1
|
Figueroa LPR, Domingos HV, Pardo JB, Santiago PHO, Ellena J, Lacerda Junior V, Costa-Lotufo LV, Borges WDS. Synthesis of Cytotoxic Benzofurans and Ethers Derivatives of Paeonol. Chem Biodivers 2024; 21:e202400943. [PMID: 39012301 DOI: 10.1002/cbdv.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Paeonol is a broadly studied natural product due to its many biological activities. Using a methodology previously employed by our research group, 11 derivatives of paeonol were synthesized (seven of them are unpublished compounds), including four ethers and seven benzofurans. Additionally, we determined the crystal structure of one of these ether derivatives (1 a) and of five benzofuran derivatives (2 a, 2 b, 2 c, 2 f and 2 g) by single crystal X-ray diffraction. To continue studying the cytotoxicity of this natural product and its derivatives, all compounds were tested against two cancer cell lines, HCT116 and MCF-7. Compounds 2 b, 2 e, and 2 g were considered active against the colorectal adenocarcinoma cells HCT116 (Growth inhibition >60 %). Compound 2 e showed an IC50 of 0.2 μM and was selected for further analysis, results reinforce its anticancer potential.
Collapse
Affiliation(s)
- Laura P R Figueroa
- Graduate Program in Chemistry, Department of Chemistry, Federal University of Espírito Santo, UFES, Vitória, 29075-910, Brazil
| | - Helori V Domingos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Jennifer B Pardo
- Graduate Program in Chemistry, Department of Chemistry, Federal University of Espírito Santo, UFES, Vitória, 29075-910, Brazil
| | - Pedro H O Santiago
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, PO Box 369, 13560-970, Brazil
| | - Javier Ellena
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, PO Box 369, 13560-970, Brazil
| | - Valdemar Lacerda Junior
- Graduate Program in Chemistry, Department of Chemistry, Federal University of Espírito Santo, UFES, Vitória, 29075-910, Brazil
| | - Letícia V Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Warley de S Borges
- Graduate Program in Chemistry, Department of Chemistry, Federal University of Espírito Santo, UFES, Vitória, 29075-910, Brazil
| |
Collapse
|
2
|
Liu YH, Li CK, Nie MY, Wang FL, Ren XL, Jin LH, Zhou X. Sulfonate derivatives bearing an amide unit: design, synthesis and biological activity studies. BMC Chem 2024; 18:46. [PMID: 38449054 PMCID: PMC10919044 DOI: 10.1186/s13065-024-01151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Pest disasters which occurs on crops is a serious problem that not only cause crop yield loss or even crop failure but can also spread a number of plant diseases.Sulfonate derivatives have been widely used in insecticide and fungicide research in recent years. On this basis, a series of sulfonate derivatives bearing an amide unit are synthesized and the biological activities are evaluated. The bioassay results showed that compounds A8, A13, A16, B1, B3, B4, B5, B10, B12 - 20, C3, C5, C9, C10, C14, C15, C17 and C19 showed 100% activity at a concentration of 500 µg/mL against the Plutella xylostella (P. xylostella). Among them, B15 which contains a thiadiazole sulfonate structure still shows 100% activity at 50 µg/mL concentration against P. xylostella and had the lowest median lethal concentration (LC50) (7.61 µg/mL) among the target compounds. Further mechanism studies are conducted on compounds with better insecticidal activity. Molecular docking results shows that B15 formed hydrophobic interactions π-π and hydrogen bonds with the indole ring of Trp532 and the carboxyl group of Asp384, respectively, with similar interaction distances or bond lengths as those of diflubenzuron. Moreover, chitinase inhibition assays are performed to further demonstrate its mode of action. In addition, the anti-bacterial activity of the series of compounds is also tested and the results showed that the series of compounds has moderate biological activity against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), with inhibition rates of 91%, 92% and 92%, 88% at the concentration of 100 µg/mL, respectively. Our study indicates that B15 can be used as a novel insecticide for crop protection.
Collapse
Affiliation(s)
- You-Hua Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Chang-Kun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Mao-Yu Nie
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Fa-Li Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiao-Li Ren
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Lin-Hong Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xia Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Wang Y, Li BS, Zhang ZH, Wang Z, Wan YT, Wu FW, Liu JC, Peng JX, Wang HY, Hong L. Paeonol repurposing for cancer therapy: From mechanism to clinical translation. Biomed Pharmacother 2023; 165:115277. [PMID: 37544285 DOI: 10.1016/j.biopha.2023.115277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Paeonol (PAE) is a natural phenolic monomer isolated from the root bark of Paeonia suffruticosa that has been widely used in the clinical treatment of some inflammatory-related diseases and cardiovascular diseases. Much preclinical evidence has demonstrated that PAE not only exhibits a broad spectrum of anticancer effects by inhibiting cell proliferation, invasion and migration and inducing cell apoptosis and cycle arrest through multiple molecular pathways, but also shows excellent performance in improving cancer drug sensitivity, reversing chemoresistance and reducing the toxic side effects of anticancer drugs. However, studies indicate that PAE has the characteristics of poor stability, low bioavailability and short half-life, which makes the effective dose of PAE in many cancers usually high and greatly limits its clinical translation. Fortunately, nanomaterials and derivatives are being developed to ameliorate PAE's shortcomings. This review aims to systematically cover the anticancer advances of PAE in pharmacology, pharmacokinetics, nano delivery systems and derivatives, to provide researchers with the latest and comprehensive information, and to point out the limitations of current studies and areas that need to be strengthened in future studies. We believe this work will be beneficial for further exploration and repurposing of this natural compound as a new clinical anticancer drug.
