1
|
Fotopoulos I, Hadjipavlou-Litina D. Approaches for the discovery of cinnamic acid derivatives with anticancer potential. Expert Opin Drug Discov 2024; 19:1281-1291. [PMID: 39105559 DOI: 10.1080/17460441.2024.2387122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Cinnamic acid is a privileged scaffold for the design of biologically active compounds with putative anticancer potential, following different synthetic methodologies and procedures. Since there is a need for the production of potent anticancer, cinnamate moiety can significantly contribute in the design of new and more active anticancer agents. AREAS COVERED In this review, the authors provide a review on the synthetic approaches for the discovery of cinnamic acid derivatives with anticancer potential. Results from molecular simulations, hybridization, and chemical derivatization along with biological experiments in vitro and structural activity relationships are given, described, and discussed by the authors. Information for the mechanism of action is taken from original literature sources. EXPERT OPINION The authors suggest that (i) numerous areas of biology-pharmacology need to be considered: selectivity, in vivo studies, toxicity and drug-likeness, the mechanism of action in animals and humans, development of more efficient assays for various cancer types; (ii) hybridization techniques outbalance in the discovery and production of compounds with higher activity and greater selectivity; (iii) repositioning offers new anticancer cinnamic agents.
Collapse
Affiliation(s)
- Ioannis Fotopoulos
- Department of Pharmaceutical Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
2
|
Shaldam MA, Hendrychová D, El-Haggar R, Vojáčková V, Majrashi TA, Elkaeed EB, Masurier N, Kryštof V, Tawfik HO, Eldehna WM. 2,4-Diaryl-pyrimido[1,2-a]benzimidazole derivatives as novel anticancer agents endowed with potent anti-leukemia activity: Synthesis, biological evaluation and kinase profiling. Eur J Med Chem 2023; 258:115610. [PMID: 37437350 DOI: 10.1016/j.ejmech.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
Acute myeloid leukemia (AML) stands as one of the most aggressive type of human cancer that can develop rapidly and thus requires immediate management. In the current study, the development of novel derivatives of pyrimido[1,2-a]benzimidazole (5a-p) as potential anti-AML agents is reported. The prepared compounds 5a-p were inspected for their in vitro anti-tumor activity at NCI-DTP and subsequently 5h was selected for full panel five-dose screening to assess its TGI, LC50 and GI50 values. Compound 5h showed effective anti-tumor activity at low micromolar concentration on all tested human cancer cell lines with GI50 range from 0.35 to 9.43 μM with superior sub-micromolar activity towards leukemia. Furthermore, pyrimido[1,2-a]benzimidazoles 5e-l were tested on a panel ofhuman acute leukemia cell lines, namely HL60, MOLM-13, MV4-11, CCRF-CEM and THP-1, where 5e-h reached single-digit micromolar GI50 values for all the tested cell lines. All prepared compounds were first tested for inhibitory action against the leukemia-associated mutant FLT3-ITD, as well as against ABL, CDK2, and GSK3 kinases, in order to identify the kinase target for the herein described pyrimido[1,2-a]benzimidazoles. However, the examined molecules disclosed non-significant activity against these kinases. Thereafter, a kinase profiling on a panel of 338 human kinases was then used to discover the potential target. Interestingly, pyrimido[1,2-a]benzimidazoles 5e and 5h significantly inhibited BMX kinase. Further investigation for the effect on cell cycle of HL60 and MV4-11 cells and caspase 3/7 activity was also performed. In addition, the changes in selected proteins (PARP-1, Mcl-1, pH3-Ser10) associated with cell death and viability were analyzed in HL60 and MV4-11 cells by immunoblotting.
Collapse
Affiliation(s)
- Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Denisa Hendrychová
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795, Ain Helwan, Cairo, Egypt
| | - Veronika Vojáčková
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Taghreed A Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir, 61421, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 13713, Saudi Arabia
| | | | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 5, 77900, Olomouc, Czech Republic
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
3
|
Hosseini Nasab N, Raza H, Eom YS, Hassan M, Kloczkowski A, Kim SJ. Synthesis and discovery of potential tyrosinase inhibitor of new coumarin-based thiophenyl-pyrazolylthiazole nuclei: In vitro evaluation, cytotoxicity, kinetic, and computational studies. Chem Biol Drug Des 2023; 101:1262-1272. [PMID: 36746678 DOI: 10.1111/cbdd.14209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
A well-known key enzyme in melanogenesis and hyperpigmentation is tyrosinase. The present study introduces a novel series of thiophenyl-pyrazolylthiazole-coumarin hybrids (6a-6h) as tyrosinase inhibitors. The in-vitro tyrosinase inhibition results indicated that all compounds have strong tyrosinase inhibitory activity, particularly compound 6g (IC50 = 0.043 ± 0.006 μM), was identified as the most active compound compared to the positive control (kojic acid, IC50 = 18.521 ± 1.162 μM). Lineweaver-Burk plots were employed to analyze the kinetic mechanism, and compound 6g formed an enzyme-inhibitor complex by inhibiting tyrosinase non-competitively. Furthermore, all compounds demonstrated excellent antioxidant activity against DPPH. MTT assay was used to screen the cytotoxicity of all compounds on B16F10 melanoma cells, and they had no toxic effect on the cells. The binding affinity of compounds with tyrosinase was also investigated using molecular docking, and the ligands displayed good binding energy values. These molecules could be a promising lead for skin pigmentation and associated diseases as nontoxic pharmacological scaffolds.
Collapse
Affiliation(s)
- Narges Hosseini Nasab
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Hussain Raza
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Young Seok Eom
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Mubashir Hassan
- Department of Pediatrics, The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Andrzej Kloczkowski
- Department of Pediatrics, The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Song Ja Kim
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| |
Collapse
|
4
|
Nongpiur CGL, Verma AK, Singh RK, Ghate MM, Poluri KM, Kaminsky W, Kollipara MR. Half-sandwich ruthenium(II), rhodium(III) and iridium(III) fluorescent metal complexes containing pyrazoline based ligands: DNA binding, cytotoxicity and antibacterial activities. J Inorg Biochem 2023; 238:112059. [PMID: 36345069 DOI: 10.1016/j.jinorgbio.2022.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
A series of nine new complexes of ruthenium(II), rhodium(III), and iridium(III) incorporated with pyrazoline-based ligands were synthesized and characterized by various spectroscopic techniques such as FTIR, 1H NMR, 13C NMR, UV-Vis spectroscopy, ESI-MS spectrometry and X-ray crystallographic studies. All the synthesized compounds were assessed for their antibacterial abilities against Gram-positive and Gram-negative bacterial strains. The compounds showed better antibacterial activity against two Gram-positive bacteria (Staphylococcus aureus and Bacillus Thuringiensis), with activities superior to standard kanamycin. Antioxidant studies revealed the mild radical scavenging proficiency of the compounds. DNA binding studies using fluorescence spectroscopy showed that the compounds could bind to Salmon Milt DNA electrostatically via external contact and groove surface binding with moderate affinity. The synthesized complexes were tested for anticancer activity using cell cytotoxicity and apoptosis assays in Dalton's lymphoma (DL) cell lines. The findings were compared to cisplatin (the standard drug) under identical experimental conditions. The cell viability results showed that complex 7 induced higher cytotoxicity in the DL cell line than the other tested compounds. The results of the molecular docking analysis further suggest that selective complexes have complete contact with the active amino acids sites of anti-apoptotic Bcl-2 family protein.
Collapse
Affiliation(s)
| | | | - Rohit Kumar Singh
- Department of Zoology, Cotton University, Guwahati 781001, Assam, India
| | - Mayur Mohan Ghate
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mohan Rao Kollipara
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
5
|
Development of New Thiophene-Containing Triaryl Pyrazoline Derivatives as PI3Kγ Inhibitors. Molecules 2022; 27:molecules27082404. [PMID: 35458602 PMCID: PMC9027920 DOI: 10.3390/molecules27082404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
A series of new thiophene-containing triaryl pyrazoline derivatives, 3a–3t, were synthesized and evaluated regarding PI3K inhibition activity and anti-tumor potency based on a trial of introducing significant moieties, including pyrazoline and thiophene, and simplifying the parallel ring structures. Most of the tested compounds indicated potent PI3K inhibitory potency, with this series of compounds showing more potency for PI3Kγ than PI3Kα. The top hit 3s seemed more potent than the positive control LY294002 on inhibiting PI3Kγ (IC50 values: 0.066 μM versus 0.777 μM) and more selective from PI3Kα (Index values: 645 versus 1.74). It could be inferred that the combination of para- and meta-, as well as the modification of the electron-donating moieties, led to the improvement in potency. The anti-proliferation inhibitory activity and the enzymatic inhibition potency indicated consistent tendencies. The top hit 3s could inhibit the phosphorylation of Akt by inhibiting PI3K through the PI3K-Akt-mTOR pathway. The molecular docking simulation indicated that the binding pattern of 3s into PI3Kγ was preferable than that of PI3Kα, with more hydrogen bond, more π-involved interactions, and fewer π-sulfur interactions. The information in this work is referable for the further development of selective inhibitors for specific isoforms of PI3K.
