1
|
Danilov RD, Smirnova IE, Galimova ZI, Sokolova EV, Lukyanov AV, Kalitin KY, Mukha OY, Babkov DA, Kazakova OB, Spasov AA. A Novel Dipterocarpol Derivative That Targets Alpha-Glucosidase and NLRP3 Inflammasome Activity for Treatment of Diabetes Mellitus. Chem Biodivers 2024:e202401626. [PMID: 39269647 DOI: 10.1002/cbdv.202401626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Type 2 diabetes mellitus is a chronic metabolic disorder characterized by persistent hyperglycemia, chronic inflammation, impaired insulin secretion, and/or peripheral insulin resistance. Current α-glucosidase inhibitors approved for clinical use exhibit limited efficacy compared to other glucose-lowering agents. In this study, a series of mono- and bis-benzylidene derivatives were synthesized via aldol condensation of 3-oxo-dammarane triterpenoids with terephthalic aldehyde. The target mono- and bis-benzylidene derivatives, based on the dammarane triterpenoids hollongdione 1, (20S)-23,24-epoxy-25,26,27-trinordammar-3,24-dione 2, and 24(R,S)-20(S)-epoxy-25-hydroxy-dammar-3-one 3, were successfully synthesized. Several of these inhibitors demonstrated significantly greater efficacy than the reference drug acarbose. Notably, compound 4 inhibited S. cerevisiae α-glucosidase with an IC50 of 2.67 μM. Furthermore, the target compounds effectively inhibited NLRP3 inflammasome activation, reducing IL-1β production in LPS+ATP-stimulated murine peritoneal macrophages without detectable cytotoxicity. Compound 8, which exhibited dual activity, was further characterized as an inhibitor of NLRP3 activation in peripheral blood mononuclear cells, leading to the prevention of pyroptosis and IL-1β release. Additionally, compound 8 was shown to promote neuronal survival in LPS+ATP-treated rat hippocampal slices, highlighting its potential as a promising antidiabetic agent that targets both postprandial hyperglycemia and metaflammation.
Collapse
Affiliation(s)
- Roman D Danilov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39, Novorossiyskaya, Volgograd, 400087, Russian Federation
| | - Irina E Smirnova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| | - Zarema I Galimova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| | - Elena V Sokolova
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39, Novorossiyskaya, Volgograd, 400087, Russian Federation
| | - Andrey V Lukyanov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39, Novorossiyskaya, Volgograd, 400087, Russian Federation
| | - Konstantin Y Kalitin
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39, Novorossiyskaya, Volgograd, 400087, Russian Federation
| | - Olga Y Mukha
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39, Novorossiyskaya, Volgograd, 400087, Russian Federation
| | - Denis A Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39, Novorossiyskaya, Volgograd, 400087, Russian Federation
| | - Oxana B Kazakova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| | - Alexander A Spasov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39, Novorossiyskaya, Volgograd, 400087, Russian Federation
| |
Collapse
|
2
|
Zhou H, Wu Z, Zhang Y, Yu Z, Nie Z, Fan J, Zhu Z, Chen F, Wang T. In vitro anticancer study of novel curcumin derivatives via targeting PI3K/Akt/p53 signaling pathway. Mol Divers 2024:10.1007/s11030-024-10833-9. [PMID: 38951417 DOI: 10.1007/s11030-024-10833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 07/03/2024]
Abstract
Four new series of curcumin derivatives bearing NO-donating moiety were synthesized via etherification, nucleophilic substitution, and Knoevenagel condensation etc. The cytotoxicity activity of curcumin derivatives against five human tumor cell lines (A549, Hela, HepG2, MCF-7 and HT-29) and two normal cell lines (LO-2 and HK-2) has been studied. The results showed that compound 6a could inhibit the proliferation of MCF-7 cells remarkably and exhibit low toxicity to normal cells. Also, the underlying mechanism in vitro of compound 6a on MCF-7 was investigated. It has been found that compound 6a induced G2/M arrest and apoptosis of MCF-7 in a dose-dependent manner. Compound 6a-induced the fluorescence changes of ROS in MCF-7 cells confirmed the occurrence of apoptosis. Western Blot suggested that compound 6a decreased the expression of PI3K, as well as increased the expression of p53, cleaved caspase-9 and cleaved caspase-3. Furthermore, molecular docking revealed that compound 6a could bind well at active site of PI3K (3zim) with total score 9.59. Together, compound 6a, a potential PI3K inhibitor, may inhibit the survival of MCF-7 cells via interfering with PI3K/Akt/p53 pathway.
Collapse
Affiliation(s)
- Huixian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Zhiwen Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yannan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Zikai Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Zhengyang Nie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jinbiao Fan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Zuchang Zhu
- Technological R&D department, Lizhu Pharmaceutical Co., Ltd, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Fenglian Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China.
| | - Tao Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
3
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
4
|
Smirnova IE, Galimova ZI, Sapozhnikova TA, Khisamutdinova RY, Thi THN, Kazakova OB. New Dipterocarpol-Based Molecules with α-Glucosidase Inhibitory and Hypoglycemic Activity. Chembiochem 2024; 25:e202300716. [PMID: 37990648 DOI: 10.1002/cbic.202300716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Dammarane triterpenoids are affordable and bioactive natural metabolites with great structural potential, which makes them attractive sources for drug development. The aim of the study was to investigate the potency of new dipterocarpol derivatives for the treatment of diabetes. Two dammaranes (dipterocarpol and its 20(24)-diene derivative) were modified by a Claisen-Schmidt aldol condensation to afford C2(E)-arylidenes in good yields. The majority of the synthesized compounds exhibited an excellent-to-moderate inhibitory effect toward α-glucosidase (from S. saccharomyces), among them eight compounds showed IC50 values less than 10 μM. 3-Oxo-dammarane-2(E)-benzylidenes (holding p-hydroxy- 3 l and p-carbonyl- 3 m substituents) demonstrated the most potent α-glucosidase inhibition with IC50 0.753 and 0.204 μM, being 232- and 857-times more active than acarbose (IC50 174.90 μM), and a high level of NO inhibition in Raw 264.7 cells with IC50 of 1.75 and 4.57 μM, respectively. An in vivo testing of compound 3 m (in a dose of 20 mg/kg) on a model of streptozotocin-induced T1DM in rats showed a pronounced hypoglycemic activity, the ability to reduce effectively the processes of lipid peroxidation in liver tissue and decrease the excretion of glucose and pyruvic acid in the urine. Compound 3 m reduced the death of diabetic rats and preserved their motor activity.
