1
|
Di Lorenzo D. Tau Protein and Tauopathies: Exploring Tau Protein-Protein and Microtubule Interactions, Cross-Interactions and Therapeutic Strategies. ChemMedChem 2024; 19:e202400180. [PMID: 39031682 DOI: 10.1002/cmdc.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Tau, a microtubule-associated protein (MAP), is essential to maintaining neuronal stability and function in the healthy brain. However, aberrant modifications and pathological aggregations of Tau are implicated in various neurodegenerative disorders, collectively known as tauopathies. The most common Tauopathy is Alzheimer's Disease (AD) counting nowadays more than 60 million patients worldwide. This comprehensive review delves into the multifaceted realm of Tau protein, puzzling out its intricate involvement in both physiological and pathological roles. Emphasis is put on Tau Protein-Protein Interactions (PPIs), depicting its interaction with tubulin, microtubules and its cross-interaction with other proteins such as Aβ1-42, α-synuclein, and the chaperone machinery. In the realm of therapeutic strategies, an overview of diverse possibilities is presented with their relative clinical progresses. The focus is mostly addressed to Tau protein aggregation inhibitors including recent small molecules, short peptides and peptidomimetics with specific focus on compounds that showed a double anti aggregative activity on both Tau protein and Aβ amyloid peptide. This review amalgamates current knowledge on Tau protein and evolving therapeutic strategies, providing a comprehensive resource for researchers seeking to deepen their understanding of the Tau protein and for scientists involved in the development of new peptide-based anti-aggregative Tau compounds.
Collapse
Affiliation(s)
- Davide Di Lorenzo
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany
| |
Collapse
|
2
|
Prabha S, Sajad M, Hasan GM, Islam A, Imtaiyaz Hassan M, Thakur SC. Recent advancement in understanding of Alzheimer's disease: Risk factors, subtypes, and drug targets and potential therapeutics. Ageing Res Rev 2024; 101:102476. [PMID: 39222668 DOI: 10.1016/j.arr.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a significant neocortical degenerative disorder characterized by the progressive loss of neurons and secondary alterations in white matter tracts. Understanding the risk factors and mechanisms underlying AD is crucial for developing effective treatments. The risk factors associated with AD encompass a wide range of variables, including gender differences, family history, and genetic predispositions. Additionally, environmental factors such as air pollution and lifestyle-related conditions like cardiovascular disease, gut pathogens, and liver pathology contribute substantially to the development and progression of AD and its subtypes. This review provides current update and deeper insights into the role of diverse risk factors, categorizing AD into its distinct subtypes and elucidating their specific pathophysiological mechanisms. Unlike previous studies that often focus on isolated aspects of AD, our review integrates these factors to offer a comprehensive understanding of the disease. Furthermore, the review explores a variety of drug targets linked to the neuropathology of different AD subtypes, highlighting the potential for targeted therapeutic interventions. We further discussed the novel therapeutic options and categorized them according to their targets. The roles of different drug targets were comprehensively studied, and the mechanism of action of their inhibitors was discussed in detail. By comprehensively covering the interplay of risk factors, subtype differentiation, and drug targets, this review provides a deeper understanding of AD and suggests directions for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Sajad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
3
|
Aggidis A, Devitt G, Zhang Y, Chatterjee S, Townsend D, Fullwood NJ, Ortega ER, Tarutani A, Hasegawa M, Cooper A, Williamson P, Mendoza-Oliva A, Diamond MI, Mudher A, Allsop D. A novel peptide-based tau aggregation inhibitor as a potential therapeutic for Alzheimer's disease and other tauopathies. Alzheimers Dement 2024. [PMID: 39360630 DOI: 10.1002/alz.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION As aggregation underpins Tau toxicity, aggregation inhibitor peptides may have disease-modifying potential. They are therefore currently being designed and target either the 306VQIVYK311 aggregation-promoting hotspot found in all Tau isoforms or the 275VQIINK280 aggregation-promoting hotspot found in 4R isoforms. However, for any Tau aggregation inhibitor to potentially be clinically relevant for other tauopathies, it should target both hotspots to suppress aggregation of Tau isoforms, be stable, cross the blood-brain barrier, and rescue aggregation-dependent Tau phenotypes in vivo. METHODS We developed a retro-inverso, stable D-amino peptide, RI-AG03 [Ac-rrrrrrrrGpkyk(ac)iqvGr-NH2], based on the 306VQIVYK311 hotspots which exhibit these disease-relevant attributes. RESULTS Unlike other aggregation inhibitors, RI-AG03 