,2'R)-1, showing a 53% germination ratio from the control at 1000 μM. This advantageous (6S,2'R) stereochemistry was employed in the syntheses of α,β-dihydro, 2'-dehydroxy, and 2'-methoxy derivatives 13-15. By the test using these derivatives, the importance of the α,β-unsaturated double bond and hydroxy group bonding to a chiral center on the 6-alkyl chain of 5,6-dihydro-α-pyrone for phytotoxicity was determined. In the test against lettuce, the 6S configuration and (6S,2'S) configuration were necessary for growth inhibition (IC50 = ca. 60 μM) and germination inhibition (63% germination ratio at 1000 μM), respectively.
Collapse
Affiliation(s)
- Ryota Ochi
- Graduate School of Agriculture , Ehime University , 3-5-7 Tarumi , Matsuyama , Ehime 790-8566 , Japan
| | - Hisashi Nishiwaki
- Graduate School of Agriculture , Ehime University , 3-5-7 Tarumi , Matsuyama , Ehime 790-8566 , Japan
| | - Satoshi Yamauchi
- Graduate School of Agriculture , Ehime University , 3-5-7 Tarumi , Matsuyama , Ehime 790-8566 , Japan
| |
Collapse
|
16
|
Delman M, Avcı ST, Akçok İ, Kanbur T, Erdal E, Çağır A. Antiproliferative activity of (R)-4'-methylklavuzon on hepatocellular carcinoma cells and EpCAM +/CD133 + cancer stem cells via SIRT1 and Exportin-1 (CRM1) inhibition. Eur J Med Chem 2019; 180:224-237. [PMID: 31306909 DOI: 10.1016/j.ejmech.2019.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Cytotoxic effects of (R)-4'-methylklavuzon were investigated on hepatocellular carcinoma cells (HuH-7 and HepG2) and HuH-7 EpCAM+/CD133+ cancer stem cells. IC50 of (R)-4'-methylklavuzon was found as 1.25 μM for HuH-7 parental cells while it was found as 2.50 μM for HuH-7 EpCAM+/CD133+ cancer stem cells. (R)-4'-methylklavuzon tended to show more efficient in vitro cytotoxicity with its lower IC50 values on hepatocellular carcinoma cell lines compared to its lead molecule, goniothalamin and FDA-approved drugs, sorafenib and regorafenib. Cell-based Sirtuin/HDAC enzyme activity measurements revealed that endogenous Sirtuin/HDAC enzymes were reduced by 40% compared to control. SIRT1 protein levels were upregulated indicating triggered DNA repair mechanism. p53 was overexpressed in HepG2 cells. (R)-4'-methylklavuzon inhibited CRM1 protein providing increased retention of p53 and RIOK2 protein in the nucleus. HuH-7 parental and EpCAM+/CD133+ cancer stem cell spheroids lost intact morphology. 3D HepG2 spheroid viabilities were decreased in a correlation with upregulation in p53 protein levels.
Collapse
Affiliation(s)
- Murat Delman
- Department of Biotechnology and Bioengineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Sanem Tercan Avcı
- Izmir Biomedicine and Genome Center, 35340, Balcova, Izmir, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - İsmail Akçok
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Tuğçe Kanbur
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, 35340, Balcova, Izmir, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.