Collapse
|
6
|
Yao Y, Huang T, Wang Y, Wang L, Feng S, Cheng W, Yang L, Duan Y. Angiogenesis and anti-leukaemia activity of novel indole derivatives as potent colchicine binding site inhibitors. J Enzyme Inhib Med Chem 2022; 37:652-665. [PMID: 35109719 PMCID: PMC8820799 DOI: 10.1080/14756366.2022.2032688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The screened compound DYT-1 from our in-house library was taken as a lead (inhibiting tubulin polymerisation: IC50=25.6 µM, anti-angiogenesis in Zebrafish: IC50=38.4 µM, anti-proliferation against K562 and Jurkat: IC50=6.2 and 7.9 µM, respectively). Further investigation of medicinal chemistry conditions yielded compound 29e (inhibiting tubulin polymerisation: IC50=4.8 µM and anti-angiogenesis in Zebrafish: IC50=3.6 µM) based on tubulin and zebrafish assays, which displayed noteworthily nanomolar potency against a variety of leukaemia cell lines (IC50= 0.09–1.22 µM), especially K562 cells where apoptosis was induced. Molecular docking, molecular dynamics (MD) simulation, radioligand binding assay and cellular microtubule networks disruption results showed that 29e stably binds to the tubulin colchicine site. 29e significantly inhibited HUVEC tube formation, migration and invasion in vitro. Anti-angiogenesis in vivo was confirmed by zebrafish xenograft. 29e also prominently blocked K562 cell proliferation and metastasis in blood vessels and surrounding tissues of the zebrafish xenograft model. Together with promising physicochemical property and metabolic stability, 29e could be considered an effective anti-angiogenesis and -leukaemia drug candidate that binds to the tubulin colchicine site.
Collapse
Affiliation(s)
- Yongfang Yao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Ministry of Education of China, Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Zhengzhou, China
| | - Tao Huang
- Medical School, Huanghe Science and Technology University, Zhengzhou, Henan Province, P.R China
| | - Yuyang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Longfei Wang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Siqi Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Ministry of Education of China, Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Zhengzhou, China
| | - Weyland Cheng
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Longhua Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Ministry of Education of China, Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Zhengzhou, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Nehra B, Mathew B, A Chawla P. A medicinal chemist's perspective towards structure activity relationship of heterocycle based anti-cancer agents. Curr Top Med Chem 2022; 22:493-528. [PMID: 35021975 DOI: 10.2174/1568026622666220111142617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
AIM To describe structure activity relationship of heterocyclic derivatives with multi-targeted anticancer activity. OBJECTIVES With the following goals in mind, this review tries to describe significant recent advances in the medicinal chemistry of heterocycle-based compounds: (1) To shed light on recent literature focused on heterocyclic derivatives' anticancer potential; (2) To discuss recent advances in the medicinal chemistry of heterocyclic derivatives, as well as their biological implications for cancer eradication; (3) To summarise the comprehensive correlation of structure activity relationship (SAR) with pharmacological outcomes in cancer therapy. BACKGROUND Cancer remains one of the major serious health issues devastating the world today. Cancer is a complex disease in which improperly altered cells proliferate at an uncontrolled, rapid, and severe rate. Variables such as poor dietary habits, high stress, age, and smoking, can all contribute to the development of cancer. Cancer can affect almost any organ or tissue, although the brain, breast, liver, and colon are the most frequently affected organs. From several years, surgical operations and irradiation are in use along with chemotherapy as a primary treatment of cancer but still effective treatment of cancer remains a huge challenge. Chemotherapy is now one of the most effective strategies to eradicate cancer, although it has been shown to have a number of cytotoxic and unfavourable effects on normal cells. Despite all of these cancer treatments, there are several other targets for anticancer drugs. Cancer can be effectively eradicated by focusing on these targets, which include both cell-specific and receptor-specific targets such as tyrosine kinase receptors (TKIs). Heterocyclic scaffolds also have a variety of applications in drug development and are a common moiety in the pharmaceutical, agrochemical, and textile industries. METHODS The association between structural activity relationship data of many powerful compounds and their anticancer potential in vitro and in vivo has been studied. SAR of powerful heterocyclic compounds can also be generated using molecular docking simulations, as reported vastly in literature. CONCLUSIONS Heterocycles have a wide range of applications, from natural compounds to synthesised derivatives with powerful anticancer properties. To avoid cytotoxicity or unfavourable effects on normal mammalian cells due to a lack of selectivity towards the target site, as well as to reduce the occurrence of drug resistance, safer anticancer lead compounds with higher potency and lower cytotoxicity are needed. This review emphasizes on design and development of heterocyclic lead compounds with promising anticancer potential.
Collapse
Affiliation(s)
- Bhupender Nehra
- University College of Pharmacy, Guru Kashi University, Talwandi Sabo, Bathinda, Punjab-151302, India
| | - Bijo Mathew
- Dept. of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682041, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, India
| |
Collapse
|
8
|
Yang B, Zhou J, Wang F, Hu XW, Shi Y. Pyrazoline derivatives as tubulin polymerization inhibitors with one hit for Vascular Endothelial Growth Factor Receptor 2 inhibition. Bioorg Chem 2021; 114:105134. [PMID: 34246970 DOI: 10.1016/j.bioorg.2021.105134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023]
Abstract
In this work, to check the effect of the transposition of the rings in typical patterns, a series of pyrazoline derivatives 3a-3t bearing the characteristic 3,4,5-trimethoxy phenyl and thiophene moieties were synthesized and evaluated as tubulin polymerization inhibitors. Basically, as the concise output of our design, a majority of the synthesized compounds showed potency in inhibiting the tubulin polymerization. The top hit, 3q, exhibited potent anti-proliferation activity on cancer cell lines. It was comparable on tubulin-polymerization inhibition with the positive control Colchicine but lower toxic. The VEGFR2 inhibitory potency was introduced occasionally. The flow cytometry assay confirmed the apoptotic procedure and the confocal imaging revealed the tubulin-microtubule dynamics pattern. The anti-cancer mechanism of 3q was similar to Colchicine but not exactly the same on forming multi-polar spindles. The docking simulation visualized the possible binding patterns of 3q into tubulin and VEGFR2, respectively. The results inferred that further investigations on the transposition of the rings might lead to the improvement of tubulin polymerization inhibitory activity and the steadily introduction of the VEGFR2 inhibition.
Collapse
Affiliation(s)
- Bing Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Jiahua Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Fa Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Wei Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Yujun Shi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
9
|
Sun M, Zhang Y, Qin J, Ba M, Yao Y, Duan Y, Liu H, Yu D. Synthesis and biological evaluation of new 2-methoxyestradiol derivatives: Potent inhibitors of angiogenesis and tubulin polymerization. Bioorg Chem 2021; 113:104988. [PMID: 34034135 DOI: 10.1016/j.bioorg.2021.104988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
Here, we report the structural optimization of a hit natural compound, 2-ME2 (2-methoxyestradiol), which exhibited inhibitory activity but low potency on tubulin polymerization, anti- angiogenesis, MCF-7 proliferation and metastasis in vitro and in vivo. A novel series of 3,17-modified and 17-modified analogs of 2-ME2 were synthesized and investigated for their antiproliferative activity against MCF-7 and another five different human cancer cell lines leading to the discovery of 9i. 9i bind to tubulin colchicine site tightly, inhibited tubulin polymerization and disrupted cellular microtubule networks. Cellular mechanism studies revealed that 9i could induce G2/M phase arrest by down-regulated expression of p-Cdc2, P21 and cell apoptosis by regulating apoptosis-related proteins (Parp, Caspase families) in a dose-dependent manner. Importantly, 9i significantly inhibited HUVEC tube formation, proliferation, migration and invasion. The inhibitory effect against angiogenesis in vivo was confirmed by zebrafish xenograft. Furthermore, 9i could effectively inhibit the proliferation and metastasis of MCF-7 cells in vitro and in zebrafish xenograft. The satisfactory physicochemical property and metabolic stability of 9i further indicated that it can act as a promising and potent anti-angiogenesis, inhibiting proliferation and metastasis of breast cancer agent via targeting tubulin colchicine binding site.