Collapse
Affiliation(s)
- Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bing-Shu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zi-Hui Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu-Ting Wan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fu-Wen Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing-Chun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jia-Xin Peng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao-Yu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
4
|
Lei ZW, Yao J, Liu H, Ma C, Yang W. Synthesis and Bioactivity of Novel Sulfonate Scaffold-Containing Pyrazolecarbamide Derivatives as Antifungal and Antiviral Agents. Front Chem 2022; 10:928842. [PMID: 35815220 PMCID: PMC9257181 DOI: 10.3389/fchem.2022.928842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Novel pyrazolecarbamide derivatives bearing a sulfonate fragment were synthesized to identify potential antifungal and antiviral agents. All the structures of the key intermediates and target compounds were confirmed by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). The single-crystal X-ray diffraction of the compound T22 showed that pyrazole carbamide is a sulfonate. The in vitro antifungal activities of the target compounds against Colletotrichum camelliae, Pestalotiopsis theae, Gibberella zeae, and Rhizoctonia solani were evaluated at 50 μg/ml. Among the four pathogens, the target compounds exhibited the highest antifungal activity against Rhizoctonia solani. The compound T24 (EC50 = 0.45 mg/L) had higher antifungal activity than the commercial fungicide hymexazol (EC50 = 10.49 mg/L) against R. solani, almost similar to bixafen (EC50 = 0.25 mg/L). Additionally, the target compounds exhibited protective effects in vivo against TMV. Thus, this study reveals that pyrazolecarbamide derivatives bearing a sulfonate fragment exhibit potential antifungal and antiviral activities.
Collapse
Affiliation(s)
- Zhi-Wei Lei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- *Correspondence: Zhi-Wei Lei,
| | - Jianmei Yao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Huifang Liu
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Chiyu Ma
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wen Yang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
5
|
Vellasamy S, Murugan D, Abas R, Alias A, Seng WY, Woon CK. Biological Activities of Paeonol in Cardiovascular Diseases: A Review. Molecules 2021; 26:4976. [PMID: 34443563 PMCID: PMC8400614 DOI: 10.3390/molecules26164976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
Paeonol is a naturally existing bioactive compound found in the root bark of Paeonia suffruticosa and it is traditionally used in Chinese medicine for the prevention and management of cardiovascular diseases. To date, a great deal of studies has been reported on the pharmacological effects of paeonol and its mechanisms of action in various diseases and conditions. In this review, the underlying mechanism of action of paeonol in cardiovascular disease has been elucidated. Recent studies have revealed that paeonol treatment improved endothelium injury, demoted inflammation, ameliorated oxidative stress, suppressed vascular smooth muscle cell proliferation, and repressed platelet activation. Paeonol has been reported to effectively protect the cardiovascular system either employed alone or in combination with other traditional medicines, thus, signifying it could be a hypothetically alternative or complementary atherosclerosis treatment. This review summarizes the biological and pharmacological activities of paeonol in the treatment of cardiovascular diseases and its associated underlying mechanisms for a better insight for future clinical practices.
Collapse
Affiliation(s)
- Shalini Vellasamy
- Department of Microbiology and Parasitology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarum 42610, Selangor, Malaysia;
| | - Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| | - Aspalilah Alias
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
- Fakultas Kedokteran Gigi, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Wu Yuan Seng
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
- Department of Biological Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| | - Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| |
Collapse
|
6
|
Wang J, Wu G, Chu H, Wu Z, Sun J. Paeonol Derivatives and Pharmacological Activities: A Review of Recent Progress. Mini Rev Med Chem 2020; 20:466-482. [PMID: 31644406 DOI: 10.2174/1389557519666191015204223] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Paeonol, 2-hydroxy-4-methoxy acetophenone, is one of the main active ingredients of traditional Chinese medicine such as Cynanchum paniculatum, Paeonia suffruticosa Andr and Paeonia lactiflora Pall. Modern medical research has shown that paeonol has a wide range of pharmacological activities. In recent years, a large number of studies have been carried out on the structure modification of paeonol and the mechanism of action of paeonol derivatives has been studied. Some paeonol derivatives exhibit good pharmacological activities in terms of antibacterial, anti-inflammatory, antipyretic analgesic, antioxidant and other pharmacological effects. Herein, the research progress on paeonol derivatives and their pharmacological activities were systematically reviewed.