| | - Ali Çağır
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| |
Collapse
|
17
|
Borowski D, Maichle-Mössmer C, Ziegler T. Synthetic Adventures with 2- C
-Branched Carbohydrates: 4- C
-Formyl Branched Octoses with Structural Analogy to Bradyrhizose. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Borowski
- Institute of Organic Chemistry; University of Tuebingen; Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Cäcilia Maichle-Mössmer
- Institute of Inorganic Chemistry; University of Tuebingen; Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Thomas Ziegler
- Institute of Organic Chemistry; University of Tuebingen; Auf der Morgenstelle 18 72076 Tuebingen Germany
| |
Collapse
|
18
|
Zhang HJ, Yin L. Asymmetric Synthesis of α,β-Unsaturated δ-Lactones through Copper(I)-Catalyzed Direct Vinylogous Aldol Reaction. J Am Chem Soc 2018; 140:12270-12279. [DOI: 10.1021/jacs.8b07929] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hai-Jun Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
19
|
Effect of Massoia ( Massoia aromatica Becc.) Bark on the Phagocytic Activity of Wistar Rat Macrophages. Sci Pharm 2018; 86:scipharm86020019. [PMID: 29748470 PMCID: PMC6027675 DOI: 10.3390/scipharm86020019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/28/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022] Open
Abstract
The essential oil of Massoia (Massoia aromatica Becc., Lauraceae) bark is a potential immunomodulator in vitro. This study evaluated the potential immunomodulatory effects of Massoia bark infusion on the nonspecific immune response (phagocytosis) of Wistar rats. For the in vitro assay, macrophages were treated with the freeze-dried infusion at the concentrations of 2.5, 5, 10, 20, or 40 µg/mL media. For the in vivo assay, two-month-old male Wistar rats were divided into five groups. The baseline group received distilled water at the dose of 1 mL/100 g body weight (BW), with the herbal product containing Phyllanthus niruri extract that was administered as the positive control at the dose of 0.54 mL/rat. The treatment groups received the infusion at a dose of 100, 300, or 500 mg/100 g BW. Treatments were given orally every day for 14 days. The ability of macrophage cells to phagocyte latex was determined as phagocytic index (PI), and it was observed under microscopy with 300 macrophages. The in vitro study revealed that the phagocytic activity of the infusion-treated macrophages significantly increased in comparison with that of the control macrophages in a concentration-dependent manner. Among all of the treatment concentrations, the concentration of 40 µg/mL provided the highest activity with a PI value of 70.51 ± 1.11%. The results of the in vivo assay confirmed those of the in vitro assay. The results of the present study indicate that Massoia bark can increase the phagocytic activity of rat macrophage cells.
Collapse
|
20
|
Oyama M, Mori K, Shimogomi A, Abe N, Haba M, Yoshimura T, Ridho Witono J, Darnaedi D, Tanaka T, Murata J. Three New 5,6-Dihydro-α-pyrones Isolated from Cryptocarya nitens. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Zhang H, Li Y, Mi J, Zhang M, Wang Y, Jiang Z, Hu P. GC-MS Profiling of Volatile Components in Different Fermentation Products of Cordyceps Sinensis Mycelia. Molecules 2017; 22:E1800. [PMID: 29064460 PMCID: PMC6151420 DOI: 10.3390/molecules22101800] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023] Open
Abstract
The fermentation products of Cordyceps sinensis (C. sinensis) mycelia are sustainable substitutes for natural C. sinensis. However, the volatile compositions of the commercial products are still unclear. In this paper, we have developed a simultaneous distillation-extraction (SDE) and gas chromatography-mass spectrometry (GC-MS) method for the profiling of volatile components in five fermentation products. A total of 64, 39, 56, 52, and 44 components were identified in the essential oils of Jinshuibao capsule (JSBC), Bailing capsule (BLC), Zhiling capsule (ZLC), Ningxinbao capsule (NXBC), and Xinganbao capsule (XGBC), respectively. 5,6-Dihydro-6-pentyl-2H-pyran-2-one (massoia lactone) was first discovered as the dominant component in JSBC volatiles. Fatty acids including palmitic acid (C16:0) and linoleic acid (C18:2) were also found to be major volatile compositions of the fermentation products. The multivariate partial least squares-discriminant analysis (PLS-DA) showed a clear discrimination among the different commercial products as well as the counterfeits. This study may provide further chemical evidences for the quality evaluation of the fermentation products of C. sinensis mycelia.