Collapse
Affiliation(s)
- Irina E Smirnova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| | - Zarema I Galimova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| | - Tatyana A Sapozhnikova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| | | | - Thu Ha Nguyen Thi
- Institute of Chemistry, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Dist., Hanoi, Vietnam
| | - Oxana B Kazakova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| |
Collapse
|
5
|
Gan X, Xie J, Dong Z, Wu Y, Zeng X, Yang Z, Liu B, Zhu M, Wang B, Li W, Wang L, Zhang H, Wu J, Hu Y. Discovery of Pyroptosis-inducing Drugs and Antineoplastic Activity based on the ROS/ER Stress/Pyroptosis Axis. Curr Med Chem 2024; 31:4880-4897. [PMID: 38357947 DOI: 10.2174/0109298673281684240102072157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND Pyroptosis, a cell death process triggered by chemotherapy drugs, has emerged as a highly promising mechanism for combating tumors in recent years. As the lead of new drugs, natural products play an important role in the discovery of anticancer drugs. Compared to other natural products, the medicine food homologous natural products (MFHNP) exhibit a superior safety profile. Among a series of MFHNP molecular skeletons, this study found that only benzylideneacetophenone (1) could induce cancer cell pyroptosis. However, the anti-cancer activity of 1 remains to be improved. AIMS This study aimed to find a pyroptosis inducer with highly effective antitumor activity by modifying the chalcone structure. METHODS To examine the effect of the Michael receptor in compound 1 on the induction of pyroptosis, several analogs were synthesized by modifying the Michael acceptor. Subsequently, the anticancer activity was tested by MTT assay, and morphological indications of pyroptosis were observed in human lung carcinoma NCI-H460 and human ovarian cancer CP-70 cell lines. Furthermore, to improve the activity of the chalcone skeleton, the anticancer group 3,4,5- trimethoxyphenyl was incorporated into the phenyl ring. Subsequently, compounds 2-22 were designed, synthesized, and screened in human lung cancer cells (NCI-H460, H1975, and A549). Additionally, a quantitative structure-activity relationship (QSAR) model was established using the eXtreme Gradient Boosting (XGBoost) machine learning library to identify the pharmacophore. Furthermore, both in vitro and in vivo experiments were conducted to investigate the molecular mechanisms of pyroptosis induced by the active compound. RESULTS α, β-unsaturated ketone was the functional group of the chalcone skeleton and played a pivotal role in inducing cancer cell pyroptosis. QSAR models showed that the regression coefficients (R2) were 0.992 (A549 cells), 0.990 (NCI-H460 cells), and 0.998 (H1975 cells). Among these compounds, compound 7 was selected to be the active compound. Moreover, compound 7 was found to induce pyroptosis in lung cancer cells by upregulating the expression of CHOP by increasing the ROS level. Furthermore, it effectively suppressed the growth of lung cancer xenograft tumors. CONCLUSION Compound 7 exhibits antineoplastic activity by regulating the ROS/ER stress/pyroptosis axis and is a kind of promising pyroptosis inducer.
Collapse
Affiliation(s)
- Xin Gan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingwen Xie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhaojun Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuna Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoqing Zeng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhenzhen Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bo Liu
- The First affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Min Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bozhen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wulan Li
- The First affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ledan Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Huajie Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jianzhang Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yue Hu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
6
|
Grudzińska M, Stachnik B, Galanty A, Sołtys A, Podolak I. Progress in Antimelanoma Research of Natural Triterpenoids and Their Derivatives: Mechanisms of Action, Bioavailability Enhancement and Structure Modifications. Molecules 2023; 28:7763. [PMID: 38067491 PMCID: PMC10707933 DOI: 10.3390/molecules28237763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is one of the most dangerous forms of skin cancer, characterized by early metastasis and rapid development. In search for effective treatment options, much attention is given to triterpenoids of plant origin, which are considered promising drug candidates due to their well described anticancer properties and relatively low toxicity. This paper comprehensively summarizes the antimelanoma potential of natural triterpenoids, that are also used as scaffolds for the development of more effective derivatives. These include betulin, betulinic acid, ursolic acid, maslinic acid, oleanolic acid, celastrol and lupeol. Some lesser-known triterpenoids that deserve attention in this context are 22β-hydroxytingenone, cucurbitacins, geoditin A and ganoderic acids. Recently described mechanisms of action are presented, together with the results of preclinical in vitro and in vivo studies, as well as the use of drug delivery systems and pharmaceutical technologies to improve the bioavailability of triterpenoids. This paper also reviews the most promising structural modifications, based on structure-activity observations. In conclusion, triterpenoids of plant origin and some of their semi-synthetic derivatives exert significant cytotoxic, antiproliferative and chemopreventive effects that can be beneficial for melanoma treatment. Recent data indicate that their poor solubility in water, and thus low bioavailability, can be overcome by complexing with cyclodextrins, or the use of nanoparticles and ethosomes, thus making these compounds promising antimelanoma drug candidates for further development.
Collapse
Affiliation(s)
- Marta Grudzińska
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Łazarza 16, 31-530 Kraków, Poland
| | - Bogna Stachnik
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| | - Agnieszka Sołtys
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| |
Collapse
|
7
|
Liu Y, Li Y, Tian Y, Guo Y, Wei R, Huang X, Qian L, Liu S, Chen G, Che Z. Synthesis of novel 18 β-glycyrrhetinic acid sulfonate derivatives displaying significant anti-oomycete activity against Phytophthora capsici. Nat Prod Res 2023:1-9. [PMID: 37950734 DOI: 10.1080/14786419.2023.2280999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Using 18β-glycyrrhetinic acid (GA) as the lead compound, fourteen GA sulphonate derivatives (3a-n) were prepared by modifying its C-3 OH group, and their structures were well confirmed by 1H NMR, 13C NMR, HRMS and melting points. Moreover, we screened the anti-oomycete activity of these compounds against Phytophthora capsici by using the mycelial growth rate method. Among the fourteen GA sulphonate derivatives evaluated, four compounds 3f, 3j, 3k and 3l exhibited more potent anti-oomycete activity than that of the positive control zoxamide (EC50 = 25.17 mg/L), and had the median effective concentration (EC50) values of 23.04, 16.16, 22.55, and 13.93 mg/L, respectively. Especially compound 3l showed the best anti-oomycete activity against P. capsici with EC50 value of 13.93 mg/L. Overall, the introduction of sulfonyloxy groups at the C-3 position of GA has a significant impact on its anti-oomycete activity, and the corresponding derivative activity varies significantly with different substituents R.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yan Li
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yuee Tian
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yihao Guo
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Ruxue Wei
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Xiaobo Huang
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Le Qian
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Shengming Liu
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Genqiang Chen
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhiping Che
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
8
|
Yang G, Mi X, Wang Y, Li S, Yu L, Huang X, Tan S, Yu H. Fusion of Michael-acceptors enhances the anti-inflammatory activity of ginsenosides as potential modulators of the NLRP3 signaling pathway. Bioorg Chem 2023; 134:106467. [PMID: 36933337 DOI: 10.1016/j.bioorg.2023.106467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Ginsenosides are a promising group of secondary metabolites for developing anti-inflammatory agents. In this study, Michael acceptor was fused into the aglycone A-ring of protopanoxadiol (PPD)-type ginsenosides (MAAG), the main pharmacophore of ginseng, and its liver metabolites to produce novel derivatives and assess their anti-inflammatory activity in vitro. The structure-activity relationship of MAAG derivatives was assessed based on their NO-inhibition activities. Of these, a 4-nitrobenzylidene derivative of PPD (2a) was the most effective and dose-dependently inhibited the release of proinflammatory cytokines. Further studies indicated that 2a-induced downregulation on lipopolysaccharide (LPS)-induced iNOS protein expression and cytokine release may be related to its inhibitory effect on MAPK and NF-κB signaling pathways. Importantly, 2a almost completely inhibited LPS-induced production of mitochondrial reactive oxygen species (mtROS) and LPS-induced NLRP3 upregulation. This inhibition was higher than that by hydrocortisone sodium succinate, a glucocorticoid drug. Overall, the fusion of Michael acceptors into the aglycone of ginsenosides greatly enhanced the anti-inflammatory activities of the derivatives, and 2a alleviated inflammation considerably. These findings could be attributed to the inhibition of LPS-induced mtROS to block abnormal activation of the NLRP3 pathway.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
| | - Xiaoliang Mi
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Yunxiao Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Shuang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Xinru Huang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Shuai Tan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Hui Yu
- College of Food Engineering, Ludong University, Yantai 264025, China.