Collapse
Affiliation(s)
- Jilei Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Guiying Wu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Haiping Chu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| | - Zhongyu Wu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| | - Jingyong Sun
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| |
Collapse
|
7
|
Chen JX, Cheng CS, Chen J, Lv LL, Chen ZJ, Chen C, Zheng L. Cynanchum paniculatum and Its Major Active Constituents for Inflammatory-Related Diseases: A Review of Traditional Use, Multiple Pathway Modulations, and Clinical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7259686. [PMID: 32774428 PMCID: PMC7396087 DOI: 10.1155/2020/7259686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Cynanchum paniculatum Radix, known as Xuchangqing in Chinese, is commonly prescribed in Chinese Medicine (CM) for the treatment of various inflammatory diseases. The anti-inflammatory property of Cynanchum paniculatum can be traced from its wind-damp removing, collaterals' obstruction relieving, and toxins counteracting effects as folk medicine in CM. This paper systematically reviewed the research advancement of the pharmacological effects of Cynanchum paniculatum among a variety of human diseases, including diseases of the respiratory, circulatory, digestive, urogenital, hematopoietic, endocrine and metabolomic, neurological, skeletal, and rheumatological systems and malignant diseases. This review aims to link the long history of clinical applications of Cynanchum paniculatum in CM with recent biomedical investigations. The major bioactive chemical compositions of Cynanchum paniculatum and their associated action mechanism unveiled by biomedical investigations as well as the present clinical applications and future perspectives are discussed. The major focuses of this review are on the diverse mechanisms of Cynanchum paniculatum and the role of its active components in inflammatory diseases.
Collapse
Affiliation(s)
- Jing-Xian Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
- Workstation of Xia Xiang, National Master of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jie Chen
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ling-Ling Lv
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Zi-Jie Chen
- Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai 200090, China
| | - Chuan Chen
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
- Workstation of Xia Xiang, National Master of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
8
|
Che ZP, Yang JM, Sun D, Tian YE, Liu SM, Lin XM, Jiang J, Chen GQ. Combinatorial Synthesis of A Series of Paeonol-based Phenylsulfonyl hydrazone Derivatives as Insecticidal Agents. Comb Chem High Throughput Screen 2020; 23:232-238. [DOI: 10.2174/1386207323666200127121129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022]
Abstract
Background:
Plant secondary metabolites play an essential role in the discovery of
novel insecticide due to their unique sources and potential target sites. Paeonol, the main phenolic
components in Moutan Cortex, is recognized as a safe and potent botanical insecticide to many
insects. The structural modification of paeonol in this study into phenylsulfonylhydrazone
derivatives is proved an effective approach for the development of novel insecticides, those
derivatives being more toxic than paeonol. However, there have been no reports on the insecticidal
activity of paeonol-based phenylsulfonylhydrazone derivatives in controlling Mythimna separata.
Methods:
We have been working to discover biorational natural products-based insecticides.
Twelve novel paeonol-based phenylsulfonylhydrazone derivatives have been successfully prepared
by structural modification of paeonol, and the insecticidal activity against M. separata by the leafdipping
method at the concentration of 1 mg/mL has been evaluated.
Results:
Insecticidal activity revealed that out of 12 title compounds, derivatives 5c and 5f
displayed the best against M. separate with the FMR both of 53.6% than toosendanin (FMR =
50.0%).
Conclusion:
The results suggested that for the paeonol-based phenylsulfonylhydrazone series
derivatives, the proper substituent of arylsulfonyl R at the hydroxyl position of paeonol was very
important for their insecticidal activity. These preliminary results will pave the way for further
modification of paeonol in the development of potential new insecticides.
Collapse
Affiliation(s)
- Zhi-Ping Che
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Jin-Ming Yang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Di Sun
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Yue-E Tian
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Sheng-Ming Liu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Xiao-Min Lin
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Jia Jiang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Gen-Qiang Chen
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| |
Collapse
|
9
|
Zheng J, Xu Y, Khan A, Wang S, Li H, Sun N. In vitro Screening of Traditional Chinese Medicines Compounds Derived with Anti-encephalomyocarditis Virus Activities. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0354-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Adki KM, Kulkarni YA. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol. Life Sci 2020; 250:117544. [PMID: 32179072 DOI: 10.1016/j.lfs.2020.117544] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Paeonol is a bioactive phenol present in Dioscorea japonica, Paeonia suffruticosa and Paeonia lactiflora. It is reported for various pharmacological activities. AIM To review chemistry, pharmacokinetics, pharmacological activities as well as various formulations of paeonol. MATERIALS AND METHODS A literature search was done using different search terms for paeonol by using different scientific databases like PubMed, Scopus and ProQuest. Scientific papers published during the period 1969 to 2019 were comprehensively reviewed. KEY FINDINGS Researchers have synthesized methoxy, ethoxy, piperazine, chromonylthiazolidine, phenol-phenylsulfonyl, alkyl ether, aminothiazole, tryptamine hybrids and paeononlsilatie derivatives to enhance the stability of paeonol. These derivatives were synthesized and evaluated for in vitro series of biological activities like anti-inflammatory, tyrosinase inhibitory, neuroprotective, anticancer and antiviral activity. Regardless of valuable therapeutic potential, the clinical use of paeonol is restricted due to poor water solubility, low oral bioavailability, low stability and high volatility at room temperature. To enhance the bioavailability of paeonol various formulations are prepared and evaluated for its activity. Paeonol formulations can be categorized as conventional-tablets, topical gel and hydrogel; polymeric delivery system-microparticles, microsponges, dendrimers, nanocapsules, polymeric nanoparticles, nanospheres; lipid-based delivery systems-microemulsion, self-micro-emulsifying drug delivery, liposome, transethosomes, ethosomes, niosomes, proniosomes, lipid-based nanoparticles and nanoemulsion of paeonol. SIGNIFICANCE Paeonol has a potential to be developed as a techno-commercial product with respect to its multi-faceted pharmacological properties. Even though in vitro and in vivo studies have been reported the important activities of paeonol, its commercial utilization requires extensive safety and efficacy data.