Collapse
Affiliation(s)
- Moran Sun
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yixin Zhang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jinling Qin
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Mengyu Ba
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yongfang Yao
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Dequan Yu
- Chinese Academy of Medical Sciences, Beijing 100021,China
| |
Collapse
|
10
|
Mor S, Khatri M, Punia R, Sindhu S. Recent Progress on Anticancer Agents Incorporating Pyrazole Scaffold. Mini Rev Med Chem 2021; 22:115-163. [PMID: 33823764 DOI: 10.2174/1389557521666210325115218] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
The search of new anticancer agents is considered as a dynamic field of medicinal chemistry. In recent years, the synthesis of compounds with anticancer potential has increased and a large number of structurally varied compounds displaying potent anticancer activities have been published. Pyrazole is an important biologically active scaffold that possessed nearly all types of biological activities. The aim of this review is to collate literature work reported by researchers to provide an overview on in vivo and in vitro anticancer activities of pyrazole based derivatives among the diverse biological activities displayed by them and also presents recent efforts made on this heterocyclic moiety regarding anticancer activities. This review has been driven from the increasing number of publications, on this issue, which have been reported in the literature since the ending of the 20th century (from 1995-to date).
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| |
Collapse
|
11
|
Upadhyay N, Tilekar K, Loiodice F, Anisimova NY, Spirina TS, Sokolova DV, Smirnova GB, Choe JY, Meyer-Almes FJ, Pokrovsky VS, Lavecchia A, Ramaa CS. Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorg Chem 2021; 107:104527. [PMID: 33317839 DOI: 10.1016/j.bioorg.2020.104527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
In search for new and safer anti-cancer agents, a structurally guided pharmacophore hybridization strategy of two privileged scaffolds, namely diaryl pyrazolines and imidazolidine-2,4-dione (hydantoin), was adopted resulting in a newfangled series of compounds (H1-H22). Herein, a bio-isosteric replacement of "pyrrolidine-2,5-dione" moiety of our recently reported antitumor hybrid incorporating diaryl pyrazoline and pyrrolidine-2,5-dione scaffolds with "imidazoline-2,4-dione" moiety has been incorporated. Complete biological studies revealed the most potent analog among all i.e. compound H13, which was at-least 10-fold more potent compared to the corresponding pyrrolidine-2,5-dione, in colon and breast cancer cells. In-vitro studies showed activation of caspases, arrest of G0/G1 phase of cell cycle, decrease in the expression of anti-apoptotic protein (Bcl-2) and increased DNA damage. In-vivo assay on HT-29 (human colorectal adenocarcinoma) animal xenograft model unveiled the significant anti-tumor efficacy along with oral bioavailability with maximum TGI 36% (i.p.) and 44% (per os) at 50 mg/kg dose. These findings confirm the suitability of hybridized pyrazoline and imidazolidine-2,4-dione analog H13 for its anti-cancer potential and starting-point for the development of more efficacious analogs.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via E. Orabona, 4, 70126 Bari, Italy
| | - Natalia Yu Anisimova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Tatiana S Spirina
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Darina V Sokolova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Galina B Smirnova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Jun-Yong Choe
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, NC, USA
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Science, Darmstadt, Germany
| | - Vadim S Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia; Department of Biochemistry, People's Friendship University, Moscow, Russia.
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy.
| | - C S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India.
| |
Collapse
|
12
|
Ultrasound assisted synthesis of tetrazole based pyrazolines and isoxazolines as potent anticancer agents via inhibition of tubulin polymerization. Bioorg Med Chem Lett 2020; 30:127592. [PMID: 33010448 DOI: 10.1016/j.bmcl.2020.127592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
In search of new active molecules against MCF-7, A549 and HepG2, tetrazole based pyrazoline and isoxazoline derivatives under both conventional and ultrasonic irradiation method were designed and efficiently synthesized. Structures of newly synthesized compounds 5a-h and 6a-h were characterized by 1H NMR, 13C NMR, MS and elemental analysis. Several derivatives were found to be excellent cytotoxic against MCF-7, A549 and HepG2 cell lines characterized by lower IC50 values (0.78-3.12 µg/mL). Compounds 5b and 5c demonstrated an antiproliferative effect comparable to that of CA-4. Western blot analysis revealed that, reported compounds accumulate more tubulin in the soluble fraction. Docking studies suggested that, binding of these compounds mimics at the colchicine site of tubulin. In vitro study revealed that the tetrazole based pyrazolines and isoxazolines may possess ideal structural requirements for further development of novel therapeutic agents.
Collapse
|
13
|
Rasal NK, Sonawane RB, Jagtap SV. Synthesis, biological evaluation, and in silico study of pyrazoline-conjugated 2,4-dimethyl-1H-pyrrole-3-carboxylic acid derivatives. Arch Pharm (Weinheim) 2020; 354:e2000267. [PMID: 33078449 DOI: 10.1002/ardp.202000267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 11/12/2022]
Abstract
A potential molecular hybridization strategy was used to develop 24 novel pyrazoline-conjugated 2,4-dimethyl-1H-pyrrole-3-carboxylic acid and amide derivatives. The preliminary in vitro antimicrobial assay delivered four potential derivatives with growth inhibition in the range of 50.87-56.60% at the concentration of 32 µg/ml. In the search of an anticancer candidate, all derivatives were screened by NCI-60 at 10 µM concentration, revealing that 12 derivatives were potential agents against the various types of cancer cell lines, with growth inhibition in the range of 50.21-108.37%. The in vitro cytotoxicity assay against the cell line HEK293 (human embryonic kidney cells) and the hemolysis assay of the representative potent compounds propose their potential for a good therapeutic index. In silico studies of the most potent derivatives qualified their significant pharmacokinetic properties with good predicted oral bioavailability and their adherence to Lipinski's rule of five for druglikeness. A molecular docking study against VEGFR-2 with the best-scored conformations reinforced their anticancer potency. The docking study of the most potent compound against VEGFR-2 with the best-scored conformations displayed a binding affinity (-9.5 kcal/mol) comparable with the drug sunitinib (-9.9 kcal/mol) and exhibited that tighter interactions at the active adenosine triphosphate site might be responsible for anticancer potency.
Collapse
Affiliation(s)
- Nishant K Rasal
- Department of Chemistry, Baburaoji Gholap College, Affiliated to Savitribai Phule Pune University, Pune, India
| | - Rahul B Sonawane
- Department of Chemistry, Baburaoji Gholap College, Affiliated to Savitribai Phule Pune University, Pune, India
| | - Sangeeta V Jagtap
- Department of Chemistry, Baburaoji Gholap College, Affiliated to Savitribai Phule Pune University, Pune, India
| |
Collapse
|
14
|
Tilekar K, Upadhyay N, Meyer-Almes FJ, Loiodice F, Anisimova NY, Spirina TS, Sokolova DV, Smirnova GB, Choe JY, Pokrovsky VS, Lavecchia A, S Ramaa C. Synthesis and Biological Evaluation of Pyrazoline and Pyrrolidine-2,5-dione Hybrids as Potential Antitumor Agents. ChemMedChem 2020; 15:1813-1825. [PMID: 32715626 DOI: 10.1002/cmdc.202000458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 02/06/2023]
Abstract
In search of novel and effective antitumor agents, pyrazoline-substituted pyrrolidine-2,5-dione hybrids were designed, synthesized and evaluated in silico, in vitro and in vivo for anticancer efficacy. All the compounds exhibited remarkable cytotoxic effects in MCF7 and HT29 cells. The excellent antiproliferative activity toward MCF7 (IC50 =0.78±0.01 μM), HT29 (IC50 =0.92±0.15 μM) and K562 (IC50 =47.25±1.24 μM) cell lines, prompted us to further investigate the antitumor effects of the best compound S2 (1-(2-(3-(4-fluorophenyl)-5-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethyl)pyrrolidine-2,5-dione). In cell-cycle analysis, S2 was found to disrupt the growth phases with increased cell population in G1 /G0 phase and decreased cell population in G2 /M phase. The excellent in vitro effects were also supported by inhibition of anti-apoptotic protein Bcl-2. In vivo tumor regression studies of S2 in HT29 xenograft nude mice, exhibited equivalent and promising tumor regression with maximum TGI, 66 % (i. p. route) and 60 % (oral route) at 50 mg kg-1 dose by both the routes, indicating oral bioavailability and antitumor efficacy. These findings advocate that hybridization of pyrazoline and pyrrolidine-2,5-dioes holds promise for the development of more potent and less toxic anticancer agents.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur, 400614, Navi Mumbai, India
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur, 400614, Navi Mumbai, India
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295, Darmstadt, Germany
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via E. Orabona, 4, 70126, Bari, Italy
| | - Natalia Y Anisimova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Tatiana S Spirina
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Darina V Sokolova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Galina B Smirnova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Jun-Yong Choe
- East Carolina Diabetes and Obesity Institute Department of Chemistry, East Carolina University, 27834, Greenville, North Carolina, USA
| | - Vadim S Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia.,Department of Biochemistry, People's Friendship University, 117198, Moscow, Russia
| | - Antonio Lavecchia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - C S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur, 400614, Navi Mumbai, India
| |
Collapse
|
15
|
Havrylyuk D, Heidary DK, Sun Y, Parkin S, Glazer EC. Photochemical and Photobiological Properties of Pyridyl-pyrazol(in)e-Based Ruthenium(II) Complexes with Sub-micromolar Cytotoxicity for Phototherapy. ACS OMEGA 2020; 5:18894-18906. [PMID: 32775891 PMCID: PMC7408248 DOI: 10.1021/acsomega.0c02079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/10/2020] [Indexed: 05/09/2023]
Abstract
The discovery of new light-triggered prodrugs based on ruthenium (II) complexes is a promising approach for photoactivated chemotherapy (PACT). The light-mediated activation of "strained" Ru(II) polypyridyl complexes resulted in ligand release and produced a ligand-deficient metal center capable of forming covalent adducts with biomolecules such as DNA. Based on the strategy of exploiting structural distortion to activate photochemistry, biologically active small molecules were coordinated to a Ru(II) scaffold to create light-triggered dual-action agents. Thirteen new Ru(II) complexes with pyridyl-pyrazol(in)e ligands were synthesized, and their photochemical reactivity and anticancer properties were investigated. Isomeric bidentate ligands were investigated, where "regular" ligands (where the coordinated nitrogens in the heterocycles are linked by C-C atoms) were compared to "inverse" isomers (where the coordinated nitrogens in the heterocycles are linked by C-N atoms). Coordination of the regular 3-(pyrid-2-yl)-pyrazol(in)es to a Ru(II) bis-dimethylphenanthroline scaffold yielded photoresponsive compounds with promising photochemical and biological properties, in contrast to the inverse 1-(pyrid-2-yl)-pyrazolines. The introduction of a phenyl ring to the 1N-pyrazoline cycle increased the distortion in complexes and improved ligand release upon light irradiation (470 nm) up to 5-fold in aqueous media. Compounds 1-8, containing pyridyl-pyrazol(in)e ligands, were at least 20-80-fold more potent than the parent pyridyl-pyrazol(in)es, and exhibited biological activity in the dark, with half-maximal inhibitory concentration (IC50) values ranging from 0.2 to 7.6 μM in the HL60 cell line, with complete growth inhibition upon light irradiation. The diversification of coligands and introduction of a carboxylic acid into the Ru(II) complex resulted in compounds 9-12, with up to 146-fold improved phototoxicity indices compared with complexes 1-8.