| |
Collapse
|
9
|
Kirishnamaline G, Magdaline JD, Chithambarathanu T. Structural elucidation, spectroscopic investigation, in silico docking, and in vitro cytotoxicity studies of chromone derivatives as potential anti-breast cancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
10
|
Furlan V, Bren U. Helichrysum italicum: From Extraction, Distillation, and Encapsulation Techniques to Beneficial Health Effects. Foods 2023; 12:802. [PMID: 36832877 PMCID: PMC9957194 DOI: 10.3390/foods12040802] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Helichrysum italicum (family Asteraceae), due to its various beneficial health effects, represents an important plant in the traditional medicine of Mediterranean countries. Currently, there is a renewed interest in this medicinal plant, especially in investigations involving the isolation and identification of its bioactive compounds from extracts and essential oils, as well as in experimental validation of their pharmacological activities. In this paper, we review the current knowledge on the beneficial health effects of Helichrysum italicum extracts, essential oils, and their major bioactive polyphenolic compounds, ranging from antioxidative, anti-inflammatory, and anticarcinogenic activities to their antiviral, antimicrobial, insecticidal, and antiparasitic effects. This review also provides an overview of the most promising extraction and distillation techniques for obtaining high-quality extracts and essential oils from Helichrysum italicum, as well as methods for determining their antioxidative, antimicrobial, anti-inflammatory, and anticarcinogenic activities. Finally, new ideas for in silico studies of molecular mechanisms of bioactive polyphenols from Helichrysum italicum, together with novel suggestions for their improved bioavailability through diverse encapsulation techniques, are introduced.
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
11
|
Eldeeb M, Sanad EF, Ragab A, Ammar YA, Mahmoud K, Ali MM, Hamdy NM. Anticancer Effects with Molecular Docking Confirmation of Newly Synthesized Isatin Sulfonamide Molecular Hybrid Derivatives against Hepatic Cancer Cell Lines. Biomedicines 2022; 10:722. [PMID: 35327524 PMCID: PMC8945686 DOI: 10.3390/biomedicines10030722] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
The current study investigated the cytotoxic effect of ten sulfonamide-derived isatins, following molecular hybridization, based on the association principles, on hepatocellular carcinoma (HCC) HepG2 and Huh7 cell lines, compared for safety using human normal retina pigmented epithelial (RPE-1) cells. The ten compounds showed variable in vitro cytotoxicity on HepG2 and Huh7 cells, using the MTT assay. Four compounds (4/10) were highly cytotoxic to both HepG2 and HuH7. However, only 3 of these 4 were of the highest safety margin on RPE-1 cells in vitro and in the in vivo acute (14-day) oral toxicity study. These later, superior three compounds' structures are 3-hydroxy-3-(2-oxo-2-(p-tolyl)ethyl)-5-(piperidin-1-ylsulfonyl)indolin-2-one (3a), N-(4-(2-(2-oxo-5-(piperidin-1-ylsulfonyl)indolin-3-ylidene)acetyl)phenyl)acetamide (4b), and N-(3-(2-(2-oxo-5-(piperidin-1-ylsulfonyl)indolin-3-ylidene)acetyl)phenyl)acetamide (4c). The half-maximal inhibitory concentration (IC50) of the tested compounds (3a, 4b, and 4c) on HepG2 cells were approximately 16.8, 44.7, and 39.7 μM, respectively. The 3a, 4b, and 4c compounds significantly decreased the angiogenic marker epithelial growth factor receptor (EGFR) level and that was further confirmed via molecular docking inside the EFGR active site (PDB: 1M17). The binding free energies ranged between -19.21 and -21.74 Kcal/mol compared to Erlotinib (-25.65 Kcal/mol). The most promising compounds, 3a, 4b, and 4c, showed variable anticancer potential on "hallmarks of cancer", significant cytotoxicity, and apoptotic anti-angiogenic and anti-invasive effects, manifested as suppression of Bcl-2, urokinase plasminogen activation, and heparanase expression in HepG2-treated cells' lysate, compared to non-treated HepG2 cells. In conclusion, compound "3a" is highly comparable to doxorubicin regarding cell cycle arrest at G2/M, the pre-G0 phases and early and late apoptosis induction and is comparable to Erlotinib regarding binding to EGFR active site. Therefore, the current study could suggest that compound "3a" is, hopefully, the most safe and active synthesized isatin sulfonamide derivative for HCC management.