Collapse
Affiliation(s)
- Kaveri M Adki
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India.
| |
Collapse
|
11
|
Hu YS, Han X, Yu PJ, Jiao MM, Liu XH, Shi JB. Novel paeonol derivatives: Design, synthesis and anti-inflammatory activity in vitro and in vivo. Bioorg Chem 2020; 98:103735. [PMID: 32171986 DOI: 10.1016/j.bioorg.2020.103735] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 01/02/2023]
Abstract
Paeonol has been proved to have potential anti-inflammatory activity, but its clinical application is not extensive due to the poor anti-inflammatory activity (14.74% inhibitory activity at 20 μM). In order to discover novel lead compound with high anti-inflammatory activity, series of paeonol derivatives were designed and synthesized, their anti-inflammatory activities were screened in vitro and in vivo. Structure-activity relationships (SARs) have been fully concluded, and finally (E)-N-(4-(2-acetyl-5-methoxyphenoxy)phenyl)-3-(3,4,5-trimet-hoxyphenyl)acrylamide (compound 11a) was found to be the best active compound with low toxicity, which showed 96.32% inhibitory activity at 20 μM and IC50 value of 6.96 μM against LPS-induced over expression of nitric oxide (NO) in RAW 264.7 macrophages. Preliminary mechanism studies indicated that it could inhibit the expression of TLR4, resulting in inhibiting of NF-κB and MAPK pathways. Further studies have shown that compound 11a has obvious therapeutic effect against the adjuvant-induced rat arthritis model.
Collapse
Affiliation(s)
- Yang Sheng Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Xu Han
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Pei Jing Yu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Ming Ming Jiao
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| | - Jing Bo Shi
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
12
|
Yang T, Shi X, Guo L, Gu S, Zhang W, Xu G, Li W, Jiang Y. Design, synthesis, and antitumor activity of novel paeonol derivatives containing the 1,4-benzoxazinone and 1,2,3-triazole moieties. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819857479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new series of paeonol derivatives containing the 1,4-benzoxazinone and 1,2,3-triazole moieties were synthesized and evaluated for their cytotoxicity in vitro against human non-small cell lung cancer NCI-H1299 cells and human cervical carcinoma HeLa cells. Among them, compared with that of paeonol, compounds 8-acetyl-4-{[(1-(5-chloro-2-nitrophenyl)-1 H-1,2,3-triazol-4-yl]methyl}-5-methoxy-2 H-1,4-benzoxazin-3(4 H)-one, 8-acetyl-4-[(1-mesityl-1 H-1,2,3-triazol-4-yl)methyl]-5-methoxy-2 H-1,4-benzoxazin-3(4 H)-one, and 8-acetyl-5-methoxy-4-{[(1-(naphthalen-1-yl)-1 H-1,2,3-triazol-4-yl]methyl}-2 H-1,4-benzoxazin-3(4 H)-one exhibited significant inhibitory activity toward the human non-small cell lung cancer NCI-H1299 cells (IC50 = 13.36 ± 0.003, 19.75 ± 0.3, 15.79 ± 0.05 μg mL−1). The last compound also exhibited significant inhibitory activity toward the human cervical carcinoma HeLa cells (IC50 = 19.73 ± 1.0 μg mL−1).
Collapse
Affiliation(s)
- Tingting Yang
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Xin Shi
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Libing Guo
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, P.R. China
| | - Shaohua Gu
- Department of Obstetrics and Gynecology, Xinxiang Central Hospital, 453007 Xinxiang, P.R. China
| | - Weiwei Zhang
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Guiqing Xu
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Wei Li
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Yuqin Jiang
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| |
Collapse
|
13
|
Design, Synthesis, and Bioactive Screen In Vitro of Cyclohexyl ( E)-4-(Hydroxyimino)-4-Phenylbutanoates and Their Ethers for Anti-Hepatitis B Virus Agents. Molecules 2019; 24:molecules24112063. [PMID: 31151219 PMCID: PMC6600592 DOI: 10.3390/molecules24112063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
A series of oxime Cyclohexyl (E)-4-(hydroxyimino)-4-phenylbutanoates and their ethers were designed, synthesized, and evaluated for anti-hepatitis B virus (HBV) activities with HepG 2.2.15 cell line in vitro. Most of these compounds possessed anti-HBV activities, and among them, compound 4B-2 showed significant inhibiting effects on the secretion of HBsAg (IC50 = 63.85 ± 6.26 μM, SI = 13.41) and HBeAg (IC50 = 49.39 ± 4.17 μM, SI = 17.34) comparing to lamivudine (3TC) in HBsAg (IC50 = 234.2 ± 17.17 μM, SI = 2.2) and HBeAg (IC50 = 249.9 ± 21.51 μM, SI = 2.07). Docking study of these compounds binding to a protein residue (PDB ID: 3OX8) from HLA-A2 that with the immunodominant HBcAg18–27 epitope (HLA-A2.1- restricted CTL epitope) active site was carried out by using molecular operation environment (MOE) software. Docking results showed that behaviors of these compounds binding to the active site in HLA-A protein residue partly coincided with their behaviors in vitro anti-HBV active screening.