effectively suppresses aggregation of multiple Tau species containing both hotspots in vitro and in vivo, is non-toxic, and suppresses aggregation-dependent neurodegenerative and behavioral phenotypes. DISCUSSION RI-AG03 therefore meets many clinically relevant requirements for an anti-aggregation Tau therapeutic and should be explored further for its disease-modifying potential for Tauopathies. HIGHLIGHTS Our manuscript describes the development of a novel peptide inhibitor of Tau aggregation, a retro-inverso, stable D-amino peptide called RI-AG03 that displays many clinically relevant attributes. We show its efficacy in preventing Tau aggregation in both in vitro and in vivo experimental models while being non-toxic to cells. RI-AG03 also rescues a biosensor cell line that stably expresses Tau repeat domains with the P301S mutation fused to Cer/Clo and rescues aggregation-dependent phenotypes in vivo, suppressing neurodegeneration and extending lifespan. Collectively our data describe several properties and attributes of RI-AG03 that make it a promising disease-modifying candidate to explore for reducing pathogenic Tau aggregation in Tauopathies such as Alzheimer's disease. Given the real interest in reducing Tau aggregation and the potential clinical benefit of using such agents in clinical practice, RI-AG03 should be investigated further for the treatment of Tauopathies after validation in mammalian models. Tau aggregation inhibitors are the obvious first choice as Tau-based therapies as much of Tau-mediated toxicity is aggregation dependent. Indeed, there are many research efforts focusing on this therapeutic strategy with aggregation inhibitors being designed against one of the two aggregation-promoting hotspots of the Tau protein. To our knowledge, RI-AG03 is the only peptide aggregation inhibitor that inhibits aggregation of Tau by targeting both aggregation-promoting hotspot motifs simultaneously. As such, we believe that our study will have a significant impact on drug discovery efforts in this arena.
Collapse
Affiliation(s)
- Anthony Aggidis
- Department of Biological Sciences, University of Southampton, Southampton, UK
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster, UK
| | - George Devitt
- Department of Biological Sciences, University of Southampton, Southampton, UK
| | - Yongrui Zhang
- Department of Biological Sciences, University of Southampton, Southampton, UK
| | - Shreyasi Chatterjee
- Department of Biological Sciences, University of Southampton, Southampton, UK
- Department of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - David Townsend
- Department of Chemistry, University of Lancaster, Lancaster University, Lancaster, UK
| | - Nigel J Fullwood
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster, UK
| | - Eva Ruiz Ortega
- Department of Biological Sciences, University of Southampton, Southampton, UK
| | - Airi Tarutani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Amber Cooper
- Department of Biological Sciences, University of Southampton, Southampton, UK
| | - Philip Williamson
- Department of Biological Sciences, University of Southampton, Southampton, UK
| | - Ayde Mendoza-Oliva
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amritpal Mudher
- Department of Biological Sciences, University of Southampton, Southampton, UK
| | - David Allsop
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster, UK
| |
Collapse
|
4
|
Dangi A, Qureshi T, Chinnathambi S, Kiran Marelli U. Macrocyclic peptides derived from AcPHF6* and AcPHF6 to selectively modulate the Tau aggregation. Bioorg Chem 2024; 151:107625. [PMID: 39013241 DOI: 10.1016/j.bioorg.2024.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Ten macrocyclic peptides, each comprising 14 amino acids, were designed and synthesized based on the Tau aggregation model hexapeptides AcPHF6* and AcPHF6. The design took into account the aggregation tendencies of each residue in AcPHF6* and AcPHF6, their aggregation models, while employing peptide-based structural design principles including N-methylation to promote turns and to block hydrogen bond propagation and elongation of the aggregation chain. NMR analysis supported that all these peptides adopted an antiparallel β-sheet conformation. Self-aggregation studies characterized the aggregation properties of these peptides, identifying two peptides with the highest (P3) and lowest (P8) aggregation tendencies. In cross-aggregation studies with the parent peptides AcPHF6* and AcPHF6, P3 and P8 were found to promote and reduce aggregation, respectively. Furthermore, P3 and P8 demonstrated an enhancement and diminution effect on the aggregation of K18wt, indicating their capacity to modulate aggregation even at the macromolecular level. Thus, the two simple peptides, P3 and P8 selectively exhibit pro- or anti-aggregation effects on PHF peptides and Tau. This study, has thus developed structurally well-defined non-complex peptides, derived from AcPHF6* and AcPHF6, to modulate Tau aggregation as desired, offering applications in Tau model studies and the development of Tau aggregation inhibitors or promoters.