Collapse
Affiliation(s)
- Mahmoud Eldeeb
- Department of Biochemistry, Biotechnology Research Institute, National Research Centre, 12622 Giza, Egypt; (M.E.); (M.M.A.)
| | - Eman F. Sanad
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt;
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (for Boys, Cairo Branch), Al-Azhar University, 11884 Cairo, Egypt; (A.R.); (Y.A.A.)
| | - Yousry A. Ammar
- Department of Chemistry, Faculty of Science (for Boys, Cairo Branch), Al-Azhar University, 11884 Cairo, Egypt; (A.R.); (Y.A.A.)
| | - Khaled Mahmoud
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 12622 Giza, Egypt;
| | - Mamdouh M. Ali
- Department of Biochemistry, Biotechnology Research Institute, National Research Centre, 12622 Giza, Egypt; (M.E.); (M.M.A.)
| | - Nadia M. Hamdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt;
| |
Collapse
|
12
|
Sroor FM, Mohamed MF, Abdullah GK, Mahrous KF, Zoheir KMA, Ibrahim SA, Elwahy AHM, Abdelhamid IA. Anticancer Activity of New Bis-(3-(Thiophen-2-yl)-1 H-Pyrazol-4-yl)Chalcones: Synthesis, in-Silico, and in-Vitro Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2046616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Farid M. Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Magda F. Mohamed
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
| | - Ghada Khaled Abdullah
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Sherif A. Ibrahim
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | |
Collapse
|
13
|
Riafrecha LE, Le Pors MS, Lavecchia MJ, Bua S, Supuran CT, Colinas PA. Vanillin enones as selective inhibitors of the cancer associated carbonic anhydrase isoforms IX and XII. The out of the active site pocket for the design of selective inhibitors? J Enzyme Inhib Med Chem 2021; 36:2118-2127. [PMID: 34607524 PMCID: PMC8510595 DOI: 10.1080/14756366.2021.1982933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New C-glycosides and α,β-unsaturated ketones incorporating the 4-hydroxy-3-methoxyphenyl (vanillin) moiety as inhibitors of carbonic anhydrase (CA, EC 4.2.1.1) isoforms have been investigated. The inhibition profile of these compounds is presented against four human CA (hCA) isozymes, comprising hCAs I and II (cytosolic, ubiquitous enzymes) and hCAs IX and XII (tumour associated isozymes). Docking analysis of the inhibitors within the active sites of these enzymes has been performed and is discussed, showing that the observed selectivity could be explained in terms of an alternative pocket out of the CA active site where some of these compounds may bind. Several derivatives were identified as selective inhibitors of the tumour-associated hCA IX and XII. Their discovery might be a step in the strategy for finding an effective non-sulfonamide CA inhibitor useful in therapy/diagnosis of hypoxic tumours or other pathologies in which CA isoforms are involved.
Collapse
Affiliation(s)
- Leonardo E Riafrecha
- CEDECOR (UNLP-CICBA), CONICET, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Macarena S Le Pors
- CEDECOR (UNLP-CICBA), CONICET, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín J Lavecchia
- CEQUINOR (CONICET-UNLP) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Silvia Bua
- Laboratorio di Chimica Bioinorganica, Universitá degli Studi di Firenze, Florence, Italy
| | - Claudiu T Supuran
- Laboratorio di Chimica Bioinorganica, Universitá degli Studi di Firenze, Florence, Italy.,NEUROFARBA Department, Section of Pharmaceutical Chemistry, Università degli Studi di Firenze, Florence, Italy
| | - Pedro A Colinas
- CEDECOR (UNLP-CICBA), CONICET, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
14
|
Heise N, Hoenke S, Simon V, Deigner HP, Al-Harrasi A, Csuk R. Type and position of linkage govern the cytotoxicity of oleanolic acid rhodamine B hybrids. Steroids 2021; 172:108876. [PMID: 34129861 DOI: 10.1016/j.steroids.2021.108876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
Oleanolic acid/rhodamine B hybrids exhibit different cytotoxicity depending on the way these two structural elements are linked. While a hybrid holding a piperazinyl spacer at C-28 proved to be cytotoxic in the nano-molar concentration range, hybrids with a direct linkage of the Rho B residue to C-3 of the triterpenoid skeleton are cytotoxic only in the low micro-molar concentration range without any selectivity. This once again underlines the importance of selecting the right spacer and the most appropriate position on the skeleton of the triterpene to achieve the most cytotoxic hybrids possible.
Collapse
Affiliation(s)
- Niels Heise
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany
| | - Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany
| | - Vivienne Simon
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany
| | - Hans-Peter Deigner
- Furtwangen University, Medical and Life Sciences Faculty, Jakob-Kienzle Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - Ahmed Al-Harrasi
- University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, P.O. Box 33, PC 616, Birkat Al-Mauz, Nizwa, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany.
| |
Collapse
|
15
|
Cai W, Li J, Chen C, Wu J, Li J, Xue X. Design, synthesis, and anticancer evaluation of novel andrographolide derivatives bearing an α,β-unsaturated ketone moiety. Bioorg Chem 2021; 112:104941. [PMID: 33940445 DOI: 10.1016/j.bioorg.2021.104941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
A series of 1,2-didehydro-3-ox-andrographolide derivatives based on two Michael acceptors were designed, synthesized and evaluated for their anticancer activity against two human cancer cell lines (HCT116 and MCF-7). All tested compounds exhibited significant growth inhibitory effect on HCT116 and moderate to good inhibitory effect on MCF-7 cell proliferation. Compound 10b displayed the best inhibitory activities against both HCT116 and MCF-7 cell lines, with IC50 values of 2.49 and 7.80 μM respectively. Preliminary anticancer mechanistic investigation was performed in terms of the cell cycle arrest and cell apoptosis assays of compound 10b against HCT116 using flow cytometry, and the results indicated that 10b blocked the proliferation of HCT116 cells by inducing cell apoptosis in a concentration-dependent manner and arresting cell cycle in G2/M phase.
Collapse
Affiliation(s)
- Wei Cai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jieyi Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Cheng Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiajia Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabin Li
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaowen Xue
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
16
|
Dettori MA, Pisano M, Rozzo C, Delogu G, Fabbri D. Synthesis of Hydroxylated Biphenyl Derivatives Bearing an α,β-Unsaturated Ketone as a Lead Structure for the Development of Drug Candidates against Malignant Melanoma. ChemMedChem 2021; 16:1022-1033. [PMID: 33274847 DOI: 10.1002/cmdc.202000709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/03/2020] [Indexed: 01/10/2023]
Abstract
A small collection of C2 -symmetric hydroxylated biphenyl derivatives featuring an α,β-unsaturated ketone as a lead structure was prepared, and the capacity of these compounds to act as antiproliferative agents against four human malignant melanoma cell lines was assayed. The prodrug approach was applied in order to improve the delivery of compounds into the cell by modulation of the phenolic hydroxy protecting group. The hydroxylated biphenyl structure bearing an α,β-unsaturated ketone and a phenolic-O-prenylated chain was found to facilitate the delivery of the molecule and interactions with biological targets. Four compounds showed antiproliferative activity resulting in IC50 values in the range of 1.2 to 2.8 μM.