Collapse
|
14
|
Qiu J, Chen W, Zhang Y, Zhou Q, Chen J, Yang L, Gao J, Gu X, Tang D. Assessment of quinazolinone derivatives as novel non-nucleoside hepatitis B virus inhibitors. Eur J Med Chem 2019; 176:41-49. [PMID: 31091479 DOI: 10.1016/j.ejmech.2019.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/09/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is a worldwide public health issue. Search for novel non-nucleoside anti-HBV agents is of great importance. In the present study, a series of quinazolinones derivatives (4a-t and 5a-f) were synthesized and evaluated as novel anti-HBV agents. Among them, compounds 5e and 5f could significantly inhibit HBV DNA replication with IC50 values of 1.54 μM and 0.71 μM, respectively. Interestingly, the selective index values of 5f was higher than that of lead compound K284-1405, suggesting 5f possessed relatively safety profile than K284-1405. Notably, 5e and 5f exhibited remarkably anti-HBV activities against lamivudine and entecavir resistant HBV strain with IC50 values of 1.90 and 0.84 μM, confirming their effectiveness against resistant HBV strain. In addition, molecular docking studies indicated that compounds 5e and 5f could well fit into the dimer-dimer interface of HBV core protein dominated by hydrophobic interactions. Notably, their binding modes were different from the lead compound K284-1405, which may be attributed to the additional substituent groups in the quinazolinone scaffold. Taken together, 5e and 5f possessed novel chemical structure and potent anti-HBV activity against both drug sensitive and resistant HBV strains, thus warranting further research as potential non-nucleoside anti-HBV candidates.
Collapse
Affiliation(s)
- Jingying Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Wang Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yinpeng Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Qingqing Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Lihua Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
15
|
Paeonol: pharmacological effects and mechanisms of action. Int Immunopharmacol 2019; 72:413-421. [PMID: 31030097 DOI: 10.1016/j.intimp.2019.04.033] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Abstract
Paeonia suffruticosa possesses various medicinal benefits and has been used extensively in traditional oriental medicine for thousands of years. Paeonol is the main component isolated from the root bark of Paeonia suffruticosa. The pharmacological effects of Paeonia suffruticosa are mostly attributed to paeonol. Paeonol injection has been successfully applied in China for nearly 50 years for inflammation/pain-related indications. Currently, the dosage forms of paeonol approved by China Food and Drug Administration include tablet, injection, and external preparations such as ointment and adhesive plaster. So far, the clinical applications of paeonol are mainly focusing on the anti-inflammatory activity. Studies of other pharmacological activities of paeonol are developing rapidly, and which may play an important role in the future. Besides, substantial mechanisms of pharmacological action of paeonol have been clarified in recent years. In this review, we summarize the pharmacological effects anti-inflammatory, neuroprotective, anti-tumor, anti-cardiovascular diseases and associated mechanisms of action of paeonol up to date.
Collapse
|
16
|
Tsai FJ, Cheng CF, Chen CJ, Lin CY, Wu YF, Li TM, Chuang PH, Wu YC, Lai CH, Liu X, Tsang H, Lin TH, Liao CC, Huang SM, Li JP, Lin JC, Lin CC, Liang WM, Lin YJ. Effects of Chinese herbal medicine therapy on survival and hepatic outcomes in patients with hepatitis C virus infection in Taiwan. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:30-38. [PMID: 30668320 DOI: 10.1016/j.phymed.2018.09.237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chinese herbal medicine (CHM) is a complementary natural medicine that is used widely for the treatment of hepatic diseases. The aim of this study was to investigate the effects of the long-term use of CHM for the treatment of liver diseases, as prescribed by TCM doctors, on overall mortality and hepatic outcomes in patients with HCV. PATIENTS AND METHODS We identified 98788 patients with HCV. Of these, 829 and 829 patients who were users and non-users of CHM, respectively, were matched for age, gender, CCI, and comorbidities prior to CHM treatment. The chi-squared test, Cox proportional hazard model, Kaplan--Meier method, and log-rank test were used for comparisons. RESULTS CHM users had a lower risk of overall mortality than non-users after adjustment for comorbidities by using a multivariate Cox proportional hazard model (p-value < 0.001; HR: 0.12, 95% CI: 0.06-0.26). In addition,the CHM users had a lower risk of liver cirrhosis than non-users after adjustment for comorbidities (p-value = 0.028; HR: 0.29, 95% CI: 0.09-0.88). The 12-year cumulative incidences of overall mortality and liver cirrhosis were lower in the CHM group (p-value < 0.05 for both, log rank test). The CHM co-prescription for Dan-Shen, Bie-Jia, Jia-Wei-Xiao-Yao-San => E-Shu was found to occur most often associated for the specific treatment of HCV infection. CONCLUSION CHM as adjunctive therapy may reduce the overall mortality and the risk of liver cirrhosis in patients with HCV. The comprehensive list of the herbal medicines that may be used for the treatment of patients with HCV may be useful in future scientific investigations or for future therapeutic interventions to prevent negative hepatic outcomes in patients with HCV.
