1
|
Zhang H, Xu Z, Xu Z, Bian S, Qiao N, Wang X, Zhang M, Zhang M, Zhen X, Wu D, Xu H. The development of α, β-unsaturated lactam-based andrographolide derivatives as anti-gastric cancer agents with the ability of inhibiting the ERK/c-Fos/Jun pathway. Eur J Med Chem 2025; 286:117291. [PMID: 39848034 DOI: 10.1016/j.ejmech.2025.117291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Gastric cancer remains one of the global health threats for human beings. However, the therapeutic efficacy of the widely-used chemotherapy is usually limited due to the lack of specificity and the related toxicity. Only limited therapeutic agents were demonstrated to show selective and potent inhibitory activity to gastric cancer cells. In this study, we report the first α, β-unsaturated lactam-based andrographolide derivative P16 with the ability to potently and selectively inhibit the proliferation and migration of gastric cancer cells MGC-803. Moreover, the in vivo studies showed that P16 exhibited remarking anti-gastric cancer activity by significantly reducing the growth of tumor without losing the body weight. Further anticancer mechanistic studies indicated that P16 exerted its potent and selective anti-gastric cancer effect by arresting cell cycle at G2/M phase and inducing cancer cell apoptosis through intrinsic mitochondria-mediated pathway. Notably, for the first time, we found that andrographolide derivative P16 could reduce the activities of the ERK/c-Fos/Jun pathway to exert the anti-gastric cancer efficiency. This is the first time to reveal the novel role of ERK/c-Fos/Jun signaling in andrographolide derivative-mediated anti-gastric cancer processes. Overall, derivative P16 represents a valuable candidate for new therapeutic agent discovery in gastric cancer chemotherapy. In addition, pharmacological characterizations of derivative P16, together with another 33 new semi-synthesized andrographolide derivatives, provides a systematic structure-activity relationship (SAR) analysis for this class of compounds, elucidating useful information on structural requirements for potent and selective anti-gastric cancer inhibition.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhihao Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhengyu Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shaopan Bian
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ning Qiao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaodi Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Mingwei Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Mengzhen Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xuanlong Zhen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Di Wu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
2
|
Hu J, Li Y, Xie X, Song Y, Yan W, Luo Y, Jiang Y. The therapeutic potential of andrographolide in cancer treatment. Biomed Pharmacother 2024; 180:117438. [PMID: 39298908 DOI: 10.1016/j.biopha.2024.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Cancer poses a substantial global health challenge, necessitating the widespread use of chemotherapy and radiotherapy. Despite these efforts, issues like resistance development and severe side effects remain. As such, the search for more effective alternatives is critical. Andrographolide, a naturally occurring compound, has recently gained attention for its extensive biological activities. This review explores the role of andrographolide in cancer therapy, especially focusing on the molecular mechanisms that drive its anti-tumor properties. It also examines innovative methods to enhance andrographolide's bioavailability, thus boosting its effectiveness against cancer. Notably, andrographolide has potential for use in combination with various clinical drugs, and both preclinical and clinical studies provide strong evidence supporting its broader anticancer applications. Additionally, this paper proposes future research directions for andrographolide's anti-cancer effects and discusses the challenges in its clinical usage along with current research efforts to address these issues. In summary, this review underscores andrographolide's potential roles and contributes to the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Jiaxuan Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yi Li
- Department of Anesthesiology, Ganzhou Key Laboratory of Anesthesiology, Ganzhou Key Laboratory of Osteoporosis Research, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yunlei Song
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Wenjing Yan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yumao Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
3
|
Messire G, Rollin P, Gillaizeau I, Berteina-Raboin S. Synthetic Modifications of Andrographolide Targeting New Potential Anticancer Drug Candidates: A Comprehensive Overview. Molecules 2024; 29:2884. [PMID: 38930949 PMCID: PMC11206892 DOI: 10.3390/molecules29122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
This review collects the synthetic modifications performed on andrographolide, a natural molecule derived from Andrographis paniculata, for oncology applications. Various pharmacomodulations were carried out, and the products were tested on different cancer cell lines. The impact of these modifications was analyzed with the aim of mapping the positions essential for activity to facilitate future research in this field. However, this study makes it clear that, in addition to structural modifications of the molecule, which can result in varying degrees of effectiveness in targeting interactions, the lipophilic capacity of the structures obtained through hemisynthesis is of significant importance.
Collapse
Affiliation(s)
| | | | | | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans, UMR-CNRS 7311, BP 6759, rue de Chartres, 45067 Orléans, Cedex 2, France; (G.M.); (P.R.); (I.G.)
| |
Collapse
|
4
|
Van Chien T, Van Loc T, The Anh N, Van Sung T, Phuong Thao TT. Cytotoxic and Anti-Inflammatory Activity of 3,19-Isopropylidene-/Arylidene-Andrographolide Analogs. Chem Biodivers 2023; 20:e202300420. [PMID: 37466261 DOI: 10.1002/cbdv.202300420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
A series of 3,19-isopropylidene-/or arylidene-andrographolide analogs were synthesized and their structures were confirmed by NMR spectroscopic methodology. Twenty-five analogs were evaluated for their in vitro cytotoxic activity against HT-29, HepG2 and LNCaP cancer cell lines based on the sulforhodamine B (SRB) assay. Analog 2 f exhibited the most potent cytotoxic activity, with IC50 values of 11.14 and 9.25 μM on HepG2 and LNCaP cancer cell lines, respectively. Esterification of hydroxy functional group at position C-14 in andrographolide analogs, 2 a and 2 b, showed somewhat higher cytotoxicity than the precursor. In addition, andrographolide analogs (2 a-2 d, 2 f, 3 a, 4 a and 4 h) were evaluated for the NO inhibitory activity in the LPS stimulated RAW264.7 macrophages. The most active analog 2 a significantly reduced nitric oxide (NO) production from LPS stimulated RAW264.7 cells, with IC50 values of 0.34±0.02 μM providing encouraging results for anti-inflammatory compound development.