Collapse
Affiliation(s)
- Abha Dangi
- Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India
| | - Tazeen Qureshi
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India.
| | - Udaya Kiran Marelli
- Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India.
| |
Collapse
|
5
|
Cheng Z, Han T, Yao J, Wang K, Dong X, Yu F, Huang H, Han M, Liao Q, He S, Lyu W, Li Q. Targeting glycogen synthase kinase-3β for Alzheimer's disease: Recent advances and future Prospects. Eur J Med Chem 2024; 265:116065. [PMID: 38160617 DOI: 10.1016/j.ejmech.2023.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Senile plaques induced by β-amyloid (Aβ) abnormal aggregation and neurofibrillary tangles (NFT) caused by tau hyperphosphorylation are important pathological manifestations of Alzheimer's disease (AD). Glycogen synthase kinase-3 (GSK-3) is a conserved kinase; one member GSK-3β is highly expressed in the AD brain and involved in the formation of NFT. Hence, pharmacologically inhibiting GSK-3β activity and expression is a good approach to treat AD. As summarized in this article, multiple GSK-3β inhibitors has been comprehensively summarized over recent five years. However, only lithium carbonate and Tideglusib have been studied in clinical trials of AD. Besides ATP-competitive and non-ATP-competitive inhibitors, peptide inhibitors, allosteric inhibitors and other types of inhibitors have gradually attracted more interest. Moreover, considering the close relationship between GSK-3β and other targets involved in cholinergic hypothesis, Aβ aggregation hypothesis, tau hyperphosphorylation hypothesis, oxidative stress hypothesis, neuro-inflammation hypothesis, etc., diverse multifunctional molecules and multi-target directed ligands (MTDLs) have also been disclosed. We hope that these recent advances and critical perspectives will facilitate the discovery of safe and effective GSK-3β inhibitors for AD treatment.
Collapse
Affiliation(s)
- Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Tianyue Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Jingtong Yao
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Kaixuan Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Xue Dong
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Fan Yu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - He Huang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Menglin Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Qinghong Liao
- Shandong Kangqiao Biotechnology Co., Ltd, Qingdao, 266033, Shandong, People's Republic of China
| | - Siyu He
- Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China.
| |
Collapse
|
6
|
de Raffele D, Ilie IM. Unlocking novel therapies: cyclic peptide design for amyloidogenic targets through synergies of experiments, simulations, and machine learning. Chem Commun (Camb) 2024; 60:632-645. [PMID: 38131333 DOI: 10.1039/d3cc04630c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Existing therapies for neurodegenerative diseases like Parkinson's and Alzheimer's address only their symptoms and do not prevent disease onset. Common therapeutic agents, such as small molecules and antibodies struggle with insufficient selectivity, stability and bioavailability, leading to poor performance in clinical trials. Peptide-based therapeutics are emerging as promising candidates, with successful applications for cardiovascular diseases and cancers due to their high bioavailability, good efficacy and specificity. In particular, cyclic peptides have a long in vivo stability, while maintaining a robust antibody-like binding affinity. However, the de novo design of cyclic peptides is challenging due to the lack of long-lived druggable pockets of the target polypeptide, absence of exhaustive conformational distributions of the target and/or the binder, unknown binding site, methodological limitations, associated constraints (failed trials, time, money) and the vast combinatorial sequence space. Hence, efficient alignment and cooperation between disciplines, and synergies between experiments and simulations complemented by popular techniques like machine-learning can significantly speed up the therapeutic cyclic-peptide development for neurodegenerative diseases. We review the latest advancements in cyclic peptide design against amyloidogenic targets from a computational perspective in light of recent advancements and potential of machine learning to optimize the design process. We discuss the difficulties encountered when designing novel peptide-based inhibitors and we propose new strategies incorporating experiments, simulations and machine learning to design cyclic peptides to inhibit the toxic propagation of amyloidogenic polypeptides. Importantly, these strategies extend beyond the mere design of cyclic peptides and serve as template for the de novo generation of (bio)materials with programmable properties.