Collapse
|
16
|
Nehra B, Rulhania S, Jaswal S, Kumar B, Singh G, Monga V. Recent advancements in the development of bioactive pyrazoline derivatives. Eur J Med Chem 2020; 205:112666. [PMID: 32795767 DOI: 10.1016/j.ejmech.2020.112666] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/29/2022]
Abstract
Pyrazolines remain privileged heterocycles in drug discovery. 2-Pyrazoline scaffold has been proven as a ubiquitous motif which is present in a number of pharmacologically important drug molecules such as antipyrine, ramifenazone, ibipinabant, axitinib etc. They have been widely explored by the scientific community and are reported to possess wide spectrum of biological activities. For combating unprecedented diseases and worldwide increasing drug resistance, 2-pyrazoline has been tackled as a fascinating pharmacophore to generate new molecules with improved potency and lesser toxicity along with desired pharmacokinetic profile. This review aims to summarizes various recent advancements in the medicinal chemistry of pyrazoline based compounds with the following objectives: (1) To represent inclusive data on pyrazoline based marketed drugs as well as therapeutic candidates undergoing preclinical and clinical developments; (2) To discuss recent advances in the medicinal chemistry of pyrazoline derivatives with their numerous biological significances for the eradication of various diseases; (3) Summarizes structure-activity relationships (SAR) including in silico and mechanistic studies to afford ideas for the design and development of novel compounds with desired therapeutic implications.
Collapse
Affiliation(s)
- Bhupender Nehra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Sandeep Rulhania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
17
|
Safaa I. Elewa, Mansour E, Nassar IF, Mekawey AAI. Synthesis of Some New Pyrazoline-Based Thiazole Derivatives and Evaluation of Their Antimicrobial, Antifungal, and Anticancer Activities. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020030061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Nisa S, Yusuf M. Synthetic and antimicrobial studies of
N
‐substituted‐pyrazoline‐based new bisheterocycles. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shehneela Nisa
- Department of ChemistryPunjabi University Patiala Punjab India
| | - Mohamad Yusuf
- Department of ChemistryPunjabi University Patiala Punjab India
| |
Collapse
|
19
|
O'Boyle NM, Ana G, Kelly PM, Nathwani SM, Noorani S, Fayne D, Bright SA, Twamley B, Zisterer DM, Meegan MJ. Synthesis and evaluation of antiproliferative microtubule-destabilising combretastatin A-4 piperazine conjugates. Org Biomol Chem 2020; 17:6184-6200. [PMID: 31173031 DOI: 10.1039/c9ob00558g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microtubules are a validated clinical target for the treatment of many cancers. We describe the design, synthesis, biochemical evaluation, and molecular modelling studies of a series of analogues of the microtubule-destabilising agent, combretastatin A-4 (CA-4). Our series of 33 novel compounds contain the CA-4 core structure with modifications to the stilbene linking group, and are predominantly piperazine derivatives. Synthesis was achieved in a two-step process by firstly obtaining the acrylic acid via a Perkin reaction using microwave enhanced synthesis, followed by coupling using either DCC or Mukaiyama's reagent. All target compounds were screened for antiproliferative activity in MCF-7 breast cancer cells. Hydroxyl derivative (E)-3-(4-hydroxy-3-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl) propenone (4m) displayed potent antiproliferative activity (IC50 = 190 nM). Two amino-containing derivatives, (E)-3-(3-amino-4-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4q) and (E)-3-(3-amino-4-methoxyphenyl)-1-(4-(p-tolyl)piperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4x), were the most potent with IC50 values of 130 nM and 83 nM respectively. Representative compounds were shown to depolymerise tubulin, induce G2/M arrest and apoptosis in MCF-7 cells but not peripheral blood mononuclear cells, and induce cleavage of the DNA repair enzyme poly ADP ribose polymerase (PARP) in MCF-7 cells. Modelling studies predict that the compounds bind to tubulin within the colchicine-binding site. These compounds are a valuable addition to the library of CA-4 analogues and 4m, 4q and 4x will be developed further as novel, water-soluble molecules targeting microtubules.
Collapse
Affiliation(s)
- Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2 D02 R590, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xia LY, Yang R, Zhang YL, Chu YC, Qi YL, Man RJ, Wang ZC, Wang BZ, Zhu HL. Design, synthesis, and biological evaluation of 2,3-diphenyl-cycloalkyl pyrazole derivatives as potential tubulin polymerization inhibitors. Chem Biol Drug Des 2019; 94:1894-1904. [PMID: 31106514 DOI: 10.1111/cbdd.13565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 01/06/2023]
Abstract
Several novel cycloalkyl-fused 2,3-diaryl pyrazole derivatives were designed, synthesized, and evaluated as potential anti-tubulin agents. Compound A10 exhibited the most potent antiproliferative activity against a panel of cancer lines (IC50 = 0.78-2.42 μM) and low cytotoxicity against 293T & L02 (CC50 values of 131.74 and 174.89 μM, respectively). Moreover, A10 displayed inhibition of tubulin polymerization in vitro, arrested the G2/M phase of the cell cycle, changed morphology of tubulin, increased intracellular reactive oxygen species, and induced apoptosis of HeLa cells. Docking simulation and 3D-QSAR models were performed to elaborate on the anti-tubulin mechanism of the derivatives. The inhibition of monoclonal colony formation provided more intuitional data to verify the possibility of A10 as a novel tubulin assembling inhibitor.
Collapse
Affiliation(s)
- Lin-Ying Xia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Rong Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya-Liang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yi-Chun Chu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya-Lin Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ruo-Jun Man
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Guangxi Biological Polysaccharide Separation, Purification and Modification Research Platform, Guangxi University for Nationalities, Nanning, China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Santosh R, Prabhu A, Selvam MK, Krishna PM, Nagaraja GK, Rekha PD. Design, synthesis, and pharmacology of some oxadiazole and hydroxypyrazoline hybrids bearing thiazoyl scaffold: antiproliferative activity, molecular docking and DNA binding studies. Heliyon 2019; 5:e01255. [PMID: 30886919 PMCID: PMC6393698 DOI: 10.1016/j.heliyon.2019.e01255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/19/2018] [Accepted: 02/14/2019] [Indexed: 11/16/2022] Open
Abstract
A series of oxadiazole (7a-l) and hydroxypyrazoline derivatives (8a-l) incorporating thiazole were synthesized and characterized by spectral analysis (1H-NMR, 13C-NMR, Mass, and FT-IR). The synthesized compounds were screened for their in vitro cytotoxicity against MDA-MB231 and HT-29 human cell lines. Conjugates 7d, 7e, 7f, 7i, 7l, 8a, 8b, 8i and 8l exhibited significant antiproliferative activity on both MDA-MB231 and HT-29 cell lines. Flow cytometric analysis reveals that, 7i arrests both cells lines at Go/G1 phase whereas 8i induced G0/G1 arrest only in the HT-29 cells. Furthermore, Computational interaction studies of 7i and 8i exhibited its capacity of being a plausible CDK2 and BCL-2 inhibitor respectively. In addition, DNA binding of the synthesized compounds and DNA docking of 7i and 8i demonstrated the ability to interact with DNA. Compounds 7i and 8i causes' remarkable growth inhibition of MDA-MB231 and HT-29 cells but compound 8i was considerably effective against HT-29 cells. Overall these compounds can be practiced for further drug development.