Collapse
Affiliation(s)
- Tran Van Chien
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| | - Tran Van Loc
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| | - Nguyen The Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| | - Tran Thi Phuong Thao
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| |
Collapse
|
5
|
Kumar G, Thapa S, Tali JA, Singh D, Sharma BK, Panda KN, Singh SK, Shankar R. Site-Selective Synthesis of C-17 Ester Derivatives of Natural Andrographolide for Evaluation as a Potential Anticancer Agent. ACS OMEGA 2023; 8:6099-6123. [PMID: 36816646 PMCID: PMC9933479 DOI: 10.1021/acsomega.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
A library of 57 compounds of natural andrographolide was designed, synthesized, and screened for in vitro studies against four human cancer cell lines: A594, PC-3, MCF-7, and HCT-116. Most of the synthesized compounds displayed better cytotoxic profile against all tested cells compared to the parent andrographolide (1). The tested semisynthetic derivatives of andrographolide were found to be more sensitive toward lung carcinoma (A594) and prostate carcinoma (PC-3) cell lines. Among the synthesized compounds, the C-17 p-methoxy phenyl ester analog 8s inhibited cell proliferation effectively in A549 (IC50: 6.6 μM) and PC-3 (IC50: 5.9 μM) cell variants, and compound 9s exhibited the most potent activity against the A594 cell line, with an IC50 value of 3.5 μM. Further anticancer mechanistic investigation demonstrated that compound 9s displayed nuclear morphological changes and increased reactive oxygen species (ROS) with disturbed mitochondrial membrane potential (MMP) that can lead to apoptosis. To know the exact structure confirmation of intermediate compounds 4 and 5, single X-ray crystallography was performed, which supported the complete reaction design of this work.
Collapse
Affiliation(s)
- Gulshan Kumar
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Sonia Thapa
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Javeed Ahmad Tali
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Davinder Singh
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bhupesh Kumar Sharma
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Kamakshya Nath Panda
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand247667, India
| | - Shashank K. Singh
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Ravi Shankar
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
6
|
Sachdeva H, Khaturia S, Saquib M, Khatik N, Khandelwal AR, Meena R, Sharma K. Oxygen- and Sulphur-Containing Heterocyclic Compounds as Potential Anticancer Agents. Appl Biochem Biotechnol 2022; 194:6438-6467. [PMID: 35900713 DOI: 10.1007/s12010-022-04099-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
Oxygen- and sulphur-based heterocycles form the core structure of many biologically active molecules as well as U.S. FDA-approved drugs. Moreover, they possess broad range of biological activities, viz. anticancer, antiinflammatory, antioxidant, antitumour, antibacterial, antiviral, antidiabetic, anticonvulsant, anti-tubercular, analgesic, anti-leishmanial, antimalarial, antifungal, and anti-histaminic, Hence, O- and S-based heterocycles are gaining more attention in recent years on the road to the discovery of innovative anticancer drugs after the extensive investigation of nitrogen-based heterocycles as anticancer agents. Several attempts have been made to synthesize fused oxygen- and sulphur-based heterocyclic derivatives as joining one heterocyclic moiety with another may lead to improvement in the biological profile of a molecule. Humans have been cursed with cancer since long time. Despite the development of several heterocyclic anticancer medications such as 5-fluorouracil, doxorubicin, methotrexate, and daunorubicin, cure of cancer is difficult. Hence, researchers are trying to synthesize new fused/spiro heterocyclic molecules to discover novel anticancer drugs which may show promising anticancer effects with fewer side effects. Furthermore, fused heterocycles behave as DNA intercalating agents which have the ability to interact with DNA, leading to cell death thereby exerting anticancer effect. This review article highlights the synthesis and anticancer potentiality of oxygen- and sulphur-containing heterocyclic compounds covering the period from 2011 to 2021.
Collapse
Affiliation(s)
- Harshita Sachdeva
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India.
| | - Sarita Khaturia
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh (Sikar), Rajasthan, India
| | - Mohammad Saquib
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Narsingh Khatik
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| | | | - Ravina Meena
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| | - Khushboo Sharma
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| |
Collapse
|
7
|
Tamang N, Andrews C, Mavileti SK, Nanduri S, Golakoti NR, Karanam B. Anti-cancer activity of heteroaromatic acetals of andrographolide and its isomers. NEW J CHEM 2022; 46:9745-9754. [PMID: 36093125 PMCID: PMC9454336 DOI: 10.1039/d2nj01055k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Acetals (2a-d, 3a-d, and 6a-d) of andrographolide (1), 14-deoxy-12-hydroxyandrographolide (4), and isoandrographolide (5) were synthesized using benzaldehyde and heteroaromatic aldehydes. All the synthesized derivatives were characterized using 1H-NMR, 13C-NMR, mass spectrometry, UV, and IR. The compound 6d was characterized via a single-crystal X-ray diffraction study. All the compounds were tested against 60 cell lines of NCI. The acetals (2a-d) of andrographolide (1) exhibited better activity than the acetals (3a-d, and 6a-d) of 12-hydroxyandrographolide (4) and isoandrographolide (5). Preliminary studies suggested that acetals synthesized using benzaldehyde improved anticancer activity. Compound 2a showed the highest growth inhibition of 90.97% against the leukaemia cancer cell line CCRF-CEM. Andrographolide and seven selected compounds were tested against the MDA-MB-231 breast cancer cell line. Compound 3b showed the best activity with an IC50 value of 3 μM among all the tested compounds. Furthermore, this compound 3b was subjected to cell cycle analysis and protein expression confirming apoptosis through the disruption of the mitochondrial potential membrane (Δψ m).
Collapse
Affiliation(s)
- Nitesh Tamang
- Department of chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | - Christopher Andrews
- Department of Biology and Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sai Kiran Mavileti
- Department of chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | - Srinivas Nanduri
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research, Balanagar, 500037, Hyderabad, Telangana, India
| | - Nageswara Rao Golakoti
- Department of chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | | |
Collapse
|
8
|
Sharma V, Qayum A, K. Kapoor K, Mukherjee D, Singh SK, Dhar MK, Kaul S. Synthesis of 14-deoxy-benzylidene-8,17-epoxy-diene-andrographolide derivatives and evaluation of their anticancer activities. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Andrographolide Attenuates Established Pulmonary Hypertension via Rescue of Vascular Remodeling. Biomolecules 2021; 11:biom11121801. [PMID: 34944445 PMCID: PMC8699233 DOI: 10.3390/biom11121801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/01/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by vascular remodeling caused by marked proliferation of pulmonary artery smooth muscle cells (PASMCs). Andrographolide (ANDRO) is a potent anti-inflammatory agent which possesses antioxidant, and has anticarcinogenic activity. The present study examined potential therapeutic effects of ANDRO on PH in both chronic hypoxia and Sugen5416/hypoxia mouse PH models. Effects of ANDRO were also studied in cultured human PASMCs isolated from either healthy donors or PH patients. In vivo, ANDRO decreased distal pulmonary arteries (PAs) remodeling, mean PA pressure and right ventricular hypertrophy in chronic hypoxia- and Sugen/hypoxia-induced PH in mice. ANDRO reduced cell viability, proliferation and migration, but increased cell apoptosis in the PASMCs isolated from PH patients. ANDRO also reversed the dysfunctional bone morphogenetic protein receptor type-2 (BMPR2) signaling, suppressed [Ca2+]i elevation, reactive oxygen species (ROS) generation, and the upregulated expression of IL-6 and IL-8, ET-1 and VEGF in PASMCs from PH patients. Moreover, ANDRO significantly attenuated the activation of TLR4/NF-κB, ERK- and JNK-MAPK signaling pathways and reversed the inhibition of p38-MAPK in PASMCs of PH patients. Further, ANDRO blocked hypoxia-triggered ROS generation by suppressing NADPH oxidase (NOX) activation and augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression both in vitro and in vivo. Conventional pulmonary vasodilators have limited efficacy for the treatment of severe PH. We demonstrated that ANDRO may reverse pulmonary vascular remodeling through modulation of NOX/Nrf2-mediated oxidative stress and NF-κB-mediated inflammation. Our findings suggest that ANDRO may have therapeutic value in the treatment of PH.