Collapse
Affiliation(s)
- Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Asia University, Taichung, Taiwan
| | - Chi-Fung Cheng
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Ying Lin
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Yi-Fang Wu
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Po-Heng Chuang
- Division of Hepato-gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural Products and Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Molecular Infectious Disease Research Center, Chang Gung University and Memorial Hospital, Taoyuan, Taiwan
| | - Xiang Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hsinyi Tsang
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ting-Hsu Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Pi Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Rheumatism Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
17
|
Mane S, Chatterjee S. An Electrochemical Comparison of Single‐Walled and Multi‐Walled Carbon Nanotubes Utilizing Paeonol as the Model Drug. ChemistrySelect 2018. [DOI: 10.1002/slct.201800787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Suyash Mane
- Department of ChemistryInstitute of Chemical Technology, Matunga Mumbai 400019 India
| | | |
Collapse
|
18
|
Tan J, Zhou M, Cui X, Wei Z, Wei W. Discovery of Oxime Ethers as Hepatitis B Virus (HBV) Inhibitors by Docking, Screening and In Vitro Investigation. Molecules 2018. [PMID: 29534537 PMCID: PMC6017342 DOI: 10.3390/molecules23030637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A series of oxime ethers with C6-C4 fragment was designed and virtually bioactively screened by docking with a target, then provided by a Friedel–Crafts reaction, esterification (or amidation), and oximation from p-substituted phenyl derivatives (Methylbenzene, Methoxybenzene, Chlorobenzene). Anti-hepatitis B virus (HBV) activities of all synthesized compounds were evaluated with HepG2.2.15 cells in vitro. Results showed that most of compounds exhibited low cytotoxicity on HepG2.2.15 cells and significant inhibition on the secretion of HBsAg and HBeAg. Among them, compound 5c-1 showed the most potent activity on inhibiting HBsAg secretion (IC50 = 39.93 μM, SI = 28.51). Results of the bioactive screening showed that stronger the compounds bound to target human leukocyte antigen A protein in docking, the more active they were in anti-HBV activities in vitro.
Collapse
Affiliation(s)
- Jie Tan
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, China.
| | - Min Zhou
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, China.
| | - Xinhua Cui
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, China.
| | - Zhuocai Wei
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, China.
| | - Wanxing Wei
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, China.
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 53004, China.
| |
Collapse
|
19
|
Fu PK, Yang CY, Huang SC, Hung YW, Jeng KC, Huang YP, Chuang H, Huang NC, Li JP, Hsu MH, Chen JK. Evaluation of LPS-Induced Acute Lung Injury Attenuation in Rats by Aminothiazole-Paeonol Derivatives. Molecules 2017; 22:molecules22101605. [PMID: 28946699 PMCID: PMC6151495 DOI: 10.3390/molecules22101605] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
Paeonol is a key phenolic compound in the root bark of Moutan Cortex Radicis that has been used in traditional Chinese Medicine to ameliorate inflammation. A series of aminothiazole-paeonol derivatives (APDs) were synthesized in this work and subjected to preliminary evaluation in cells followed by verification in animals. Quantification of monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) in culture media of LPS-activated A549 cells, a lung epithelial adenocarcinoma cell line, were used to investigate the anti-inflammatory capability of APDs. ALI-bearing rats were employed to verify therapeutic efficacy of APDs according to observations of total cells, protein amounts, MCP-1 and IL-6 in bronchoalveolar lavage fluid (BALF). Histopathological examinations of lung tissues were consequently applied for validation of APDs. Among these compounds, 2-(2-aminothiazol-4-yl)-5-methoxyphenol (4) had the most potent activity, showing comparable inhibition of MCP-1/IL-6 and superior elimination of neutrophil infiltration and protein exudation in lungs compared to others as well as dexamethasone. This study demonstrated a comprehensive strategy to evaluate APDs through integration of cell-based screening and animal-based verification. In order to fulfill unmet needs of treating acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), APDs introduced in this work could be promising lead compounds to develop high potent anti-inflammation agents.
Collapse
Affiliation(s)
- Pin-Kuei Fu
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
- Department of Biotechnology, Hungkuang University, Taichung 43302, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan.
| | - Chi-Yu Yang
- Animal Technology Laboratory, Agriculture Technology Research Institute, Miaoli 35053, Taiwan.
| | - Su-Chin Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Yu-Wen Hung
- Animal Technology Laboratory, Agriculture Technology Research Institute, Miaoli 35053, Taiwan.
| | - Kee-Ching Jeng
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan.
| | - Ying-Pei Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Hong Chuang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Nai-Chun Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Jui-Ping Li
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua County 50007, Taiwan.