Collapse
Affiliation(s)
- Rangappa Santosh
- Department of Studies in Chemistry, Mangalore University, Mangaluru, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya University, Mangaluru, Karnataka, India
| | - Mukunthan K Selvam
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Panchangam M Krishna
- Department of Chemistry, Ramaiah Institute of Technology, Bangalore, Karnataka, India
| | | | | |
Collapse
|
22
|
Luo Y, Zhou Y, Song Y, Chen G, Wang YX, Tian Y, Fan WW, Yang YS, Cheng T, Zhu HL. Optimization of substituted cinnamic acyl sulfonamide derivatives as tubulin polymerization inhibitors with anticancer activity. Bioorg Med Chem Lett 2018; 28:3634-3638. [DOI: 10.1016/j.bmcl.2018.10.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023]
|
23
|
Yang R, Lv M, Xu H. Synthesis of Piperine Analogs Containing Isoxazoline/Pyrazoline Scaffold and Their Pesticidal Bioactivities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11254-11264. [PMID: 30295024 DOI: 10.1021/acs.jafc.8b03690] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In continuation of our program to discover new potential pesticidal agents, thirty-one piperine analogs containing isoxazoline/pyrazoline scaffold were prepared, and confirmed by infrared spectra, proton/carbon-13 nuclear magnetic resonance spectra, and high-resolution mass spectra. The structures of compounds VIIb and VIIIc were further determined by 1H-1H COSY spectra. Especially the configuration of compound VIIIc was unambiguously confirmed by single-crystal X-ray diffraction. Their pesticidal activities were evaluated against three serious and typically crop-threatening agricultural pests, Tetranychus cinnabarinus Boisduval (spider mite), Mythimna separata Walker (Oriental armyworm), and Plutella xylostella Linnaeus (diamondback moth). Compounds VIIIb and VIIIc exhibited greater than 40-fold more potent acaricidal activity than the lead compound piperine against T. cinnabarinus. Notably, compounds VIa-c exhibited more pronounced oral toxicity against P. xylostella than toosendanin; compounds VIb and VIc displayed more promising growth inhibitory activity against M. separata than toosendanin. It demonstrated that the methylenedioxy and isoxazoline scaffolds were important for the oral toxicity and growth inhibitory activity against P. xylostella and M. separata, respectively; the ethylenedioxy and isoxazoline scaffolds were vital for the acaricidal activity against T. cinnabarinus. Moreover, compounds VIb, VIIf, and VIIIc showed very low toxicity against NRK-52E cells.
Collapse
Affiliation(s)
- Ruige Yang
- Research Institute of Pesticidal Design & Synthesis, College of Chemistry and Pharmacy/Plant Protection , Northwest A&F University , Yangling 712100 , Shaanxi Province , China
| | - Min Lv
- Research Institute of Pesticidal Design & Synthesis, College of Chemistry and Pharmacy/Plant Protection , Northwest A&F University , Yangling 712100 , Shaanxi Province , China
| | - Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Chemistry and Pharmacy/Plant Protection , Northwest A&F University , Yangling 712100 , Shaanxi Province , China
| |
Collapse
|
24
|
Demiroglu-Zergeroglu A, Ayvali N, Turhal G, Ceylan H, Nacak Baytas S. Investigation of potent anticarcinogenic activity of 1, 3-diarylpyrazole acrylamide derivatives in vitro. J Pharm Pharmacol 2018; 70:1619-1629. [PMID: 30198567 DOI: 10.1111/jphp.13012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Pyrazole derivatives are pharmacologically powerful agents pointing at new horizons in the development of anticancer therapies. In this study, anticarcinogenic potential of a series of pyrazole-acrylamide derivatives has been investigated in mesothelial, malignant mesothelioma and lung cancer cell lines. METHODS The effect of compounds on the viability of cells and the distribution of cell cycle were examined through MTS assay and PI staining, respectively. Apoptosis was evaluated via caspase-3 enzymatic assay and AO/EB staining. Proteins involved in proliferation, survival and apoptosis were analysed by immunoblotting. KEY FINDINGS Twelve compounds of 21 (4a-4v) reduced the viability of cells but, only the subset of five (4f, 4i, 4j, 4k and 4v) induced the caspase-3 activity. Among five, only one compound (4k) significantly suppressed phosphorylation and expression of ERK1/2 and AKT proteins in 24 h. Exposing cancer cells to successive concentrations of 4k gave rise to dose- and time-dependent G2/M phase arrest and apoptosis. CONCLUSIONS 4k has revealed its potent antiproliferative activity by decreasing viability and inhibiting proliferation and survival signals of cancer cells. Moreover, 4k has exposed cytostatic and apoptotic effect especially, on cancer cells. Therefore, it may be necessary to examine the biological actions of 4k in vivo as well.
Collapse
Affiliation(s)
| | - Nurettin Ayvali
- Department of Molecular Biology & Genetics, Gebze Technical University, Gebze/Kocaeli, Turkey
| | - Gulseren Turhal
- Department of Molecular Biology & Genetics, Gebze Technical University, Gebze/Kocaeli, Turkey
| | - Hurmuz Ceylan
- Department of Molecular Biology & Genetics, Gebze Technical University, Gebze/Kocaeli, Turkey
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
25
|
Fan A, Wei J, Yang M, Zhang Q, Zhang Y, Liu Q, Li N, Zhao D, Lu Y, Li J, Zhao J, Deng S, Zhang B, Zhu H, Chen X. Pharmacodynamic and pharmacokinetic characteristics of YMR-65, a tubulin inhibitor, in tumor-bearing mice. Eur J Pharm Sci 2018; 121:74-84. [DOI: 10.1016/j.ejps.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 01/23/2023]
|
26
|
Czarnomysy R, Surażyński A, Muszynska A, Gornowicz A, Bielawska A, Bielawski K. A novel series of pyrazole-platinum(II) complexes as potential anti-cancer agents that induce cell cycle arrest and apoptosis in breast cancer cells. J Enzyme Inhib Med Chem 2018; 33:1006-1023. [PMID: 29862867 PMCID: PMC6009892 DOI: 10.1080/14756366.2018.1471687] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Six novel compounds of platinum(II) with pyrazole derivatives PtPz1-PtPz6 were synthesised and characterised (PtPz1 - [Pt2N-hydroksymethyl-3,5-dimethylpyrazole4(berenil)2]Cl4; PtPz2 - [Pt23,5-dimethylpyrazole4(berenil)2]Cl4; PtPz3 - [Pt23,4-dimethylpyrazole4(berenil)2]Cl4; PtPz4 - [Pt2pyrazole4(berenil)2]Cl4; PtPz5- [Pt25-methylpyrazole4(berenil)2]Cl4; PtPz6 - [Pt2N-ethylpyrazole4(berenil)2]Cl4). The cytotoxic activity of these complexes against MCF-7 and MDA-MB-231 breast cancer cell lines was determined using the MTT assay. Evaluation of apoptosis induction was done with the Annexin V-fluorescein isothiocyanate/propidium iodide assay. In addition, using a flow cytometer, we determined the influence of test compounds on the cell cycle and caspase-3, -8, and -9 activity. The obtained results of caspase activity were confirmed by cell imaging. Moreover, using the flow cytometer, the effects of the test compounds on mitochondrial potential change were assessed. The test results showed that novel pyrazole-platinum(II) complexes exhibited stronger anti-proliferative activity against two breast cancer cell lines than reference cisplatin. Compounds PtPz1, PtPz2, and PtPz3 with methyl substituents at the pyrazole ring showed stronger activity than pyrazole or ethylpyrazole containing complexes. Studies have shown that inhibition of cell survival occurs by arresting the G1 cell cycle and inducing apoptosis. Our analysis associated with the response of MCF-7 and MDA-MB-231 cells to treatment with PtPz1-PtPz6 showed that it leads the cells through the external and intrinsic (mitochondrial) apoptotic pathway via indirect DNA damage.