Collapse
Affiliation(s)
- Maria Antonietta Dettori
- Consiglio Nazionale Ricerche, Istituto di Chimica Biomolecolare, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Marina Pisano
- Consiglio Nazionale Ricerche, Istituto di Ricerca Genetica e Biomedica, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Carla Rozzo
- Consiglio Nazionale Ricerche, Istituto di Ricerca Genetica e Biomedica, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Giovanna Delogu
- Consiglio Nazionale Ricerche, Istituto di Chimica Biomolecolare, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Davide Fabbri
- Consiglio Nazionale Ricerche, Istituto di Chimica Biomolecolare, Traversa La Crucca 3, 07100, Sassari, Italy
| |
Collapse
|
17
|
Boyko YD, Huck CJ, Ning S, Shved AS, Yang C, Chu T, Tonogai EJ, Hergenrother PJ, Sarlah D. Synthetic Studies on Selective, Proapoptotic Isomalabaricane Triterpenoids Aided by Computational Techniques. J Am Chem Soc 2021; 143:2138-2155. [DOI: 10.1021/jacs.0c12569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yaroslav D. Boyko
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Christopher J. Huck
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Shang Ning
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Alexander S. Shved
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Cheng Yang
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Tiffany Chu
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Emily J. Tonogai
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - David Sarlah
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Luchnikova NA, Grishko VV, Ivshina IB. Biotransformation of Oleanane and Ursane Triterpenic Acids. Molecules 2020; 25:E5526. [PMID: 33255782 PMCID: PMC7728323 DOI: 10.3390/molecules25235526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Oleanane and ursane pentacyclic triterpenoids are secondary metabolites of plants found in various climatic zones and regions. This group of compounds is highly attractive due to their diverse biological properties and possible use as intermediates in the synthesis of new pharmacologically promising substances. By now, their antiviral, anti-inflammatory, antimicrobial, antitumor, and other activities have been confirmed. In the last decade, methods of microbial synthesis of these compounds and their further biotransformation using microorganisms are gaining much popularity. The present review provides clear evidence that industrial microbiology can be a promising way to obtain valuable pharmacologically active compounds in environmentally friendly conditions without processing huge amounts of plant biomass and using hazardous and expensive chemicals. This review summarizes data on distribution, microbial synthesis, and biological activities of native oleanane and ursane triterpenoids. Much emphasis is put on the processes of microbial transformation of selected oleanane and ursane pentacyclic triterpenoids and on the bioactivity assessment of the obtained derivatives.
Collapse
Affiliation(s)
- Natalia A. Luchnikova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia;
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
| | - Victoria V. Grishko
- Institute of Technical Chemistry, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614013 Perm, Russia;
| | - Irina B. Ivshina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia;
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
| |
Collapse
|
19
|
|
20
|
Hou Q, Lin X, Lu X, Bai C, Wei H, Luo G, Xiang H. Discovery of novel steroidal-chalcone hybrids with potent and selective activity against triple-negative breast cancer. Bioorg Med Chem 2020; 28:115763. [PMID: 32992255 DOI: 10.1016/j.bmc.2020.115763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
A series of novel steroidal-chalcone derivates were designed and synthesized based on the molecular hybridization strategy and further evaluated for their growth inhibitory activity against three human cancer cell lines. The MTT results indicated that most compounds were apparently more sensitive to human breast cancer cells MDA-MB-231. Compounds 8 and 18 exerted the best cytotoxic activity against triple-negative MDA-MB-231 cells with the IC50 values of 0.42 μM and 0.52 μM respectively, which were 23-fold increase or more compared with 5-Fu. Further mechanism studies demonstrated that compound 8 could induce cells apoptosis through regulating Bcl-2/Bax proteins and activating caspase-3 signaling pathway. Moreover, compound 8 could upregulate the cellular ROS levels which accelerated the apoptosis of MDA-MB-231 cells. In addition, interestingly, cell cycle assay showed that compound 8 could arrest MDA-MB-231 cells at S phase but not commonly anticipated G2/M phase. These evidences fully confirmed that compound 8 could be a potential candidate that deserves further development as an antitumor agent against triple-negative breast cancer.
Collapse
Affiliation(s)
- Qiangqiang Hou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xin Lin
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiang Lu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chengfeng Bai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hanlin Wei
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Guoshun Luo
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Hua Xiang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
21
|
Xiang M, Song YL, Ji J, Zhou X, Liu LW, Wang PY, Wu ZB, Li Z, Yang S. Synthesis of novel 18β-glycyrrhetinic piperazine amides displaying significant in vitro and in vivo antibacterial activities against intractable plant bacterial diseases. PEST MANAGEMENT SCIENCE 2020; 76:2959-2971. [PMID: 32246577 DOI: 10.1002/ps.5841] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The limited amount of agrochemicals targeting plant bacterial diseases has motivated us to study innovative antibacterial surrogates with fresh modes of action. Notably, fabrication of violent apoptosis inducers to control the reproduction of pathogenic bacteria should be a feasible way to control plant bacterial diseases. To achieve this aim, we constructed a series of novel 18β-glycyrrhetinic piperazine amides based on the natural bioactive ingredient 18β-glycyrrhetinic acid to evaluate the in vitro and in vivo antibacterial activity and induced apoptosis behaviors on tested pathogens. RESULTS Screening results suggested that these designed compounds were extremely bioactive against two notorious pathogens, Xanthomonas oryzae pv. oryzae and X. axonopodis pv. citri. This conclusion was highlighted by the biological effects of compounds A3 and B1 , affording the related EC50 values of 2.28 and 0.93 μg mL-1 . In vivo trials confirmed the prospective application for managing rice bacterial blight disease with control efficiency within 50.57-53.70% at 200 μg mL-1 . In particular, target compounds could induce the generation of excessive reactive oxygen species (ROS) in tested pathogens, subsequently leading to a strong apoptotic effect at a very low drug concentration (≤ 10 μg mL-1 ). This finding was consistent with the observed ROS-enhanced fluorescent images and morphological changes of pathogens from scanning electron microscopy patterns. CONCLUSION Given these features, we anticipate that these novel piperazine-tailored 18β-glycyrrhetinic hybrids can provide an perceptible insight for fighting bacterial infections by activation of the apoptosis mechanism. Novel 18β-glycyrrhetinic piperazine amides were reported to have excellent antibacterial efficacy toward phytopathogens Xanthomonas oryzae pv. oryzae and X. axonopodis pv. citri. A possible apoptosis mechanism was proposed from the remarkable apoptotic behaviors triggered by target compounds. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meng Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ying-Lian Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jin Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhi-Bing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhong Li
- College of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- College of Pharmacy, East China University of Science & Technology, Shanghai, China
| |
Collapse
|
22
|
Synthesis and antitumor effects of novel 18β-glycyrrhetinic acid derivatives featuring an exocyclic α,β-unsaturated carbonyl moiety in ring A. Bioorg Chem 2020; 103:104187. [PMID: 32890994 DOI: 10.1016/j.bioorg.2020.104187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
A series of novel 18β-glycyrrhetinic acid (GA) derivatives featuring an exocyclic α,β-unsaturated carbonyl moiety in ring A were synthesized and evaluated for their antitumor activities. Compounds 5c and 5l showed stronger cytotoxicity than other compounds and reported GA analogue CDODA-Me (methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate). 5c and 5l induced apoptosis in cancer cells accompanying with c-Flip reduction and Noxa induction, associated with decreased HDAC3 expression and increased acetylation of H3. 5l displayed better stability properties than 5c and CDODA-Me in microsomes and plasma, 5l also showed favorable pharmacokinetic profiles and inhibited tumor growth in mice. Compound 5l represents a new type of GA derivatives with improved antitumor activity.