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
20
|
Chandra J, Chaudhuri R, Manne SR, Mondal S, Mandal B. Direct Synthesis of Sulphonates of Alcohol, Oxyma-O
-sulphonates and Oxime-O
-sulphonates under Microwave Irradiation. ChemistrySelect 2017. [DOI: 10.1002/slct.201701554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jyoti Chandra
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati, Assam - 781039 India
| | - Rohit Chaudhuri
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati, Assam - 781039 India
| | - Srinivasa Rao Manne
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati, Assam - 781039 India
| | - Sandip Mondal
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati, Assam - 781039 India
| | - Bhubaneswar Mandal
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati, Assam - 781039 India
| |
Collapse
|
21
|
Huang L, Zhang B, Yang Y, Gong X, Chen Z, Wang Z, Zhang P, Zhang Q. Synthesis and anti-inflammatory activity of paeonol analogues in the murine model of complete Freund's adjuvant induced arthritis. Bioorg Med Chem Lett 2016; 26:5218-5221. [PMID: 27712938 DOI: 10.1016/j.bmcl.2016.09.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/01/2016] [Accepted: 09/24/2016] [Indexed: 12/16/2022]
Abstract
A new series of paeonol alkyl ether analogues were synthesized and confirmed with IR, 1H NMR, 13C NMR and HRMS spectra. They have shown anti-inflammatory activities by scavenging mediator of free radicals and inhibiting lipid mediator of inflammation on complete Freund's adjuvant (CFA) induced arthritis in mice. The in vitro and in vivo scavenging ability of free radicals was determined by using chemical analysis and commercial assay kits, respectively. The in vivo inhibiting lipid mediator of inflammation was examined by ELISA. Our results indicated that the substitution of the hydrogen in hydroxyl group at C2 position of paeonol 1 by short carbon chain, in the presence or absence of bromo atom at C5 position, decreased its scavenging ability on radicals (3a or 4a vs 1), while the long alkyl substitution (Cn>14) increased the activity. Compared with 3a or 4a, scavenging abilities of 3a-h or 4a-h gradually increased following the length elongation of alkyl carbon chain. Compounds 3h and 4h showed great scavenging ability on OH, O2-, DPPH, ATBS+ and MDA, and good promotion on T-AOC and SOD. The results of the in vivo inhibiting lipid mediator of inflammation also demonstrated that 3h, 4h exhibited substantial inhibition on enzyme activity of COX-2, PGE2. Therefore, 3h and 4h have great potential to be the novel anti-inflammatory drug candidates for the therapy of arthritis.
Collapse
Affiliation(s)
- Ligua Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China.
| | - You Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, PR China
| | - Xiaobao Gong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Zhu Chen
- Chongqing Institute for Food and Drug Control, Chongqing 401211, PR China
| | - Zhenxu Wang
- Chongqing Institute for Food and Drug Control, Chongqing 401211, PR China
| | - Peng Zhang
- The Ninth People's Hospital of Chongqing, Chongqing 400700, PR China
| | - Qingyan Zhang
- The Ninth People's Hospital of Chongqing, Chongqing 400700, PR China
| |
Collapse
|
22
|
Parker S, May B, Zhang C, Zhang AL, Lu C, Xue CC. A Pharmacological Review of Bioactive Constituents ofPaeonia lactifloraPallas andPaeonia veitchiiLynch. Phytother Res 2016; 30:1445-73. [DOI: 10.1002/ptr.5653] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Shefton Parker
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences; RMIT University; PO Box 71 Bundoora Victoria 3083 Australia
| | - Brian May
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences; RMIT University; PO Box 71 Bundoora Victoria 3083 Australia
| | - Claire Zhang
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences; RMIT University; PO Box 71 Bundoora Victoria 3083 Australia
| | - Anthony Lin Zhang
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences; RMIT University; PO Box 71 Bundoora Victoria 3083 Australia
| | - Chuanjian Lu
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences; RMIT University; PO Box 71 Bundoora Victoria 3083 Australia
- Guangdong Provincial Hospital of Chinese Medicine; Guangzhou China
- Guangdong Provincial Academy of Chinese Medical Sciences; Guangzhou China
- The Second Clinical College; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Charlie Changli Xue
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences; RMIT University; PO Box 71 Bundoora Victoria 3083 Australia
- Guangdong Provincial Hospital of Chinese Medicine; Guangzhou China
- Guangdong Provincial Academy of Chinese Medical Sciences; Guangzhou China
- The Second Clinical College; Guangzhou University of Chinese Medicine; Guangzhou China
| |
Collapse
|
23
|
Volatile Organic Compounds Emissions from Luculia pinceana Flower and Its Changes at Different Stages of Flower Development. Molecules 2016; 21:531. [PMID: 27110758 PMCID: PMC6273779 DOI: 10.3390/molecules21040531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 01/07/2023] Open
Abstract
Luculia plants are famed ornamental plants with sweetly fragrant flowers, of which L. pinceana Hooker, found primarily in Yunnan Province, China, has the widest distribution. Solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) was employed to identify the volatile organic compounds (VOCs) emitted from different flower development stages of L. pinceana for the evaluation of floral volatile polymorphism. Peak areas were normalized as percentages and used to determine the relative amounts of the volatiles. The results showed that a total of 39 compounds were identified at four different stages of L. pinceana flower development, including 26 at the bud stage, 26 at the initial-flowering stage, 32 at the full-flowering stage, and 32 at the end-flowering stage. The most abundant compound was paeonol (51%–83%) followed by (E,E)-α-farnesene, cyclosativene, and δ-cadinene. All these volatile compounds create the unique fragrance of L. pinceana flower. Floral scent emission offered tendency of ascending first and descending in succession, meeting its peak level at the initial-flowering stage. The richest diversity of floral volatile was detected at the third and later periods of flower development. Principal component analysis (PCA) indicated that the composition and its relative content of floral scent differed throughout the whole flower development. The result has important implications for future floral fragrance breeding of Luculia. L. pinceana would be adequate for a beneficial houseplant and has a promising prospect for development as essential oil besides for a fragrant ornamental owing to the main compounds of floral scent with many medicinal properties.