Collapse
|
10
|
Dai K, Tan JK, Qian W, Lee RCH, Hann Chu JJ, Zhou GC. Discovery of 14S-(2'-chloro-4'-nitrophenoxy)-8R/S,17-epoxy andrographolide as EV-A71 infection inhibitor. Biochem Pharmacol 2021; 194:114820. [PMID: 34748818 DOI: 10.1016/j.bcp.2021.114820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 01/23/2023]
Abstract
Human enterovirus A71 (EV-A71) is a major etiological agent of hand-foot-and-mouth disease (HFMD) and there is presently no internationally approved antiviral against EV-A71. In this study, it is disclosed that 14S-(2'-chloro-4'-nitrophenoxy)-8R/S,17-epoxy andrographolide (2) was discovered to be an effective inhibitor against EV-A71 infection showing significant reduction of viral titre. In addition to EV-A71, compound 2 exerts broad-spectrum antiviral effects against other enteroviruses. It is revealed that compound 2 inhibits the post-entry stages of EV-A71 viral replication cycle and significantly reduces viral protein expression of structural proteins such as VP0 and VP2 via inhibiting EV-A71 RNA replication. Moreover, the inhibitory property of compound 2 is specific to viral RNA replication. Furthermore, compound 2 is more likely to target a host factor in EV-A71 RNA replication. As a result, introduction of epoxide at positions 8 and 17 of andrographolide is effective for anti-EV-A71 infection and is a potential anti-EV-A71 strategy. Further work to discover more potent andrographolide derivatives and elucidate comprehensive SAR is under way.
Collapse
Affiliation(s)
- Kun Dai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jie Kai Tan
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545 Singapore, Singapore
| | - Weiyi Qian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545 Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545 Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore; Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673 Singapore, Singapore.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur J Med Chem 2021; 224:113710. [PMID: 34315039 DOI: 10.1016/j.ejmech.2021.113710] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Natural product andrographolide isolated from the plant Andrographis paniculata shows a plethora of biological activities, including anti-tumor, anti-bacterial, anti-inflammation, anti-virus, anti-fibrosis, anti-obesity, immunomodulatory and hypoglycemic activities. Based on extensive chemical structural modifications, a series of andrographolide derivatives with improved bioavailability and druggability has been developed. Moreover, greater understanding of their mechanisms of action at the molecular and cellular level has been thoroughly investigated. In this review, we give an outlook for the therapeutical potential of andrographolide and its derivatives in diverse diseases and highlighted the drug design, pharmacokinetic and mechanistic studies for the past ten years, together with a brief overview of the pharmacological effects. Notably, we focused to provide a critical enlightenment of the area of andrographolide and its derivatives with the intent of indicating the future perspectives, challenges and limitations. We believe that this review paper will benefit drug discovery where andrographolide was used as a template, shed light on the identification of drug targets for andrographolide and its analogs, as well as increase our knowledge for using them for therapeutic application, including the treatment for various forms of cancers.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongsheng Si
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
12
|
Cai W, Li J, Chen C, Wu J, Li J, Xue X. Design, synthesis, and anticancer evaluation of novel andrographolide derivatives bearing an α,β-unsaturated ketone moiety. Bioorg Chem 2021; 112:104941. [PMID: 33940445 DOI: 10.1016/j.bioorg.2021.104941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
A series of 1,2-didehydro-3-ox-andrographolide derivatives based on two Michael acceptors were designed, synthesized and evaluated for their anticancer activity against two human cancer cell lines (HCT116 and MCF-7). All tested compounds exhibited significant growth inhibitory effect on HCT116 and moderate to good inhibitory effect on MCF-7 cell proliferation. Compound 10b displayed the best inhibitory activities against both HCT116 and MCF-7 cell lines, with IC50 values of 2.49 and 7.80 μM respectively. Preliminary anticancer mechanistic investigation was performed in terms of the cell cycle arrest and cell apoptosis assays of compound 10b against HCT116 using flow cytometry, and the results indicated that 10b blocked the proliferation of HCT116 cells by inducing cell apoptosis in a concentration-dependent manner and arresting cell cycle in G2/M phase.
Collapse
Affiliation(s)
- Wei Cai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jieyi Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Cheng Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiajia Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabin Li
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaowen Xue
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
13
|
Tokala R, Sana S, Lakshmi UJ, Sankarana P, Sigalapalli DK, Gadewal N, Kode J, Shankaraiah N. Design and synthesis of thiadiazolo-carboxamide bridged β-carboline-indole hybrids: DNA intercalative topo-IIα inhibition with promising antiproliferative activity. Bioorg Chem 2020; 105:104357. [PMID: 33091673 PMCID: PMC7543778 DOI: 10.1016/j.bioorg.2020.104357] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023]
Abstract
The conjoining of salient pharmacophoric properties directing the development of prominent cytotoxic agents was executed by constructing thiadiazolo-carboxamide bridged β-carboline-indole hybrids. On the evaluation of in vitro cytotoxic potential, 12c exhibited prodigious cytotoxicity among the synthesized new molecules 12a-k, with an IC50 < 5 μM in all the tested cancer cell lines (A549, MDA-MB-231, BT-474, HCT-116, THP-1) and the best cytotoxic potential was expressed in lung cancer cell line (A549) with an IC50 value of 2.82 ± 0.10 μM. Besides, another compound 12a also displayed impressive cytotoxicity against A549 cell line (IC50: 3.00 ± 1.40 μM). Further target-based assay of these two compounds 12c and 12a revealed their potential as DNA intercalative topoisomerase-IIα inhibitors. Additionally, the antiproliferative activity of compound 12c was measured in A549 cells by traditional apoptosis assays revealing the nuclear, morphological alterations, and depolarization of membrane potential in mitochondria and externalization of phosphatidylserine in a concentration-dependent manner. Cell cycle analysis unveiled the G0/G1 phase inhibition and wound healing assay inferred the inhibition of in vitro cell migration by compound 12c in lung cancer cells. Remarkably, the safety profile of compound 12c was disclosed by screening against normal human lung epithelial cell line (BEAS-2B: IC50: 71.2 ± 7.95 μM) with a selectivity index range of 14.9-25.26. Moreover, Molecular modeling studies affirm the intercalative binding of compound 12c and 12a in the active pocket of topo-IIα. Furthermore, in silico prediction of physico-chemical parameters divulged the propitious drug-like properties of the synthesized derivatives.