Collapse
Affiliation(s)
- Robert Czarnomysy
- a Department of Synthesis and Technology of Drugs , Medical University of Bialystok , Bialystok , Poland
| | - Arkadiusz Surażyński
- b Department of Medicinal Chemistry , Medical University of Bialystok , Bialystok , Poland
| | - Anna Muszynska
- a Department of Synthesis and Technology of Drugs , Medical University of Bialystok , Bialystok , Poland
| | - Agnieszka Gornowicz
- a Department of Synthesis and Technology of Drugs , Medical University of Bialystok , Bialystok , Poland
| | - Anna Bielawska
- c Department of Biotechnology , Medical University of Bialystok , Bialystok , Poland
| | - Krzysztof Bielawski
- a Department of Synthesis and Technology of Drugs , Medical University of Bialystok , Bialystok , Poland
| |
Collapse
|
27
|
Hasaninejad A, Mojikhalifeh S, Beyrati M. Highly efficient, catalyst-free, one-pot, pseudo
five-component synthesis of novel pyrazoline-containing Schiff bases, metal complexes formation and computational studies via
DFT method. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alireza Hasaninejad
- Department of Chemistry, Faculty of Sciences; Persian Gulf University; Bushehr 75169 Iran
| | - Sanaz Mojikhalifeh
- Department of Chemistry, Faculty of Sciences; Persian Gulf University; Bushehr 75169 Iran
| | - Maryam Beyrati
- Department of Chemistry, Faculty of Sciences; Persian Gulf University; Bushehr 75169 Iran
| |
Collapse
|
28
|
Abd-Rabou AA, Abdel-Wahab BF, Bekheit MS. Synthesis, molecular docking, and evaluation of novel bivalent pyrazolinyl-1,2,3-triazoles as potential VEGFR TK inhibitors and anti-cancer agents. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0451-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Identification and characterization of SSE15206, a microtubule depolymerizing agent that overcomes multidrug resistance. Sci Rep 2018; 8:3305. [PMID: 29459693 PMCID: PMC5818492 DOI: 10.1038/s41598-018-21642-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
Microtubules are highly dynamic structures that form spindle fibres during mitosis and are one of the most validated cancer targets. The success of drugs targeting microtubules, however, is often limited by the development of multidrug resistance. Here we describe the discovery and characterization of SSE15206, a pyrazolinethioamide derivative [3-phenyl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide] that has potent antiproliferative activities in cancer cell lines of different origins and overcomes resistance to microtubule-targeting agents. Treatment of cells with SSE15206 causes aberrant mitosis resulting in G2/M arrest due to incomplete spindle formation, a phenotype often associated with drugs that interfere with microtubule dynamics. SSE15206 inhibits microtubule polymerization both in biochemical and cellular assays by binding to colchicine site in tubulin as shown by docking and competition studies. Prolonged treatment of cells with the compound results in apoptotic cell death [increased Poly (ADP-ribose) polymerase cleavage and Annexin V/PI staining] accompanied by p53 induction. More importantly, we demonstrate that SSE15206 is able to overcome resistance to chemotherapeutic drugs in different cancer cell lines including multidrug-resistant KB-V1 and A2780-Pac-Res cell lines overexpressing MDR-1, making it a promising hit for the lead optimization studies to target multidrug resistance.
Collapse
|
30
|
Huang X, Huang R, Wang Z, Li L, Gou S, Liao Z, Wang H. Pt(IV) complexes conjugating with chalcone analogue as inhibitors of microtubule polymerization exhibited selective inhibition in human cancer cells. Eur J Med Chem 2018; 146:435-450. [PMID: 29407969 DOI: 10.1016/j.ejmech.2018.01.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/17/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
Six novel of Pt(IV) complexes comprising chalcone analogues were synthesized and evaluated for anti-proliferative activity using MTT assay. In vitro evaluation revealed that all Pt(IV) complexes showed better and more potent activity against three human cancer cells including CDDP resistant cells than that of their corresponding mother Pt(II) species. Among them, two representative complexes, 14 and 17, exhibited better cell selectivity between cancer cells and normal cells than CDDP. Molecular docking study indicated that complexes 14 and 17 could bind to the colchicine site of tubulin. Moreover, complexes 14 and 17 also remarkably displayed inhibition of cell migration against HUVEC cells in vitro. Molecular mechanism studies suggested that 14 and 17 induced production of reactive oxygen species (ROS), cell cycle arrest at the G2/M phase, and mitochondria-mediated apoptosis by regulating the expression of Bcl-2 family members.
Collapse
Affiliation(s)
- Xiaochao Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Rizhen Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Zhimei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Lingxue Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Zhixin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
31
|
Synthesis and biological evaluation of N-substituted 3-oxo-1,2,3,4-tetrahydro-quinoxaline-6-carboxylic acid derivatives as tubulin polymerization inhibitors. Eur J Med Chem 2018; 143:8-20. [DOI: 10.1016/j.ejmech.2017.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 08/05/2017] [Accepted: 08/06/2017] [Indexed: 11/23/2022]
|
32
|
Mojikhalifeh S, Hasaninejad A. Highly efficient, catalyst-free, one-pot, pseudo-seven-component synthesis of novel poly-substituted pyrazolyl-1,2-diazepine derivatives. Org Chem Front 2018. [DOI: 10.1039/c8qo00210j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel, green and high yielding preparation of poly-substituted pyrazolyl-1,2-diazepine derivatives is describedviaa one-pot pseudo-seven-component condensation reaction under catalyst-free conditions in EtOH at room temperature.
Collapse
Affiliation(s)
- Sanaz Mojikhalifeh
- Department of Chemistry
- Faculty of Sciences
- Persian Gulf University
- Bushehr
- Iran
| | - Alireza Hasaninejad
- Department of Chemistry
- Faculty of Sciences
- Persian Gulf University
- Bushehr
- Iran
| |
Collapse
|
33
|
Facile synthesis of some pyrazoline-based compounds with promising anti-inflammatory activity. Future Med Chem 2018; 10:183-199. [DOI: 10.4155/fmc-2017-0144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: Search for new anti-inflammatory agents with higher efficacy and lower toxicity is an urgent demand in drug discovery era. Methodology: Different pyrazoline derivatives 4a,b, 5a,b, 6a–h and 7a–f were prepared from the condensation reactions of 1,5-bis(5-methylfuran/thiophen-2-yl)penta-1,4-dien-3-ones 3a,b with different hydrazine derivatives. All compounds were screened for their anti-inflammatory activity using the carrageenan-induced paw edema method in rats and TNF-α inhibition assay. Results: Many compounds revealed promising anti-inflammatory activity relative to indomethacin especially compounds 4a, 5a, 5b, 6b, 6d, 6f and 7b. They were safe to the gastric mucosa and did not cause toxicity up to tenfolds the anti-inflammatory dose, in addition, all compounds inhibited TNF-α with IC50 values of 1.7–100 nM.
Collapse
|
34
|
El-Sherief HAM, Youssif BGM, Bukhari SNA, Abdel-Aziz M, Abdel-Rahman HM. Novel 1,2,4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorg Chem 2017; 76:314-325. [PMID: 29227915 DOI: 10.1016/j.bioorg.2017.12.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/31/2017] [Accepted: 12/03/2017] [Indexed: 02/01/2023]
Abstract
A series of novel compounds carrying 1,2,4-triazole scaffold was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines using MTT assay. Compounds 8a, 8b, 8c, 8d, 10b, 10e, and 10 g showed remarkable antiproliferative activity against the tested cell lines. Compounds 8a, 8b, 8c, 8d, 10b, 10e, and 10 g with the least IC50 values in MTT assay were tested against three known anticancer targets including EGFR, BRAF and Tubulin. The results revealed that compounds 8c and 8d showed almost same BRAF inhibitory activity and were discovered to be potent inhibitors of cancer cell proliferation and were also observed to be strong Tubulin inhibitors. Moreover, 8c also showed the best EGFR inhibition with IC50 = 3.6 μM. Finally molecular modeling studies were performed to explore the binding mode of the most active compounds to the target enzymes.
Collapse
Affiliation(s)
- Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-suef, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka 2014, Saudi Arabia
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka 2014, Saudi Arabia.