Collapse
Affiliation(s)
- Hongyang Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yahui Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jianing Mi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China.
| | - Min Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yuerong Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China.
| | - Ping Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
22
|
Santos JA, Santos CS, Almeida CL, Silva TD, Freitas Filho JR, Militão GC, da Silva TG, da Cruz CH, Freitas JC, Menezes PH. Structure-based design, synthesis and antitumoral evaluation of enulosides. Eur J Med Chem 2017; 128:192-201. [DOI: 10.1016/j.ejmech.2017.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/13/2017] [Accepted: 01/21/2017] [Indexed: 10/20/2022]
|
23
|
Hertiani T, Pratiwi SUT, Yuswanto A, Permanasari P. Potency of Massoia Bark in Combating Immunosuppressed-related Infection. Pharmacogn Mag 2016; 12:S363-70. [PMID: 27563226 PMCID: PMC4971958 DOI: 10.4103/0973-1296.185771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND As part of our search for new potential natural resources to eradicate infection, we have revealed the prominent potency of massoia bark (Massoia aromatica Becc, Lauraceae) in combating immunosuppressed-related infection. MATERIALS AND METHODS The extract was prepared by macerating the pulverized dried bark in ethanol 95%, followed by solvent evaporation. The oil was extracted from the dried bark by steam-hydrodistillation of which preparative thin-layer chromatography was performed on the oil to isolate the active constituent, C-10 massoia lactone (ML). Anti-biofilm assay against Candida albicans was conducted on polystyrene 96 wells microtiter plates, followed by a confocal laser scanning microscope observation to get three-dimensional profiles of the affected biofilms. Effects on the hyphae development inoculated on RPMI-1640 agar plates were observed for 7 days. Influences of samples on mice macrophage phagocytosis were examined by an in vitro technique. Samples concentration tested were in the range of 2.0-0.0625 mg/mL and done in triplicate. RESULTS Massoia bark extracts (oil and solid phase) and ML exhibited promising activities as anti-biofilm against C. albicans at IC50 0.074% v/v, 271 μg/mL and 0.026 μg/mL, respectively. The ML did not inhibit the hyphae development at the concentration tested; however, the extracts showed inhibition at 62.5 μg/mL. Macrophage phagocytosis stimulation was correlated to the ML content. CONCLUSION Massoia bark is potential to be developed as anti-infective in immunosuppressed condition of which the C10 ML (C10H16O2) plays a major role in exerting activity. SUMMARY Massoia bark extracts (oily and solid phase) and C-10 Massoia lactone exhibited promising activities as antibiofilm against Candida albicans at IC50 are 0.074 %v/v, 271 μg/mL and 0.026 μg/mL respectively. The major constituent, C-10 Massoia lactone (C10H16O2) plays major role in exerting anticandida activity and potentially acts as an immunomodulator as well. However extracts showed inhibition of hyphae development of C. albicans which showed no correlation to the content of the Massoia lactone. Abbreviations used: GC/MS: Gas Chromatography/Mass Spectrometry, ML: Massoia Lactone, TLC: Thin Layer Chromatography, ATCC: American Type Culture Collection, RPMI: Roswell Park Memorial Institute, PBS: Phosphate Buffer Sterile, LSM: Laser scanning microscope, DMSO: Dimethyl sulfoxide, UV: Ultra violet, SDB: Sabouraud dextrose agar, MeOH: Methanol, LB: Luria Bertani, EtOAc: Ethyl acetate, CLSM: Confocal Laser Scanning Microscope, PI: Propidium iodide.