Collapse
Affiliation(s)
- Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sravani Sana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Uppu Jaya Lakshmi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Prasanthi Sankarana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Nikhil Gadewal
- Bioinformatics Centre, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Jyoti Kode
- Tumor Immunology & Immunotherapy Group, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi-Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
14
|
Cheng CR, Zheng Z, Liang RM, Li XF, Jiang QQ, Yue L, Wang Q, Ding J, Liu Y. Preparation and Cytotoxic Activity of 3,19-Analogues of 12-Thioether Andrographolide. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03003-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Mokenapelli S, Yerrabelli JR, Das N, Roy P, Chitneni PR. Synthesis and cytotoxicity of novel 14α-O-(andrographolide-3-subsitutedisoxazole-5-carboxylate) derivatives. Nat Prod Res 2020; 35:3738-3744. [DOI: 10.1080/14786419.2020.1736060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sudhakar Mokenapelli
- Natural Products Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, India
| | | | - Neeladrisingha Das
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Prasad Rao Chitneni
- Natural Products Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
16
|
Andrographolide: Chemical modification and its effect on biological activities. Bioorg Chem 2020; 95:103511. [DOI: 10.1016/j.bioorg.2019.103511] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 01/31/2023]
|
17
|
Nayak D, Tripathi N, Kathuria D, Siddharth S, Nayak A, Bharatam PV, Kundu C. Quinacrine and curcumin synergistically increased the breast cancer stem cells death by inhibiting ABCG2 and modulating DNA damage repair pathway. Int J Biochem Cell Biol 2019; 119:105682. [PMID: 31877386 DOI: 10.1016/j.biocel.2019.105682] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/14/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
Cancer stem cell like cells (CSCs) present a challenge in the management of cancers due to their involvement in the development of resistance against various chemotherapeutic agents. Over expression of ABCG2 transporter gene is one of the factors responsible for drug resistance in CSCs, which causes efflux of therapeutic drugs from these cells. The development of inhibitors against CSCs has not achieved any significant success, till date. In this work, we have evaluated the anti-proliferative activity of curcumin (Cur) and quinacrine (QC) against CSCs using in vitro model system. Cur and QC synergistically inhibited the proliferation, migration and invasion of CSCs enriched side population (SP) cells of cigarette smoke condensate induced breast epithelial transformed (MCF-10A-Tr) generated metastatic cells. Cur + QC combination increased the DNA damage and inhibited the DNA repair pathways in SP cells. Uptake of QC increased in Cur pre-treated SP cells and this combination inhibited the ABCG2 activity by the reduction of ATP hydrolysis in cells. In vitro DNA binding reconstitution system suggests that QC specifically binds to DNA and caused DNA damage inside the cell. Decreased level of ABCG2, representative cell survival and DNA repair proteins were noted after Cur + QC treatment in SP cells. The molecular docking studies were performed to examine the binding behaviour of these drugs with ABCG2, which showed that QC (-53.99 kcal/mol) and Cur (-45.90 kcal/mol) occupy a highly overlapping interaction domain. This suggested that in Cur pre-treated cells, the Cur occupied the ligand-binding site in ABCG2, thus making the ligand binding site unavailable for the QC. This causes an increase in the intracellular concentration of QC. The results indicate that Cur + QC combination causes CSCs death by increasing the concentration of QC in the cells and thus causing the DNA damage and inhibiting the DNA repair pathways through modulating the ABCG2 activity.
Collapse
Affiliation(s)
- Deepika Nayak
- Cancer Biology Division, School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Neha Tripathi
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Deepika Kathuria
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Sumit Siddharth
- Cancer Biology Division, School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Anmada Nayak
- Cancer Biology Division, School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Prasad V Bharatam
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Chanakya Kundu
- Cancer Biology Division, School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
18
|
Kandanur SGS, Tamang N, Golakoti NR, Nanduri S. Andrographolide: A natural product template for the generation of structurally and biologically diverse diterpenes. Eur J Med Chem 2019; 176:513-533. [DOI: 10.1016/j.ejmech.2019.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/22/2019] [Accepted: 05/06/2019] [Indexed: 01/11/2023]
|
19
|
Wang W, Wu Y, Yang K, Wu C, Tang R, Li H, Chen L. Synthesis of novel andrographolide beckmann rearrangement derivatives and evaluation of their HK2-related anti-inflammatory activities. Eur J Med Chem 2019; 173:282-293. [DOI: 10.1016/j.ejmech.2019.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/25/2022]
|
20
|
Kandanur SGS, Kundu S, Cadena C, Juan HS, Bajaj A, Guzman JD, Nanduri S, Golakoti NR. Design, synthesis, and biological evaluation of new 12-substituted-14-deoxy-andrographolide derivatives as apoptosis inducers. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00718-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Kansom T, Sajomsang W, Saeeng R, Charoensuksai P, Opanasopit P, Tonglairoum P. Apoptosis Induction and Antimigratory Activity of Andrographolide Analog (3A.1)-Incorporated Self-Assembled Nanoparticles in Cancer Cells. AAPS PharmSciTech 2018; 19:3123-3133. [PMID: 30117042 DOI: 10.1208/s12249-018-1139-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022] Open
Abstract
Andrographolide analog, namely 19-tert-butyldiphenylsilyl-8,17-epoxy andrographolide (or 3A.1) has been reported to be a potential anticancer agent for several types of cancer. Due to its poor aqueous solubility, 3A.1 was incorporated within self-assembly polymeric nanoparticles made of naphthyl-grafted succinyl chitosan (NSC), octyl-grafted succinyl chitosan (OSC), and benzyl-grafted succinyl chitosan (BSC). These 3A.1-loaded nanoparticles were nanosized (< 200 nm) and spherical in shape with a negative surface charge. 3A.1-loaded nanoparticles were produced using a dropping method, which 40% initial drug adding exhibited the highest entrapment efficiency. The release of 3A.1 from the 3A.1-loaded nanoparticles displayed a delayed release pattern. Under acidic conditions (pH 1.2), there was no free drug release. After the pH was adjusted to 6.8, a high cumulative 3A.1 release was obtained which was dependent on the hydrophobic moieties. These 3A.1-loaded pH-sensitive nanoparticles proved to be beneficial for specifically delivering anticancer drugs to the targeted colon cancer sites. In vitro anticancer activity against HT-29 found that the 3A.1-loaded nanoparticles had significantly lower IC50 than that of the free drug and promoted apoptosis. Additionally, in vitro wound-healing migration on HN-22 revealed that free 3A.1 and the 3A.1-loaded nanoparticles inhibited cell motility compared with untreated cells. These pH-sensitive amphiphilic chitosan nanoparticles may be promising nanocarriers for oral anticancer drug delivery to colorectal cancer cells. Graphical abstract ᅟ.