Collapse
Affiliation(s)
- Daria de Raffele
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Ioana M Ilie
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
7
|
Rajewski BH, Makwana KM, Angera IJ, Geremia DK, Zepeda AR, Hallinan GI, Vidal R, Ghetti B, Serrano AL, Del Valle JR. β-Bracelets: Macrocyclic Cross-β Epitope Mimics Based on a Tau Conformational Strain. J Am Chem Soc 2023; 145:23131-23142. [PMID: 37844142 PMCID: PMC10823581 DOI: 10.1021/jacs.3c06830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The aggregation of misfolded tau into neurotoxic fibrils is linked to the progression of Alzheimer's disease (AD) and related tauopathies. Disease-associated conformations of filamentous tau are characterized by hydrophobic interactions between side chains on unique and distant β-strand modules within each protomer. Here, we report the design and diversity-oriented synthesis of β-arch peptide macrocycles composed of the aggregation-prone PHF6 hexapeptide of tau and the cross-β module specific to the AD tau fold. Termed "β-bracelets", these proteomimetics assemble in a sequence- and macrocycle-dependent fashion, resulting in amyloid-like fibrils that feature in-register parallel β-sheet structure. Backbone N-amination of a selected β-bracelet affords soluble inhibitors of tau aggregation. We further demonstrate that the N-aminated macrocycles block the prion-like cellular seeding activity of recombinant tau as well as mature fibrils from AD patient extracts. These studies establish β-bracelets as a new class of cross-β epitope mimics and demonstrate their utility in the rational design of molecules targeting amyloid propagation and seeding.
Collapse
Affiliation(s)
- Benjamin H. Rajewski
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kamlesh M. Makwana
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Isaac J. Angera
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Danielle K. Geremia
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Anna R. Zepeda
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Grace I. Hallinan
- Department of Pathology & Laboratory Medicine and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, 46202, United States
| | - Ruben Vidal
- Department of Pathology & Laboratory Medicine and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, 46202, United States
| | - Bernardino Ghetti
- Department of Pathology & Laboratory Medicine and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, 46202, United States
| | - Arnaldo L. Serrano
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Juan R. Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Lee D, Choi J, Yang MJ, Park CJ, Seo J. Controlling the Chameleonic Behavior and Membrane Permeability of Cyclosporine Derivatives via Backbone and Side Chain Modifications. J Med Chem 2023; 66:13189-13204. [PMID: 37718494 DOI: 10.1021/acs.jmedchem.3c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Some macrocycles exhibit enhanced membrane permeability through conformational switching in different environmental polarities, a trait known as chameleonic behavior. In this study, we demonstrate specific backbone and side chain modifications that can control chameleonic behavior and passive membrane permeability using a cyclosporin O (CsO) scaffold. To quantify chameleonic behavior, we used a ratio of the population of the closed conformation obtained in polar solvent and nonpolar solvent for each CsO derivative. We found that β-hydroxylation at position 1 (1 and 3) can encode chameleonicity and improve permeability. However, the conformational stabilization induced by adding an additional transannular H-bond (2 and 5) leads to a much slower rate of membrane permeation. Our CsO scaffold provides a platform for the systematic study of the relationship among conformation, membrane permeability, solubility, and protein binding. This knowledge contributes to the discovery of potent beyond the rule of five (bRo5) macrocycles capable of targeting undruggable targets.
Collapse
Affiliation(s)
- Dongjae Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Min June Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
9
|
Eriksson C, Gunasekera S, Muhammad T, Zhang M, Laurén I, Mangsbo SM, Lord M, Göransson U. Epitopes Displayed in a Cyclic Peptide Scaffold Bind SARS-COV-2 Antibodies. Chembiochem 2023; 24:e202300103. [PMID: 37021633 DOI: 10.1002/cbic.202300103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/07/2023]
Abstract
The SARS-CoV-2 virus that causes COVID-19 is a global health issue. The spread of the virus has resulted in seven million deaths to date. The emergence of new viral strains highlights the importance of continuous surveillance of the SARS-CoV-2 virus by using timely and accurate diagnostic tools. Here, we used a stable cyclic peptide scaffolds to present antigenic sequences derived from the spike protein that are reactive to SARS-CoV-2 antibodies. Using peptide sequences from different domains of SARS-CoV-2 spike proteins, we grafted epitopes on the peptide scaffold sunflower trypsin inhibitor 1 (SFTI-1). These scaffold peptides were then used to develop an ELISA to detect SARS-CoV-2 antibodies in serum. We show that displaying epitopes on the scaffold improves reactivity overall. One of the scaffold peptides (S2_1146-1161_c) has reactivity equal to that of commercial assays, and shows diagnostic potential.