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka 2014, Saudi Arabia
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Hamdy M Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-suef, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| |
Collapse
|
35
|
Fan A, Zhang Y, Zhang Q, Wei J, Lu X, Ren G, Zhao D, Li N, Zhu H, Chen X. Evaluation of the pharmacokinetics, tissue distribution and excretion studies of YMR-65, a tubulin polymerization inhibitor with potential anticancer activity, in rats using UPLC-MS/MS. Xenobiotica 2017; 48:920-926. [PMID: 29050520 DOI: 10.1080/00498254.2017.1380865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. YMR-65, 5-(5-bromo-1-methyl-1H-indol-3-yl)-3-(3-methoxyphenyl)-4, 5-dihydro-1H-pyrazole-1-carboxamide, is a new tubulin polymerization inhibitor with encouraging anticancer activity. 2. The validated ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) method was successfully applied to the pharmacokinetics, tissue distribution and excretion study of YMR-65 after oral and intravenous administration. The area under concentration-time curve (AUC0-∞) for YMR-65 were 151.67 ± 54.48 and 459.45 ± 49.23 ng/ml*h for oral and intravenous administration at the dosage of 1.5 mg/kg, respectively and the oral bioavailability was about 33.01%. Moreover, YMR-65 was extensively distributed in heart, liver, spleen, lung, kidney, stomach, intestine and testis and the highest were detected in heart, followed by stomach, intestine and liver. The majority of YMR-65 was excreted via feces and its accumulative excretion ratio during the period of 96 h was 19.83 ± 3.01%, but only 1.54 ± 0.37 and 0.215 ± 0.026% for urine within 96 h and bile within 10 h after intravenous administration, respectively, though the fecal and urine excretion were incomplete within 96 h. 3. In summary, this study defined the pharmacokinetic characteristics of YMR-65 in vivo and the important data can be a useful resource for further research and development.
Collapse
Affiliation(s)
- Ali Fan
- a Clinical Pharmacokinetics Laboratory, China Pharmaceutical University , Nanjing , P.R. China and
| | - Yaliang Zhang
- b State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing , P.R. China
| | - Qing Zhang
- a Clinical Pharmacokinetics Laboratory, China Pharmaceutical University , Nanjing , P.R. China and
| | - Jiali Wei
- a Clinical Pharmacokinetics Laboratory, China Pharmaceutical University , Nanjing , P.R. China and
| | - Xiaoyu Lu
- a Clinical Pharmacokinetics Laboratory, China Pharmaceutical University , Nanjing , P.R. China and
| | - Guanghui Ren
- a Clinical Pharmacokinetics Laboratory, China Pharmaceutical University , Nanjing , P.R. China and
| | - Di Zhao
- a Clinical Pharmacokinetics Laboratory, China Pharmaceutical University , Nanjing , P.R. China and
| | - Ning Li
- a Clinical Pharmacokinetics Laboratory, China Pharmaceutical University , Nanjing , P.R. China and
| | - Hailiang Zhu
- b State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing , P.R. China
| | - Xijing Chen
- a Clinical Pharmacokinetics Laboratory, China Pharmaceutical University , Nanjing , P.R. China and
| |
Collapse
|
36
|
Wang H, Zheng J, Xu W, Chen C, Wei D, Ni W, Pan Y. A New Series of Cytotoxic Pyrazoline Derivatives as Potential Anticancer Agents that Induce Cell Cycle Arrest and Apoptosis. Molecules 2017; 22:molecules22101635. [PMID: 28961210 PMCID: PMC6151802 DOI: 10.3390/molecules22101635] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 02/05/2023] Open
Abstract
A new series of pyrazoline derivatives 1b-12b was designed, synthesized and evaluated for antiproliferative activity against three cancer cell lines (HepG-2, Hela and A549). Additionally, NIH/3T3 cell cytotoxicity were tested and the structure activity relationships (SARs) were also determined. Among these new derivatives, the compounds 3-(4-fluorophenyl)-5-(3,4,5-trimethoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (1b) and 3-(4-chlorophenyl)-5-(3,4,5-trimethoxythiphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (2b) showed the best activity against HepG-2 cells, with IC50 values of 6.78 μM and 16.02 μM, respectively. They also displayed potent activity against Hela cells; meanwhile, 3-(4-chlorophenyl)-5-(3-bromo-4-hydroxy-5-methoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (5b) and 3-(4-bromo-phenyl)-5-(3-bromo-4-hydroxy-5-methoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (6b) were also identified as promising anticancer agents against A549 cells owing to their notable inhibitory effect, compared with cisplatin (IC50 = 29.48 μM). Furthermore, it was also found that compounds 1b and 2b had low cytotoxicity against NIH/3T3 cells and further mechanistic studies revealed that 1b arrested HepG-2 cells cycle at the G2/M phase at high concentrations and induced apoptosis in HepG-2 cells. Moreover, 1b upregulated protein expression level of cleaved caspase-3, cleaved PARP, Bax and p53 and downregulated protein expression level of Bcl-2 in dose-dependent way in HepG-2 cells. Thus, this study indicates that compound 1b might be a promising antitumor drug candidate.
Collapse
Affiliation(s)
- Hong Wang
- Department of Chemistry, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Jinhong Zheng
- Department of Chemistry, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Weijie Xu
- Department of Chemistry, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Cheng Chen
- Department of Chemistry, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Duncan Wei
- Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Wenxiu Ni
- Department of Chemistry, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Ying Pan
- Department of Chemistry, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
37
|
Huang X, Huang R, Li L, Gou S, Wang H. Synthesis and biological evaluation of novel chalcone derivatives as a new class of microtubule destabilizing agents. Eur J Med Chem 2017; 132:11-25. [DOI: 10.1016/j.ejmech.2017.03.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/14/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022]
|
38
|
Xu W, Pan Y, Wang H, Li H, Peng Q, Wei D, Chen C, Zheng J. Synthesis and Evaluation of New Pyrazoline Derivatives as Potential Anticancer Agents in HepG-2 Cell Line. Molecules 2017; 22:molecules22030467. [PMID: 28300751 PMCID: PMC6155299 DOI: 10.3390/molecules22030467] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/05/2023] Open
Abstract
Cancer is a major public health concern worldwide. Adverse effects of cancer treatments still compromise patients' quality of life. To identify new potential anticancer agents, a series of novel pyrazoline derivatives were synthesized and evaluated for cytotoxic effects on HepG-2 (human liver hepatocellular carcinoma cell line) and primary hepatocytes. Compound structures were confirmed by ¹H-NMR, mass spectrometry, and infrared imaging. An in vitro assay demonstrated that several compounds exerted cytotoxicity in the micromolar range. Benzo[b]thiophen-2-yl-[5-(4-hydroxy-3,5-dimethoxy-phenyl)-3-(2-hydroxy-phenyl)-4,5-dihydo-pyrazol-1-yl]-methanone (b17) was the most effective anticancer agent against HepG-2 cells owing to its notable inhibitory effect on HepG-2 with an IC50 value of 3.57 µM when compared with cisplatin (IC50 = 8.45 µM) and low cytotoxicity against primary hepatocytes. Cell cycle analysis and apoptosis/necrosis evaluation using this compound revealed that b17 notably arrested HepG-2 cells in the G₂/M phase and induced HepG-2 cells apoptosis. Our findings indicate that compound b17 may be a promising anticancer drug candidate.
Collapse
Affiliation(s)
- Weijie Xu
- Department of Chemistry, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Ying Pan
- Department of Chemistry, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Hong Wang
- Department of Chemistry, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Haiyan Li
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Qing Peng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, Guangdong, China.
| | - Duncan Wei
- Department of Chemistry, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Cheng Chen
- Department of Chemistry, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Jinhong Zheng
- Department of Chemistry, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
39
|
Wang YT, Cai XC, Shi TQ, Zhang YL, Wang ZC, Liu CH, Zhu HL. Synthesis, molecular docking and biological evaluation of 1-phenylsulphonyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as novel potential tubulin assembling inhibitors. Chem Biol Drug Des 2017; 90:112-118. [PMID: 28032450 DOI: 10.1111/cbdd.12932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023]
Abstract
A series of new 1-phenylsulphonyl-2-(1-methylindol-3-yl)-benzimidazole derivatives were designed, synthesized and evaluated as potential inhibitors of tubulin polymerization and anthropic cancer cell lines. Among them, compound 33 displayed the most potent tubulin polymerization inhibitory activity in vitro (IC50 = 1.41 μM) and strong antiproliferative activities against A549, Hela, HepG2 and MCF-7 cell lines in vitro with GI50 value of 1.6, 2.7, 2.9 and 4.3 μM, respectively, comparable with the positive control colchicine (GI50 value of 4.1, 7.2, 9.5 and 14.5 μM, respectively) and CA-4 (GI50 value of 2.2, 4.3, 6.4 and 11.4 μM, respectively). Simultaneously, we evaluated that compound 33 could effectively induce apoptosis of A549 associated with G2/M phase cell cycle arrest. Immunofluorescence microscopy also clearly indicated compound 33 a potent antimicrotubule agent. Docking simulation showed that compound 33 could bind tightly with the colchicine-binding site and act as a tubulin inhibitor. Three-dimensional-QSAR model was also built to provide more pharmacophore understanding that could be used to design new agents with more potent tubulin assembling inhibitory activity in the future.