Collapse
|
22
|
Li Y, Lin HX, Wang J, Yang J, Lai CJS, Wang X, Ma BW, Tang JF, Li Y, Li XL, Guo J, Gao W, Huang LQ. Glucosyltransferase Capable of Catalyzing the Last Step in Neoandrographolide Biosynthesis. Org Lett 2018; 20:5999-6002. [DOI: 10.1021/acs.orglett.8b02146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuan Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P. R. China
| | - Hui-Xin Lin
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Jian Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Jian Yang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Chang-Jiang-Sheng Lai
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, P. R. China
| | - Bao-Wei Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, P. R. China
| | - Jin-Fu Tang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Yong Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xin-Lin Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, P. R. China
| | - Juan Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, P. R. China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, P. R. China
| | - Lu-Qi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| |
Collapse
|
23
|
Dai Y, Chen SR, Chai L, Zhao J, Wang Y, Wang Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr 2018; 59:S17-S29. [PMID: 30040451 DOI: 10.1080/10408398.2018.1501657] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Andrographis paniculata (A. paniculata) is a medicinal plant traditionally used as anti-inflammation and anti-bacteria herb. Andrographolide, the major active component of A. paniculata, exhibits diverse pharmacological activities, including anti-inflammation, anti-cancer, anti-obesity, anti-diabetes, and other activities. In this article, we comprehensively review the therapeutic potential of A. paniculata and andrographolide focusing on the mechanisms of action and clinical application. We systemically discuss the structure-activity relationship of andrographolide and derivatives. Despite the various pharmacological activities and formula of A. paniculata and andrographolide, we propose further development of more structural derivatives of andrographolide with reduced toxicity and increased therapeutic efficacy is still needed for the clinical application of this ancient mighty herb and its major component.
Collapse
Affiliation(s)
- Yan Dai
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa, Macao SAR , China
| | - Shao-Ru Chen
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa, Macao SAR , China
| | - Ling Chai
- b Guangxi Institute of Traditional Medical and Pharmaceutical Sciences and Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards , Nanning 530022 , China
| | - Jing Zhao
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa, Macao SAR , China
| | - Yitao Wang
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa, Macao SAR , China
| | - Ying Wang
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa, Macao SAR , China
| |
Collapse
|
24
|
Chen SR, Li F, Ding MY, Wang D, Zhao Q, Wang Y, Zhou GC, Wang Y. Andrographolide derivative as STAT3 inhibitor that protects acute liver damage in mice. Bioorg Med Chem 2018; 26:5053-5061. [PMID: 30228000 DOI: 10.1016/j.bmc.2018.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 02/08/2023]
Abstract
Sustained activation of the Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway contributed to the progression of cancer and liver diseases. STAT3 signaling inhibitor has been extensively investigated for pharmacological use. We synthesized a series of andrographolide derivatives, and characterized their activity against STAT3 signaling pathway both in vitro and in the CCl4-induced acute liver damage mice model. Among these derivatives, compound 24 effectively inhibited phosphorylation and dimerization of STAT3 but not its DNA binding activity. Compound 24 significantly ameliorated carbon tetrachloride-induced acute liver damage in vivo without changing mice body weight. Treatment with 24 attenuated hepatic pathologic damage and promoted hepatic proliferation and activation of STAT3. Compound 24 inhibited elevated expression of α-smooth muscle actin and serum pro-inflammatory cytokines downstream of STAT3 but not those factors that are regulated by NF-κB or SMADs. In summary, our results suggest that compound 24 may serve as a potential therapeutic agent for the treatment of hepatic damage or a liver protection agent via regulating STAT3 activation.
Collapse
Affiliation(s)
- Shao-Ru Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Mo-Yu Ding
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Decai Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Qi Zhao
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China.
| |
Collapse
|
25
|
Song Z, Huang S, He Y, Li J, Lin K, Xue X. Synthesis and anti-fibrosis activity study of 14-deoxyandrographolide-19-oic acid and 14-deoxydidehydroandrographolide-19-oic acid derivatives. Eur J Med Chem 2018; 157:805-816. [DOI: 10.1016/j.ejmech.2018.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
|
26
|
The anti-cancer activity of an andrographolide analogue functions through a GSK-3β-independent Wnt/β-catenin signaling pathway in colorectal cancer cells. Sci Rep 2018; 8:7924. [PMID: 29784906 PMCID: PMC5962551 DOI: 10.1038/s41598-018-26278-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
The Wnt/β-catenin signaling pathway plays a key role in the progression of human colorectal cancers (CRCs) and is one of the leading targets of chemotherapy agents developed for CRC. The present study aimed to investigate the anti-cancer effects and molecular mechanisms of 19-O-triphenylmethyl andrographolide (RS-PP-050), an andrographolide analogue and determine its activity in the Wnt/β-catenin pathway. RS-PP-050 was found to potently inhibit the proliferation and survival of HT-29 CRC cells. It induces cell cycle arrest and promotes apoptotic cell death which was associated with the activation of PARP-1 and p53. Furthermore, RS-PP-050 exerts inhibitory effects on β-catenin transcription by suppressing T-cell factor/lymphocyte enhancer factor (TCF/LEF) activity in cells overexpressing β-catenin and by down-regulating the endogenous expression of Wnt target genes. RS-PP-050 also decreased the protein expression of the active form of β-catenin but functions independently of GSK-3β, a negative regulator of Wnt. Interestingly, RS-PP-050 extensively blocks phosphorylation at Ser675 of β-catenin which links to interference of the nuclear translocation of β-catenin and might contribute to Wnt inactivation. Collectively, our findings reveal the underlying anti-cancer mechanism of an andrographolide analogue and provide useful insight for exploiting a newly chemotherapeutic agent in Wnt/β-catenin-overexpressing CRC cells.