Collapse
|
23
|
Khusnutdinova EF, Petrova AV, Lobov A, Kukovinets OS, Baev DS, Kazakova OB. Synthesis of C17-[5-methyl-1,3]-oxazoles by N-propargylation of triterpenic acids and evaluation of their cytotoxic activity. Nat Prod Res 2020; 35:3850-3858. [DOI: 10.1080/14786419.2020.1744139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - A. V. Petrova
- Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | - A.N. Lobov
- Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | | | - D. S. Baev
- N.N.Vorozhtzov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russian Federation
| | - O. B. Kazakova
- Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| |
Collapse
|
24
|
Ma L, Wang X, Li W, Miao D, Li Y, Lu J, Zhao Y. Synthesis and anti-cancer activity studies of dammarane-type triterpenoid derivatives. Eur J Med Chem 2020; 187:111964. [PMID: 31862444 DOI: 10.1016/j.ejmech.2019.111964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023]
Abstract
Two series of novel derivatives of AD-2, an active ginsenoside derived from ginseng were designed and synthesized. Five human cancer cell lines (MGC-803, SGC-7901, A549, MCF-7, PC-3 cells) and one normal ovarian cell IOSE144 were employed to evaluate the anti-proliferative activity. Most of derivatives possessed obvious enhanced activity compared with AD-2. Among them, compound 4c displayed the most excellent activity in all tested cancer cell lines, especially A549 cells with an IC50 value of 1.07 ± 0.05 μM. The underlying mechanism study suggested that 4c induced S-phase arrest and apoptosis in A549 cells. Increasing the level of ROS and inducing collapse of MMP in cells treated with 4c were also proved. Moreover, Western blot analysis showed that the expression level of p53 and p21 were obviously increased. 4c could remarkably up-regulate the expression of cyt c in cytosol, the ratio of Bax to Bcl-2 and activate caspase-3/9/PARP. Besides, the expression level of MDM2 was remarkably decreased. The results indicated that 4c caused apoptosis through the mitochondrial pathway, which ROS generation was probably involved in, and had the potent to serve as anti-proliferative agent.
Collapse
Affiliation(s)
- Lu Ma
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xude Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dongyu Miao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jincai Lu
- Department of Medicinal Plant, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Structure-based Drug Design &; Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
25
|
Alho DPS, Salvador JAR, Cascante M, Marin S. Synthesis and Antiproliferative Activity of Novel A-Ring Cleaved Glycyrrhetinic Acid Derivatives. Molecules 2019; 24:E2938. [PMID: 31416117 PMCID: PMC6721064 DOI: 10.3390/molecules24162938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
A series of new glycyrrhetinic acid derivatives was synthesized via the opening of its ring A along with the coupling of an amino acid. The antiproliferative activity of the derivatives was evaluated against a panel of nine human cancer cell lines. Compound 17 was the most active compound, with an IC50 of 6.1 µM on Jurkat cells, which is 17-fold more potent than that of glycyrrhetinic acid, and was up to 10 times more selective toward that cancer cell line. Further biological investigation in Jurkat cells showed that the antiproliferative activity of compound 17 was due to cell cycle arrest at the S phase and induction of apoptosis.
Collapse
Affiliation(s)
- Daniela P S Alho
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, 3000-504 Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, 3000-504 Coimbra, Portugal.
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
26
|
Loesche A, Köwitsch A, Lucas SD, Al-Halabi Z, Sippl W, Al-Harrasi A, Csuk R. Ursolic and oleanolic acid derivatives with cholinesterase inhibiting potential. Bioorg Chem 2019; 85:23-32. [PMID: 30599410 DOI: 10.1016/j.bioorg.2018.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 02/02/2023]
Abstract
Triterpenoids are in the focus of scientific interest, and they were evaluated for many pharmacological applications among them their ability to act as inhibitors of cholinesterases. These inhibitors are still of interest as drugs that improve the life quality of patients suffering from age-related dementia illnesses especially of Alzheimer's disease. Herein, we prepared several derivatives of ursolic and oleanolic acid and screened them in Ellman's assays for their ability to inhibit acetylcholinesterase and/or butyrylcholinesterase, and for each of the active compounds the type of inhibition was determined. As a result, several compounds were shown as good inhibitors for acetylcholinesterase and butyrylcholinesterase even in a micromolar range. An ursolic acid derived hydroxyl-propinyl derivative 10 was a competitive inhibitor for butyrylcholinesterase with an inhibition constant of Ki = 4.29 μM, and therefore being twice as active as gold standard galantamine hydrobromide. The best inhibitor for acetylcholinesterase, however, was 2-methyl-3-oxo-methyl-ursoloate (18), acting as a mixed-type inhibitor showing Ki = 1.72 µM and Ki' = 1.28 μM, respectively.
Collapse
Affiliation(s)
- Anne Loesche
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Alexander Köwitsch
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Susana D Lucas
- Universidade de Lisboa, Faculdade de Farmácio, Instituto de Investigacao do Medicamento (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Zayan Al-Halabi
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Wolfgang Sippl
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, PO Box 33, Birkat Al-Mauz, Nizwa, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
27
|
Synthesis and Antiproliferative Activity of Novel Heterocyclic Glycyrrhetinic Acid Derivatives. Molecules 2019; 24:molecules24040766. [PMID: 30791593 PMCID: PMC6412232 DOI: 10.3390/molecules24040766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 01/18/2023] Open
Abstract
A new series of glycyrrhetinic acid derivatives has been synthesized via the introduction of different heterocyclic rings conjugated with an α,β-unsaturated ketone in its ring A. These new compounds were screened for their antiproliferative activity in a panel of nine human cancer cell lines. Compound 10 was the most active derivative, with an IC50 of 1.1 µM on Jurkat cells, which is 96-fold more potent than that of glycyrrhetinic acid, and was 4-fold more selective toward that cancer cell line. Further biological studies performed in Jurkat cells showed that compound 10 is a potent inducer of apoptosis that activates both the intrinsic and extrinsic pathways.