Collapse
Affiliation(s)
- Yan-Ting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xun-Chao Cai
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Tian-Qi Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ya-Liang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
40
|
Li YH, Zhang B, Yang HK, Li Q, Diao PC, You WW, Zhao PL. Design, synthesis, and biological evaluation of novel alkylsulfanyl-1,2,4-triazoles as cis-restricted combretastatin A-4 analogues. Eur J Med Chem 2016; 125:1098-1106. [PMID: 27810596 DOI: 10.1016/j.ejmech.2016.10.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/25/2016] [Accepted: 10/21/2016] [Indexed: 01/29/2023]
Abstract
Thirty-two novel 3-alkylsulfanyl-1,2,4-triazole derivatives, designed as cis-restricted combretastatin A-4 analogues, were synthesized and evaluated for their antiproliferative activities. The results indicated that analogue 20 showed more potent antiproliferative activities against PC-3 cell lines than positive control CA-4. Particularly, the most promising compound 25 displayed 5-fold improvement compared to CA-4 in inhibiting HCT116 cell proliferation with IC50 values of 1.15 μM. Further flow-activated cell sorting analysis revealed that compound 20 displayed a significant effect on G2/M cell-cycle arrest in a dose-dependent manner in PC-3 cells. From this study, analogues 20 and 25 were the most potent anti-cancer agents in this structural class, and were considered lead compounds for further development as anti-cancer drugs.
Collapse
Affiliation(s)
- Yan-Hong Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Hai-Kui Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Qiu Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Peng-Cheng Diao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
41
|
Korablina DD, Vorozhtsov NI, Sviridova LA, Kalenikova EI, Medvedev OS. Pharmacological Activity of 4,5-Dihydropyrazole Derivatives (Review). Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1438-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Design, Synthesis and Antitumor Activity of Novel link-bridge and B-Ring Modified Combretastatin A-4 (CA-4) Analogues as Potent Antitubulin Agents. Sci Rep 2016; 6:25387. [PMID: 27138035 PMCID: PMC4853715 DOI: 10.1038/srep25387] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022] Open
Abstract
A series of 12 novel acylhydrazone, chalcone and amide–bridged analogues of combretastatin A-4 were designed and synthesized toward tubulin. All these compounds were determined by elemental analysis, 1H NMR, and MS. Among them, compound 7 with acylhydrazone-bridge, bearing a benzyl at the indole-N position, was identified as a potent antiproliferative agent against a panel of cancer cell lines with IC50 values ranging from 0.08 to 35.6 μM. In contrast, its cytotoxic effects on three normal human cells were minimal. Cellular studies have revealed that the induction of apoptosis by compound 7 was associated with a collapse of mitochondrial membrane potential, accumulation of reactive oxygen species, alterations in the expression of some cell cycle-related proteins (Cyclin B1, Cdc25c, Cdc2, P21) and some apoptosis-related proteins (Bax, PARP, Bcl-2, Caspase3). The docking mode showed the binding posture of CA-4 and compound 7 are similar in the colchicine-binding pocket of tubulin, as confirmed by colchicine-tubulin competitive binding assay, tubulin polymerization inhibitory activity, extracellular protein expression determination assay and confocal immunofluorescence microscopy. In vivo study, compound 7 effectively inhibited A549 xenograft tumor growth without causing significant loss of body weight suggesting that compound 7 is a promising new antimitotic agent with clinical potential.
Collapse
|
43
|
Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. Eur J Med Chem 2016; 112:48-59. [DOI: 10.1016/j.ejmech.2016.01.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/18/2022]
|
44
|
Ahmad P, Woo H, Jun KY, Kadi AA, Abdel-Aziz HA, Kwon Y, Rahman AFMM. Design, synthesis, topoisomerase I & II inhibitory activity, antiproliferative activity, and structure-activity relationship study of pyrazoline derivatives: An ATP-competitive human topoisomerase IIα catalytic inhibitor. Bioorg Med Chem 2016; 24:1898-908. [PMID: 26988802 DOI: 10.1016/j.bmc.2016.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
A series of pyrazoline derivatives (5) were synthesized in 92-96% yields from chalcones (3) and hydrazides (4). Subsequently, topo-I and IIα-mediated relaxation and antiproliferative activity assays were evaluated for 5. Among the tested compounds, 5h had a very strong topo-I activity of 97% (Camptothecin, 74%) at concentration of 100 μM. Nevertheless, all the compounds 5a-5i showed significant topo II inhibitory activity in the range of 90-94% (Etoposide, 96%) at the same concentration. Cytotoxic potential of these compounds was tested in a panel of three human tumor cell lines, HCT15, BT474 and T47D. All the compounds showed strong activity against HCT15 cell line with IC50 at the range of 1.9-10.4 μM (Adriamycin, 23.0; Etoposide, 6.9; and Camptothecin, 7.1 μM). Moreover, compounds 5c, 5f and 5i were observed to have strong antiproliferative activity against BT474 cell lines. Since, compound 5d showed antiproliferative activity at a very low IC50 thus 5d was then selected to study on their mode of action with diverse methods of ATP competition assay, ATPase assay and DNA-topo IIα cleavable complex assay and the results revealed that it functioned as a ATP-competitive human topoisomerase IIα catalytic inhibitor. Further evaluation of endogenous topo-mediated DNA relaxation in cells has been conducted to find that, 5d inhibited endogenous topo-mediated pBR322 plasmid relaxation is more efficient (78.0 ± 4.7% at 50 μM) than Etoposide (36.0 ± 1.7% at 50 μM).
Collapse
Affiliation(s)
- Pervez Ahmad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hyunjung Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kyu-Yeon Jun
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
45
|
Ma ZL, Yan XJ, Zhao L, Zhou JJ, Pang W, Kai ZP, Wu FH. Combretastatin A-4 and Derivatives: Potential Fungicides Targeting Fungal Tubulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:746-751. [PMID: 26711170 DOI: 10.1021/acs.jafc.5b05119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Combretastatin A-4, first isolated from the African willow tree Combretum caffrum, is a tubulin polymerization inhibitor in medicine. It was first postulated as a potential fungicide targeting fungal tubulin for plant disease control in this study. Combretastatin A-4 and its derivatives were synthesized and tested against Rhizoctonia solani and Pyricularia oryzae. Several compounds have EC50 values similar to or better than that of isoprothiolane, which is widely used for rice disease control. Structure-activity relationship study indicated the the cis configuration and hydroxyl group in combretastatin A-4 are crucial to the antifungal effect. Molecular modeling indicated the binding sites of combretastatin A-4 and carbendazim on fungal tubulin are totally different. The bioactivity of combretastatin A-4 and its derivatives against carbendazim-resistant strains was demonstrated in this study. The results provide a new approach for fungicide discovery and fungicide resistance management.
Collapse
Affiliation(s)
- Zhong-lin Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology , Shanghai 201418, People's Republic of China
| | - Xiao-jing Yan
- Institute of Plant Protection, China Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
| | - Lei Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology , Shanghai 201418, People's Republic of China
| | - Jiu-jiu Zhou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology , Shanghai 201418, People's Republic of China
| | - Wan Pang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology , Shanghai 201418, People's Republic of China
| | - Zhen-peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology , Shanghai 201418, People's Republic of China
| | - Fan-hong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology , Shanghai 201418, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Progress , Shanghai 201203, People's Republic of China
| |
Collapse
|
46
|
Karabacak M, Altıntop MD, İbrahim Çiftçi H, Koga R, Otsuka M, Fujita M, Özdemir A. Synthesis and Evaluation of New Pyrazoline Derivatives as Potential Anticancer Agents. Molecules 2015; 20:19066-84. [PMID: 26492233 PMCID: PMC6332424 DOI: 10.3390/molecules201019066] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022] Open
Abstract
New pyrazoline derivatives were synthesized and evaluated for their cytotoxic effects on AsPC-1 human pancreatic adenocarcinoma, U87 and U251 human glioblastoma cell lines. 1-[((5-(4-Methylphenyl)-1,3,4-oxadiazol-2-yl)thio)acetyl]-3-(2-thienyl)-5-(4-chlorophenyl)-2-pyrazoline (11) was found to be the most effective anticancer agent against AsPC-1 and U251 cell lines, with IC50 values of 16.8 µM and 11.9 µM, respectively. Tumor selectivity of compound 11 was clearly seen between Jurkat human leukemic T-cell line and human peripheral blood mononuclear cells (PBMC). Due to its promising anticancer activity, compound 11 was chosen for apoptosis/necrosis evaluation and DNA-cleavage analysis in U251 cells. Compound 11-treated U251 cells exhibited apoptotic phenotype at low concentration (1.5 µM). DNA-cleaving efficiency of this ligand was more significant than cisplatin and was clearly enhanced by Fe(II)-H₂O₂-ascorbic acid systems. This result pointed out the relationship between the DNA cleavage and the cell death.
Collapse
Affiliation(s)
- Muhammed Karabacak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Halil İbrahim Çiftçi
- Department of Bioorganic Medicinal Chemistry, School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Ryoko Koga
- Department of Bioorganic Medicinal Chemistry, School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Masami Otsuka
- Department of Bioorganic Medicinal Chemistry, School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Mikako Fujita
- Research Institute for Drug Discovery, School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| |
Collapse
|