Collapse
Affiliation(s)
- Triana Hertiani
- Centre for Natural Antiinfective Research, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia; Department of Pharmaceutical Biology, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
| | - Sylvia Utami Tunjung Pratiwi
- Centre for Natural Antiinfective Research, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia; Department of Pharmaceutical Biology, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
| | - Agustinus Yuswanto
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
| | - Prisci Permanasari
- Centre for Natural Antiinfective Research, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
24
|
Antitumor and immunomodulatory activities of thiosemicarbazones and 1,3-Thiazoles in Jurkat and HT-29 cells. Biomed Pharmacother 2016; 82:555-60. [PMID: 27470396 DOI: 10.1016/j.biopha.2016.05.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022] Open
Abstract
Cancer remains a high incidence and mortality disease, causing around 8.2 million of deaths in the last year. Current chemotherapy needs to be expanded, making research for new drugs a necessary task. Immune system modulation is an emerging concept in cancer cell proliferation control. In fact, there are a number of mechanisms underlying the role immune system plays in tumor cells. In this work, we describe the structural design, synthesis, antitumor and immunomodulatory potential of 31 new 1,3-thiazole and thiosemicarbazone compounds. Cisplatin was used as anticancer drug control. Cytotoxicity against J774A.1 macrophages and antitumor activity against HT-29 and Jurkat cells was determined. These 1,3-thiazole and thiosemicarbazone compounds not only exhibited cytotoxicity in cancer cells, but were able to cause irreversible cancer cell damage by inducing necrosis and apoptosis. In addition, these compounds, especially pyridyl-thiazoles compounds, regulated immune factors such as interleukin 10 and tumor necrosis factor, possible by directing immune system in favor of modulating cancer cell proliferation. By examining their pharmacological activity, we were able to identify new potent and selective anticancer compounds.
Collapse
|
25
|
Yin F, Sun P, Tang B, Gong H, Ke Q, Li A. Anti-parasitic effects of Leptomycin B isolated from Streptomyces sp. CJK17 on marine fish ciliate Cryptocaryon irritans. Vet Parasitol 2016; 217:89-94. [DOI: 10.1016/j.vetpar.2015.12.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 10/12/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
|
26
|
Effects of α,β-unsaturated lactones on larval survival and gut trypsin as well as oviposition response of Aedes aegypti. Exp Parasitol 2015; 156:37-41. [DOI: 10.1016/j.exppara.2015.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 11/18/2022]
|
27
|
Yamauchi S, Isozaki Y, Nishiwaki H, Akiyama K. Syntheses of natural 1,3-polyol/α-pyrone and its all stereoisomers to estimate antifungal activities against plant pathogenic fungi. Bioorg Med Chem Lett 2015; 25:2189-92. [PMID: 25872981 DOI: 10.1016/j.bmcl.2015.03.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/24/2022]
Abstract
All stereoisomers of 1,3-polyol/α-pyrone 1-8 with more than 99% ee were synthesized to estimate the effect of stereochemistry on the antifungal activity. The absolute configuration of natural compound was determined as (6R,2'S,4'R)-2. The eight stereoisomers showed the antifungal activity against plant pathogenic Alternaria alternata Japanese pear pathotype and Colletotrichum lagenarium. The large difference of activity level was not observed between stereoisomers, showing 43-72% of growth ratio against control at 0.5mM. The most potent stereoisomer was (6S,2'S,4'S)-8 and the activity of (6R,2'S,4'S)-1 was weakest against both fungi.
Collapse
Affiliation(s)
- Satoshi Yamauchi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; South Ehime Fisheries Research Center, 1289-1 Funakoshi, Ainan, Ehime 798-4292, Japan.
| | - Yasuyoshi Isozaki
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hisashi Nishiwaki
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Koichi Akiyama
- Integrated Center for Sciences, Tarumi Station, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| |
Collapse
|
28
|
Mgaya JE, Mubofu EB, Mgani QA, Cordes DB, Slawin AM, Cole-Hamilton DJ. Isomerization of anacardic acid: A possible route to the synthesis of an unsaturated benzolactone and a kairomone. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- James E. Mgaya
- EaStCHEM, School of Chemistry; University of St. Andrews; St Andrews Scotland UK
- Chemistry Department; University of Dar es Salaam; Dar es Salaam Tanzania
| | - Egid B. Mubofu
- Chemistry Department; University of Dar es Salaam; Dar es Salaam Tanzania
| | - Quintino A. Mgani
- Chemistry Department; University of Dar es Salaam; Dar es Salaam Tanzania
| | - David B. Cordes
- EaStCHEM, School of Chemistry; University of St. Andrews; St Andrews Scotland UK
| | - Alexandra M. Slawin
- EaStCHEM, School of Chemistry; University of St. Andrews; St Andrews Scotland UK
| | | |
Collapse
|