Collapse
|
27
|
Islam MT, Ali ES, Uddin SJ, Islam MA, Shaw S, Khan IN, Saravi SSS, Ahmad S, Rehman S, Gupta VK, Găman MA, Găman AM, Yele S, Das AK, de Castro E Sousa JM, de Moura Dantas SMM, Rolim HML, de Carvalho Melo-Cavalcante AA, Mubarak MS, Yarla NS, Shilpi JA, Mishra SK, Atanasov AG, Kamal MA. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer. Cancer Lett 2018; 420:129-145. [PMID: 29408515 DOI: 10.1016/j.canlet.2018.01.074] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
Abstract
The diterpene lactone andrographolide, isolated from Andrographis paniculata, has been proven to possess several important protective biological activities, including antioxidant, anti-inflammatory, immunomodulatory, antiseptic, antimicrobial, cytotoxic, hypolipidemic, cardioprotective, hepatoprotective, and neuroprotective effects. In addition, it has been reported to play a therapeutic role in the treatment of major human diseases, such as Parkinson's disease, rheumatoid arthritis, and colitis. This systematic review aims to highlight andrographolide as a promising agent in cancer treatment. To this purpose, a number of databases were used to search for the cytotoxic/anticancer effects of andrographolide in pre-clinical and clinical studies. Among 1703 identified literature articles, 139 were included in this review; 109 were investigated as non-clinical, whereas 24, 3, and 3 were pre-clinical, clinical, and non-pre-clinical trials, respectively. Among the model systems, cultured cell lines appeared as the most frequently (79.14%) used, followed by in vivo models using rodents, among others. Furthermore, andrographolide was found to exert cytotoxic/anticancer effects on almost all types of cell lines with the underlying mechanisms involving oxidative stress, cell cycle arrest, anti-inflammatory and immune system mediated effects, apoptosis, necrosis, autophagy, inhibition of cell adhesion, proliferation, migration, invasion, anti-angiogenic activity, and other miscellaneous actions. After careful consideration of the relevant evidence, we suggest that andrographolide can be one of the potential agents in the treatment of cancer in the near future.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Eunüs S Ali
- Gaco Pharmaceuticals and Research Laboratory, Dhaka, 1000, Bangladesh; College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Md Amirul Islam
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Subrata Shaw
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Seyed Soheil Saeedi Saravi
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, USA; Department of Toxicology-Pharmacology, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Saheem Ahmad
- Department of Bio-Sciences, Integral University, Lucknow, U.P., 226026, India
| | - Shahnawaz Rehman
- Department of Bio-Sciences, Integral University, Lucknow, U.P., 226026, India
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Mihnea-Alexandru Găman
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Facoltà di Medicina e Chirurgia, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Amelia Maria Găman
- Department of Pathophysiology, Research Center of Experimental and Clinical Medicine, University of Medicine and Pharmacy of Craiova, Romania; Department of Haematology, Filantropia City Hospital of Craiova, Craiova, Romania
| | - Santosh Yele
- School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, India
| | - Asish Kumar Das
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | | | | | - Hercília Maria Lins Rolim
- Laboratory of Pharmaceutical Nanosystems (NANOSFAR), Postgraduate Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | - Nagendra Sastry Yarla
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500003, T.N., India
| | - Jamil A Shilpi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University, Sagar, 470003, M.P., India
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria.
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia.
| |
Collapse
|
28
|
Metallic gold and bioactive quinacrine hybrid nanoparticles inhibit oral cancer stem cell and angiogenesis by deregulating inflammatory cytokines in p53 dependent manner. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:883-896. [PMID: 29366881 DOI: 10.1016/j.nano.2018.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 01/13/2023]
Abstract
Complete eradication of aggressive oral cancer remains a challenge due to the presence of CSCs. They resist conventional chemotherapeutic agents due to their self-renewal, drug efflux, and efficient DNA repair capacity. Here, we formulated a hybrid-nanoparticle (QAuNP) using quinacrine and gold and characterized/investigated its anti-angiogenic and anti-metastatic effect on OSCC-CSCs. QAuNP significantly inhibited cellular proliferation, caused apoptosis in vitro, and disrupted angiogenesis in vivo and tumor regression in xenograft mice model. It not only inhibited crucial angiogenic markers Ang-1, Ang-2 and VEGF but also depleted MMP-2 in H-357-PEMT cells in a p53 and p21-dependent manner. QAuNP also increased the ROS and NO generation in OSCC-CSCs and reduced the mitochondrial membrane potential. It altered the level of inflammatory cytokines IL-6, IL-1β, TNF-α and metastasis-associated markers (CD-44, CD-133) in H-357-PEMT and CM-treated endothelial cells (HUVEC) in p53/p21-dependent manner. Therefore, QAuNP will be a useful therapeutic agent against metastatic OSCC.