Collapse
|
28
|
Cañellas S, Montgomery J, Pericàs MÀ. Nickel-Catalyzed Reductive [2+2] Cycloaddition of Alkynes. J Am Chem Soc 2018; 140:17349-17355. [PMID: 30517785 PMCID: PMC6470007 DOI: 10.1021/jacs.8b09677] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nickel-catalyzed synthesis of tetrasubstituted cyclobutenes from alkynes is reported. This transformation is uniquely promoted by the use of a primary aminophosphine, an unusual ligand in nickel catalysis. Mechanistic insights for this new transformation are provided, and postreaction modifications of the cyclobutene products to stereodefined cyclic and acyclic compounds are reported, including the synthesis of epi-truxillic acid.
Collapse
Affiliation(s)
- Santiago Cañellas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avda. Països Catalans 16, E-43007, Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - John Montgomery
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48019-1055, United States
| | - Miquel À. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avda. Països Catalans 16, E-43007, Tarragona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
29
|
Zhu M, Wang J, Xie J, Chen L, Wei X, Jiang X, Bao M, Qiu Y, Chen Q, Li W, Jiang C, Zhou X, Jiang L, Qiu P, Wu J. Design, synthesis, and evaluation of chalcone analogues incorporate α,β-Unsaturated ketone functionality as anti-lung cancer agents via evoking ROS to induce pyroptosis. Eur J Med Chem 2018; 157:1395-1405. [PMID: 30196062 DOI: 10.1016/j.ejmech.2018.08.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/22/2022]
Abstract
Chalcone, a natural structure, demonstrates many pharmacological activities including anticancer, and one promising mechanism is to modulate the generation of ROS. It has been known that pyroptosis is associated with anticancer effects, whereas there is fewer researches about ROS-mediated pyroptosis triggered by chemotherapy drugs. Moreover, incorporation of a α,β-unsaturated ketone unit into chalcone may be an effective strategy for development of chemotherapy drugs. Hence, a number of chalcone analogues bearing a α,β-unsaturated ketone were synthesized from chalcone analogues 1 with modest anticancer activities as the lead compound. Structure-activity relationship (SAR) studies confirmed the function of α,β-unsaturated ketone to improve anticancer activity. Notably, compound 8, bearing a α,β-unsaturated ketone, is the most potent inhibitor of cancer, with IC50 values on NCI-H460, A549 and H1975 cells of 2.3 ± 0.3, 3.2 ± 0.0 and 5.7 ± 1.4 μM, respectively. Besides, 8 showed antiproliferative ability against NCI-H460 cells in a time- and concentration-dependent manner through modulating ROS to induce caspase-3-mediated pyroptosis, and displayed a better safety profile in vivo. Overall, these results demonstrated that compound 8 is a candidate agent and a potential lead compound for development of chemotherapy drugs, and can be used as a probe to further examine the mechanism of ROS-dependent pyroptosis.
Collapse
Affiliation(s)
- Min Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiabing Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Jingwen Xie
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liping Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoyan Wei
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xing Jiang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Miao Bao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanyi Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qian Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wulan Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; College of Information Science and Computer Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chengxi Jiang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoou Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Peihong Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
30
|
Huang Z, Wu J, Zou Y, Yuan H, Zhang Y, Fei Y, Bhardwaj A, Kaur J, Knaus EE, Zhang Y. Glutathione S-Transferase π-Activatable O2-(Sulfonylethyl Derived) Diazeniumdiolates Potently Suppress Melanoma in Vitro and in Vivo. J Med Chem 2018; 61:1833-1844. [DOI: 10.1021/acs.jmedchem.7b01178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Haoliang Yuan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yinqiu Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Fei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Atul Bhardwaj
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Jatinder Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Edward E. Knaus
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
31
|
Salvador JA, Leal AS, Valdeira AS, Gonçalves BM, Alho DP, Figueiredo SA, Silvestre SM, Mendes VI. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur J Med Chem 2017; 142:95-130. [DOI: 10.1016/j.ejmech.2017.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
|
32
|
Zhang S, Li D, Song Z, Zang C, Zhang L, Song X, Li S. "Carbon Assimilation" Inspired Design and Divergent Synthesis of Drimane Meroterpenoid Mimics as Novel Fungicidal Leads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9013-9021. [PMID: 28949528 DOI: 10.1021/acs.jafc.7b03126] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With structural diversity and versatile biological properties, drimane meroterpenoids have drawn remarkable attention in drug development. The stagnant progress made in the structure optimization and SAR study of this kind of natural product for agrochemicals was mainly a result of inefficient construction. Compared with the reported challenging coupling reaction ("1 + 1" tactic), "carbon assimilation" was conceived and used for the rapid construction of drimanyl meroterpenoid mimics, in which the newly formed covalent bond was directly from the old one of the drimanyl subunit ("2 + 0" tactic), which features atom economy, step economy, and facile preparation. The accompanying introduction of versatile heterocycles and application of easily available feedstocks are beneficial for novel green agrochemical discovery, in view of economic efficiency and improvement of physicochemical properities. Heterocyclic mimics 3a and 3c are presented as potent fungicidal leads with novel skeletons against Botrytis cinerea, >25-fold and >40-fold more promising than the commercial fungicide carbendazim, respectively. Our design was also rationalized by the 6-step synthesis and antifungal assay of the original model of natural meroterpenoids. This tactic can also be fostered or transferred directly to the design of novel natural product mimics for medicinal chemistry or other related biological exploration.
Collapse
Affiliation(s)
- Shasha Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University , Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Dangdang Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University , Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Zehua Song
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University , Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Chuanli Zang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University , Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Lu Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University , Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Xiushi Song
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University , Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Shengkun Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University , Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Guiyang 550025, People's Republic of China
| |
Collapse
|
33
|
Borkova L, Adamek R, Kalina P, Drašar P, Dzubak P, Gurska S, Rehulka J, Hajduch M, Urban M, Sarek J. Synthesis and Cytotoxic Activity of Triterpenoid Thiazoles Derived from Allobetulin, Methyl Betulonate, Methyl Oleanonate, and Oleanonic Acid. ChemMedChem 2017; 12:390-398. [PMID: 28084676 DOI: 10.1002/cmdc.201600626] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/12/2017] [Indexed: 12/16/2022]
Abstract
A total of 41 new triterpenoids were prepared from allobetulone, methyl betulonate, methyl oleanonate, and oleanonic acid to study their influence on cancer cells. Each 3-oxotriterpene was brominated at C2 and substituted with thiocyanate; subsequent cyclization with the appropriate ammonium salts gave N-substituted thiazoles. All compounds were tested for their in vitro cytotoxic activity on eight cancer cell lines and two non-cancer fibroblasts. 2-Bromoallobetulone (2 b) methyl 2-bromobetulonate (3 b), 2-bromooleanonic acid (5 b), and 2-thiocyanooleanonic acid (5 c) were best, with IC50 values less than 10 μm against CCRF-CEM cells (e.g., 3 b: IC50 =2.9 μm) as well as 2'-(diethylamino)olean-12(13)-eno[2,3-d]thiazole-28-oic acid (5 f, IC50 =9.7 μm) and 2'-(N-methylpiperazino)olean-12(13)-eno[2,3-d]thiazole-28-oic acid (5 k, IC50 =11.4 μm). Compound 5 c leads to the accumulation of cells in the G2 phase of the cell cycle and inhibits RNA and DNA synthesis significantly at 1×IC50 . The G2 /M cell-cycle arrest probably corresponds to the inhibition of DNA/RNA synthesis, similar to the mechanism of action of actinomycin D. Compound 5 c is new, active, and nontoxic; it is therefore the most promising compound in this series for future drug development. Methyl 2-bromobetulonate (3 b) and methyl 2-thiocyanometulonate (3 c) were found to inhibit nucleic acid synthesis only at 5×IC50 . We assume that in 3 b and 3 c (unlike in 5 c), DNA/RNA inhibition is a nonspecific event, and an unknown primary cytotoxic target is activated at 1×IC50 or lower concentration.