Collapse
|
24
|
Synthesis and Evaluation of Aminothiazole-Paeonol Derivatives as Potential Anticancer Agents. Molecules 2016; 21:145. [PMID: 26821004 PMCID: PMC6273194 DOI: 10.3390/molecules21020145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 01/07/2023] Open
Abstract
In this study, novel aminothiazole-paeonol derivatives were synthesized and characterized using 1H-NMR, 13C-NMR, IR, mass spectroscopy, and high performance liquid chromatography. All the new synthesized compounds were evaluated according to their anticancer effect on seven cancer cell lines. The experimental results indicated that these compounds possess high anticancer potential regarding human gastric adenocarcinoma (AGS cells) and human colorectal adenocarcinoma (HT-29 cells). Among these compounds, N-[4-(2-hydroxy-4-methoxyphenyl)thiazol-2-yl]-4-methoxybenzenesulfonamide (13c) had the most potent inhibitory activity, with IC50 values of 4.0 µM to AGS, 4.4 µM to HT-29 cells and 5.8 µM to HeLa cells. The 4-fluoro-N-[4-(2-hydroxy-4-methoxyphenyl)thiazol-2-yl]benzenesulfonamide (13d) was the second potent compound, showing IC50 values of 7.2, 11.2 and 13.8 µM to AGS , HT-29 and HeLa cells, respectively. These compounds are superior to 5-fluorouracil (5-FU) for relatively higher potency against AGS and HT-29 human cancer cell lines along with lower cytotoxicity to fibroblasts. Novel aminothiazole-paeonol derivatives in this work might be a series of promising lead compounds to develop anticancer agents for treating gastrointestinal adenocarcinoma.
Collapse
|
25
|
Chuang H, Huang LCS, Kapoor M, Liao YJ, Yang CL, Chang CC, Wu CY, Hwu JR, Huang TJ, Hsu MH. Design and synthesis of pyridine-pyrazole-sulfonate derivatives as potential anti-HBV agents. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00008h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) is an infectious disease, which can cause acute and chronic infections.
Collapse
Affiliation(s)
- Hong Chuang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
- Nuclear Science & Technology Development Centre
| | - Lin-Chiang Sherlock Huang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
- Nuclear Science & Technology Development Centre
| | - Mohit Kapoor
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology
- College of Medical Science and Technology
- Taipei Medical University
- Taiwan
| | - Cheng-Lin Yang
- Graduate Institute of Biomedical Sciences
- National Chung Hsing University
- Taichung 402
- Taiwan
| | - Chia-Ching Chang
- Department of Biology Science and Technology
- National Chiao Tung University
- Hsinchu
- Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Science
- China Medical University
- Taichung
- Taiwan
| | - Jih Ru Hwu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | | | - Ming-Hua Hsu
- Nuclear Science & Technology Development Centre
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| |
Collapse
|
26
|
Huang YP, Shih HP, Liang YC, Lin HH, Lin MC, Chen CW, Huang TJ, Kuo YC, Han CC, Hsu MH. Advanced generation of paeonol-phenylsufonyl derivatives as potential anti-HBV agents. RSC Adv 2016. [DOI: 10.1039/c6ra06119b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Among all the compounds we presented here, 8a showed the most potent inhibitory effect and highest selectivity index, which exceeds those of lamivudine (3TC) and our previously synthesized compound 6f.
Collapse
Affiliation(s)
- Y. P. Huang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
- Nuclear Science & Technology Department Center
| | - H. P. Shih
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Y. C. Liang
- Agricultural Biotechnology Research Center
- Academia Sinica
- Taipei 115
- Taiwan
| | - H. H. Lin
- Division of Radiotherapy
- Department of Oncology
- Taipei Veterans General Hospital
- Taipei 115
- Taiwan
| | - M. C. Lin
- Biomedical Technology and Device Research Laboratories
- Industrial Technology Research Institute
- Hsinchu 30013
- Taiwan
| | - C. W. Chen
- Department of Anesthesiology
- China Medical University Hospital
- Taichung 404
- Taiwan
- Department of Anesthesiology
| | - T. J. Huang
- School of Medicine
- China Medical University
- Taichung 404
- Taiwan
| | - Y. C. Kuo
- Radiation Oncology
- Show Chwan Memorial Hospital
- Changhua City 50008
- Taiwan
| | - C. C. Han
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - M. H. Hsu
- Nuclear Science & Technology Department Center
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
- Department of Chemistry
| |
Collapse
|
27
|
Pao KC, Zhao JF, Lee TS, Huang YP, Han CC, Sherlock Huang LC, Wu KH, Hsu MH. Low-dose paeonol derivatives alleviate lipid accumulation. RSC Adv 2015. [DOI: 10.1039/c4ra13986k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we present a series of novel paeonol derivatives that prevent lipid accumulation at lower doses.
Collapse
Affiliation(s)
- Kuan-Chuan Pao
- Nuclear Science & Technology Development Center
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Jin-Feng Zhao
- Department of Physiology
- National Yang-Ming University
- Taipei 11221
- Taiwan
| | - Tzong-Shyuan Lee
- Department of Physiology
- National Yang-Ming University
- Taipei 11221
- Taiwan
| | - Ying-Pei Huang
- Nuclear Science & Technology Development Center
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
- Department of Chemistry
| | - Chien-Chung Han
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Lin-Chiang Sherlock Huang
- Nuclear Science & Technology Development Center
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
- Department of Chemistry
| | - Kou-Hung Wu
- Nuclear Science & Technology Development Center
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Ming-Hua Hsu
- Nuclear Science & Technology Development Center
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| |
Collapse
|