Collapse
|
29
|
Xin Z, Song YLZ, He Y, Li J, Lin K, Xue X. Stereoselective Synthesis and Biological Evaluation of ent
-Asperolide C and its Analogues. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhengyuan Xin
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang 210009 Nanjing China
| | - Yunlong Lu Zhiqiang Song
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang 210009 Nanjing China
| | - Yuchen He
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang 210009 Nanjing China
| | - Jiabin Li
- School of Science; China Pharmaceutical University; 639 Long Mian Da Dao 211198 Nanjing China
| | - Kejiang Lin
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang 210009 Nanjing China
| | - Xiaowen Xue
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang 210009 Nanjing China
| |
Collapse
|
30
|
Zhang H, Yang J, Liang G, Gao X, Sang Y, Gui T, Liang Z, Tam M, Zha Z. Andrographolide Induces Cell Cycle Arrest and Apoptosis of Chondrosarcoma by Targeting TCF‐1/SOX9 Axis. J Cell Biochem 2017; 118:4575-4586. [PMID: 28485543 DOI: 10.1002/jcb.26122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Huan‐Tian Zhang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesCollege of Life Science and Technology, Jinan UniversityGuangzhouPR China
| | - Jie Yang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
| | - Gui‐Hong Liang
- Department of Orthopedics, the Third Affiliated HospitalGuangzhou University of Chinese MedicineGuangzhouPR China
| | - Xue‐Juan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesCollege of Life Science and Technology, Jinan UniversityGuangzhouPR China
| | - Yuan Sang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
| | - Tao Gui
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
| | - Zu‐Jian Liang
- Department of Orthopedics, the Third Affiliated HospitalGuangzhou University of Chinese MedicineGuangzhouPR China
| | - Man‐Seng Tam
- Macau Medical Science and Technology AssociationMacao Special Administrative RegionPR China
- IAN WO Medical CenterMacao Special Administrative RegionPR China
| | - Zhen‐Gang Zha
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
| |
Collapse
|
31
|
In vivo inhibitory activity of andrographolide derivative ADN-9 against liver cancer and its mechanisms involved in inhibition of tumor angiogenesis. Toxicol Appl Pharmacol 2017; 327:1-12. [DOI: 10.1016/j.taap.2017.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 02/07/2023]
|
32
|
Liu Y, Liang RM, Ma QP, Xu K, Liang XY, Huang W, Sutton R, Ding J, O'Neil PM, Cheng CR. Synthesis of thioether andrographolide derivatives and their inhibitory effect against cancer cells. MEDCHEMCOMM 2017; 8:1268-1274. [PMID: 30108837 DOI: 10.1039/c7md00169j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/25/2017] [Indexed: 02/05/2023]
Abstract
A series of novel thioether andrographolide derivatives were synthesized by incorporating various aromatic (or heteroaromatic) substituents into C-12 or 14-OH. A total of 38 andrographolide derivatives were prepared and evaluated for their in vitro inhibitory activity against cancer cells. All the derivatives exhibited better activity against prostate cancer cells (PC-3) than the parent compound. Among these, compounds 6a, 8, 9, 17, 19, 31, and 32 demonstrated good activity. These compounds were further evaluated for their anticancer activities against other cancer cell lines including MCF-7, MDA-MB-231, and A549. Compounds 31 and 32 showed excellent activity against MCF-7 with an IC50 value of 0.7 and 0.6 μM, respectively. The absolute configuration of 15a was determined via single-crystal X-ray diffraction. The activity of 6a (12S), which was the precursor of 15a, was better than that of the diastereoisomer 6b (12R). Moreover, the preliminary structure-activity relationship has been summarized. The results obtained herein are very important for further optimization of andrographolide.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemical Engineering , Institute of Pharmaceutical Engineering Technology and Application , Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education , Sichuan University of Science & Engineering , Xueyuan Street 180, Huixing Road , Zigong , Sichuan 643000 , People's Republic of China . ; ; Tel: +86 813 5505601
| | - Ren-Ming Liang
- School of Chemical Engineering , Institute of Pharmaceutical Engineering Technology and Application , Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education , Sichuan University of Science & Engineering , Xueyuan Street 180, Huixing Road , Zigong , Sichuan 643000 , People's Republic of China . ; ; Tel: +86 813 5505601
| | - Qing-Ping Ma
- School of Chemical Engineering , Institute of Pharmaceutical Engineering Technology and Application , Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education , Sichuan University of Science & Engineering , Xueyuan Street 180, Huixing Road , Zigong , Sichuan 643000 , People's Republic of China . ; ; Tel: +86 813 5505601
| | - Kai Xu
- School of Chemical Engineering , Institute of Pharmaceutical Engineering Technology and Application , Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education , Sichuan University of Science & Engineering , Xueyuan Street 180, Huixing Road , Zigong , Sichuan 643000 , People's Republic of China . ; ; Tel: +86 813 5505601
| | - Xin-Yong Liang
- School of Chemical Engineering , Institute of Pharmaceutical Engineering Technology and Application , Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education , Sichuan University of Science & Engineering , Xueyuan Street 180, Huixing Road , Zigong , Sichuan 643000 , People's Republic of China . ; ; Tel: +86 813 5505601
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine , Sichuan Provincial Pancreatitis Center , West China Hospital , Sichuan University , Chengdu , Sichuan , 643204 China.,Department of Molecular and Clinical Cancer Medicine , Institute of Translational Medicine , University of Liverpool , Prescot Street , Liverpool L69 8XP , UK
| | - Robert Sutton
- Department of Molecular and Clinical Cancer Medicine , Institute of Translational Medicine , University of Liverpool , Prescot Street , Liverpool L69 8XP , UK
| | - Jie Ding
- School of Chemical Engineering , Institute of Pharmaceutical Engineering Technology and Application , Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education , Sichuan University of Science & Engineering , Xueyuan Street 180, Huixing Road , Zigong , Sichuan 643000 , People's Republic of China . ; ; Tel: +86 813 5505601
| | - Paul M O'Neil
- Department of Molecular and Clinical Cancer Medicine , Institute of Translational Medicine , University of Liverpool , Prescot Street , Liverpool L69 8XP , UK
| | - Chun-Ru Cheng
- School of Chemical Engineering , Institute of Pharmaceutical Engineering Technology and Application , Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education , Sichuan University of Science & Engineering , Xueyuan Street 180, Huixing Road , Zigong , Sichuan 643000 , People's Republic of China . ; ; Tel: +86 813 5505601.,Department of Molecular and Clinical Cancer Medicine , Institute of Translational Medicine , University of Liverpool , Prescot Street , Liverpool L69 8XP , UK.,Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , UK
| |
Collapse
|
33
|
Kandanur SGS, Nanduri S, Golakoti NR. Synthesis and biological evaluation of new C-12(α/β)-(N-) sulfamoyl-phenylamino-14-deoxy-andrographolide derivatives as potent anti-cancer agents. Bioorg Med Chem Lett 2017; 27:2854-2862. [PMID: 28527822 DOI: 10.1016/j.bmcl.2017.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/08/2017] [Accepted: 04/11/2017] [Indexed: 01/04/2023]
Abstract
Andrographolide, the major diterpenoidal constituent of Andrographis paniculata (Acanthaceae) and its derivatives have been reported to possess plethora of biological properties including potent anti-cancer activity. In this work, synthesis and in-vitro anti-cancer evaluation of new C-12-substituted aryl amino 14-deoxy-andrographolide derivatives (III a-f) are reported. The substitutions include various sulfonamide moieties -SO2-NH-R1. The new derivatives (III a-e) exhibited improved cytotoxicity (GI50, TGI and LC50) compared to andrographolide (I) and the corresponding 3,14,19-O-triacetyl andrographolide (II) when evaluated against 60 NCI cell line panel. Compounds III c and III e are found to be non-toxic to normal human dermal fibroblasts (NHDF) cells compared to reference drug THZ-1.