Collapse
Affiliation(s)
- Lucie Borkova
- Department of Organic Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Richard Adamek
- Department of Organic Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Petr Kalina
- Department of Chemistry of Natural Compounds, Faculty of Science, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Pavel Drašar
- Department of Chemistry of Natural Compounds, Faculty of Science, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Sona Gurska
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Jiri Rehulka
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Milan Urban
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Jan Sarek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00, Olomouc, Czech Republic
| |
Collapse
|
34
|
Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations. Eur J Med Chem 2016; 127:1-9. [PMID: 28033541 DOI: 10.1016/j.ejmech.2016.12.040] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 11/23/2022]
Abstract
Triterpenoic acids 1-6 exhibited very low or no cytotoxicity at all, but their corresponding 2,3-di-O-acetyl-piperazinyl amides 13-18 showed low EC50 values for several human tumor cell lines. Their cytotoxicity, however, was also high for the non-malignant mouse fibroblasts NIH 3T3. A significant improvement was achieved by preparing the rhodamine B derivatives 19-24. While rhodamine B is not cytotoxic (up to a concentration of 30μM - cut-off of the assay), the triterpenoid piperazine-spacered rhodamine B derivatives were cytotoxic in nano-molar concentration. Compound 24 (a diacetylated maslinic acid derivative) was most toxic for several human tumor cell lines but less toxic for mouse fibroblasts NIH 3T3. Staining and double-staining experiments revealed 24 to act as a mitocan.
Collapse
|
35
|
Alvarez-Dorta D, León EI, Kennedy AR, Martín A, Pérez-Martín I, Suárez E. Radical-Mediated C-H Functionalization: A Strategy for Access to Modified Cyclodextrins. J Org Chem 2016; 81:11766-11787. [PMID: 27806207 DOI: 10.1021/acs.joc.6b02241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple and efficient radical C-H functionalization to access modified cyclodextrins (CDs) has been developed. The well-defined conformation of glycosidic and aglyconic bonds in α-, β-, and γ-CDs favors the intramolecular 1,8-hydrogen atom transfer (HAT) promoted by the 6I-O-yl radical, which abstracts regioselectively the hydrogen at C5II of the contiguous pyranose. The C5II-radical evolves by a polar crossover mechanism to a stable 1,3,5-trioxocane ring between two adjacent glucoses or alternatively triggers the inversion of one α-d-glucose into a 5-C-acetoxy-β-l-idose unit possessing a 1C4 conformation. The 6I,IV- and 6I,III-diols of α- and β-CDs behave similarly to the monoalcohols, forming mostly compounds originating from two 1,8-HAT consecutive processes. In the case of 6I,II-diols the proximity of the two 6-O-yl radicals in adjacent sugar units allows the formation of unique lactone rings within the CD framework via a 1,8-HAT-β-scission tandem mechanism. X-ray diffraction carried out on the crystalline 1,4-bis(trioxocane)-α-CD derivative shows a severe distortion toward a narrower elliptical shape for the primary face.
Collapse
Affiliation(s)
- Dimitri Alvarez-Dorta
- Síntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiología del CSIC , Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - Elisa I León
- Síntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiología del CSIC , Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - Alan R Kennedy
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| | - Angeles Martín
- Síntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiología del CSIC , Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - Inés Pérez-Martín
- Síntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiología del CSIC , Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| | - Ernesto Suárez
- Síntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiología del CSIC , Carretera de La Esperanza 3, 38206, La Laguna, Tenerife, Spain
| |
Collapse
|
36
|
Ma T, Huang C, Meng X, Li X, Zhang Y, Ji S, Li J, Ye M, Liang H. A potential adjuvant chemotherapeutics, 18β-glycyrrhetinic acid, inhibits renal tubular epithelial cells apoptosis via enhancing BMP-7 epigenetically through targeting HDAC2. Sci Rep 2016; 6:25396. [PMID: 27145860 PMCID: PMC4857087 DOI: 10.1038/srep25396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/18/2016] [Indexed: 01/21/2023] Open
Abstract
Cisplatin, a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy by an effective adjuvant via epigenetic modification through targeting HDAC2. Molecular docking and SPR assay firstly reported that 18βGA, major metabolite of GA, could directly bind to HDAC2 and inhibit the activity of HDAC2. The effects and mechanisms of GA and 18βGA were assessed in CP-induced AKI in C57BL/6 mice, and in CP-treated HK-2 and mTEC cells lines. TUNEL and FCM results confirmed that GA and 18βGA could inhibit apoptosis of renal tubular epithelial cells induced by CP in vivo and in vitro. Western blot and immunofluorescence results demonstrated that the expression of BMP-7 was clearly induced by 18βGA in AKI models while siRNA BMP-7 could reduce the inhibitory effect of 18βGA on apoptosis. Results of current study indicated that 18βGA inhibited apoptosis of renal tubular epithelial cells via enhancing the level of BMP-7 epigenetically through targeting HDAC2, therefore protecting against CP-induced AKI. These available evidence, which led to an improved understanding of molecular recognition, suggested that 18βGA could serve as a potential clinical adjuvant in chemotherapy.
Collapse
Affiliation(s)
- Taotao Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.,School of pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Cheng Huang
- School of pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoming Meng
- School of pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaofeng Li
- School of pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yilong Zhang
- School of pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuai Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Jun Li
- School of pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hong Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
37
|
Synthesis of β-boswellic acid derivatives as cytotoxic and apoptotic agents. Bioorg Med Chem Lett 2016; 26:76-81. [DOI: 10.1016/j.bmcl.2015.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/23/2015] [Accepted: 11/09/2015] [Indexed: 12/26/2022]
|