Collapse
Affiliation(s)
- Sai Giridhar Sarma Kandanur
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Prasanthi Nilayam 515134, Andhra Pradesh, India.
| | - Srinivas Nanduri
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research, Balanagar 500037, Hyderabad, Telangana, India.
| | - Nageswara Rao Golakoti
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Prasanthi Nilayam 515134, Andhra Pradesh, India.
| |
Collapse
|
34
|
Clinical application analysis of andrographolide total ester sulfonate injection, a traditional Chinese medicine licensed in China. ACTA ACUST UNITED AC 2017; 37:293-299. [DOI: 10.1007/s11596-017-1730-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/26/2016] [Indexed: 10/18/2022]
|
35
|
Jash M, Das B, Chowdhury C. One-Pot Access to Benzo[a]carbazoles via Palladium(II)-Catalyzed Hetero- and Carboannulations. J Org Chem 2016; 81:10987-10999. [DOI: 10.1021/acs.joc.6b02022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Moumita Jash
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Bimolendu Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Chinmay Chowdhury
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
36
|
Scaffold-hopping of bioactive flavonoids: Discovery of aryl-pyridopyrimidinones as potent anticancer agents that inhibit catalytic role of topoisomerase IIα. Eur J Med Chem 2016; 122:43-54. [DOI: 10.1016/j.ejmech.2016.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022]
|
37
|
Kundu P, Mondal A, Chowdhury C. A Palladium-Catalyzed Method for the Synthesis of 2-(α-Styryl)-2,3-dihydroquinazolin-4-ones and 3-(α-Styryl)-3,4-dihydro-1,2,4-benzothiadiazine-1,1-dioxide: Access to 2-(α-Styryl)quinazolin-4(3H)-ones and 3-(α-Styryl)-1,2,4-benzothiadiazine-1,1-dioxides. J Org Chem 2016; 81:6596-608. [DOI: 10.1021/acs.joc.6b01242] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Priyanka Kundu
- Organic & Medicinal Chemisty Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700032, India
| | - Amrita Mondal
- Organic & Medicinal Chemisty Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700032, India
| | - Chinmay Chowdhury
- Organic & Medicinal Chemisty Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700032, India
| |
Collapse
|
38
|
SRJ09, a promising anticancer drug lead: Elucidation of mechanisms of antiproliferative and apoptogenic effects and assessment of in vivo antitumor efficacy. Pharmacol Res 2016; 107:66-78. [PMID: 26940565 DOI: 10.1016/j.phrs.2016.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 12/30/2022]
Abstract
SRJ09 (3,19-(2-bromobenzylidene)andrographolide), a semisynthetic andrographolide (AGP) derivative, was shown to induce G1 cell cycle arrest and eventually apoptosis in breast and colon cancer cell lines. The present investigation was carried out to elucidate the mechanisms cell cycle arrest and apoptosis and evaluate the in vivo antitumor activity of SRJ09. The in vitro growth inhibitory properties of compounds were assessed in colon (HCT-116) and breast (MCF-7) cancer cell lines. Immunoblotting was utilized to quantitate the protein levels in cells. The gene expressions were determined using reverse transcriptase PCR (RT-PCR). Pharmacokinetic investigation was carried out by determining SRJ09 levels in plasma of Balb/C mice using HPLC. In vivo antitumor activity was evaluated in athymic mice carrying HCT-116 colon tumor xenografts. SRJ09 displayed improved in vitro activity when compared with AGP by producing rapid cell killing effect in vitro. Its activity was not compromised in MES-SA/Dx5 multidrug resistant (MDR) cells expressing p-glycoprotein. Cells treated with SRJ09 (0.1-10μM) displayed increased p21 protein level, which corresponded with gene expression. Whereas CDK4 protein level and gene expression was suppressed. The treatment did not affect cyclin D1. Changes of these proteins paralleled G1 cell cycle arrest in both cell lines as determined by flow cytometry. Induction of apoptosis by SRJ09 in HCT-116 cells which occurred independent of p53 and bcl-2 was inhibited in the presence of caspase 8 inhibitor, implicating the extrinsic apoptotic pathway. A single dose (100mg/kg, i.p) of SRJ09 produced a plasma concentration range of 12-30.4μM. At 400mg/kg (q4dX3), it significantly retarded growth of tumor xenografts. The antitumor activity of SRJ09 is suggested mediated via the induction of p21 expression and suppression of CDK-4 expression without affecting cyclin D1 to trigger G1 arrest leading to apoptosis.
Collapse
|
39
|
Sheng D, Li J, Wang K, Peng Y, Li S, Sun Y, Liu Z, Wang D, Lee SMY, Zhou GC. Differential in vitro and in vivo anti-angiogenic activities of acetal and ketal andrographolide derivatives in HUVEC and zebrafish models. RSC Adv 2016. [DOI: 10.1039/c6ra16758f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Acetal and ketal andrographolide derivatives presented differing anti-angiogenic activities when applied to in vitro and in vivo models, leading to different inhibitory outcomes.
Collapse
Affiliation(s)
- Dekuan Sheng
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jingjing Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Kun Wang
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yuran Peng
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- China
| | - Shang Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Yicheng Sun
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhuyun Liu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- China
| | - Decai Wang
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- China
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
40
|
Synthesis and in vitro cytotoxicity of novel C-12 substituted-14-deoxy-andrographolide derivatives as potent anti-cancer agents. Bioorg Med Chem Lett 2015; 25:5781-6. [PMID: 26561364 DOI: 10.1016/j.bmcl.2015.10.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/11/2015] [Accepted: 10/17/2015] [Indexed: 01/11/2023]
Abstract
Andrographolide, the major labdane diterpenoid from Andrographis paniculata has been reported to be cytotoxic against various cancer cells in vitro. Our research efforts led to the discovery of novel 12-phenyl thio and 12-aryl amino-14-deoxy-andrographolide derivatives (III q and III r) with potent cytotoxic activity, 12-benzyl amino-14-deoxy-andrographolide analogues showing broad range of cytotoxic activity against most of the cell lines and 12-alkyl amino-14-deoxy-andrographolide derivatives being selective to few cell lines (PC-3 and HOP-92), when the selected analogues were evaluated against 60 human cancer cell line panel at National Cancer Institute (N.C.I.), USA. The SAR (structure activity relationship) studies demonstrated potent activity for the compounds containing the following functionalities at C-12: substituted aryl amino/phenyl thio>benzylamine>alkyl amine. The significant cytotoxic activity observed for compounds III q and III r suggest that these could serve as templates for further optimization.
Collapse
|
41
|
Synthesis and biological evaluation of a novel betulinic acid derivative as an inducer of apoptosis in human colon carcinoma cells (HT-29). Eur J Med Chem 2015; 102:93-105. [DOI: 10.1016/j.ejmech.2015.07.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 11/16/2022]
|
42
|
Song Y, Xin Z, Wan Y, Li J, Ye B, Xue X. Synthesis and anticancer activity of some novel indolo[3,2-b]andrographolide derivatives as apoptosis-inducing agents. Eur J Med Chem 2015; 90:695-706. [DOI: 10.1016/j.ejmech.2014.12.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|