Collapse
Affiliation(s)
- Camilla Eriksson
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| | - Sunithi Gunasekera
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| | - Taj Muhammad
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| | - Mingshu Zhang
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| | - Ida Laurén
- Department of Pharmacy, Uppsala University Biomedical Centre, 75123, Uppsala, Sweden
| | - Sara M Mangsbo
- Department of Pharmacy, Uppsala University Biomedical Centre, 75123, Uppsala, Sweden
| | - Martin Lord
- Department of Pharmacy, Uppsala University Biomedical Centre, 75123, Uppsala, Sweden
| | - Ulf Göransson
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| |
Collapse
|
10
|
Qiao L, Shen Y, Li G, Lv G, Li C. Hypochlorous Acid-Activated UCNPs-LMB/VQIVYK Multifunctional Nanosystem for Alzheimer's Disease Treatment. J Funct Biomater 2023; 14:jfb14040207. [PMID: 37103297 PMCID: PMC10143957 DOI: 10.3390/jfb14040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
The development of nanosystems, which can photooxygenate amyloid-β (Aβ), detect the Tau protein, and inhibit effectively the Tau aggregation, is increasingly important in the diagnosis and therapy of Alzheimer's disease (AD). Herein, UCNPs-LMB/VQIVYK (UCNPs: upconversion nanoparticles, LMB: Leucomethylene blue, and VQIVYK: Biocompatible peptide) is designed as a HOCl-controlled released nanosystem for AD synergistic treatment. Under exposure to high levels of HOCl, the released MB from UCNPs-LMB/VQIVYK will produce singlet oxygen (1O2) under red light to depolymerize Aβ aggregation and reduce cytotoxicity. Meanwhile, UCNPs-LMB/VQIVYK can act as an inhibitor to decrease Tau-induced neurotoxicity. Besides, UCNPs-LMB/VQIVYK can be used for upconversion luminescence (UCL) due to its unexceptionable luminescence properties. This HOCl-responsive nanosystem offers a new therapy for AD treatment.
Collapse
Affiliation(s)
- Luying Qiao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinarity Science, Shandong University, Qingdao 266237, China
| | - Yang Shen
- Center for Biotechnology and Biomedical Engineering, Yiwu Research Institute of Fudan University, Yiwu 322000, China
| | - Guangzhi Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Guanglei Lv
- Center for Biotechnology and Biomedical Engineering, Yiwu Research Institute of Fudan University, Yiwu 322000, China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinarity Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
11
|
Tyler TJ, Durek T, Craik DJ. Native and Engineered Cyclic Disulfide-Rich Peptides as Drug Leads. Molecules 2023; 28:molecules28073189. [PMID: 37049950 PMCID: PMC10096437 DOI: 10.3390/molecules28073189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Bioactive peptides are a highly abundant and diverse group of molecules that exhibit a wide range of structural and functional variation. Despite their immense therapeutic potential, bioactive peptides have been traditionally perceived as poor drug candidates, largely due to intrinsic shortcomings that reflect their endogenous heritage, i.e., short biological half-lives and poor cell permeability. In this review, we examine the utility of molecular engineering to insert bioactive sequences into constrained scaffolds with desired pharmaceutical properties. Applying lessons learnt from nature, we focus on molecular grafting of cyclic disulfide-rich scaffolds (naturally derived or engineered), shown to be intrinsically stable and amenable to sequence modifications, and their utility as privileged frameworks in drug design.
Collapse
Affiliation(s)
- Tristan J. Tyler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Enhancing the Stability of Tumor Homing LyP-1 Peptide Using Cyclization and Retro Grafting Strategies. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
13
|
Kalmankar NV, Gehi BR, Sowdhamini R. Effects of a plant cyclotide on conformational dynamics and destabilization of β-amyloid fibrils through molecular dynamics simulations. Front Mol Biosci 2022; 9:986704. [PMID: 36250019 PMCID: PMC9561823 DOI: 10.3389/fmolb.2022.986704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
Abstract
Aggregation of β-amyloid (Aβ) peptide is one of the hallmarks of Alzheimer’s disease (AD) which results in chronic and progressive neurodegeneration of the brain. A recent study by our group have shown the ability of cyclic disulfide-rich peptides (“cyclotides”) isolated from a medicinal plant, Clitoria ternatea, to inhibit the aggregation of Aβ peptides and reduce oxidative stress caused by reactive oxygen species using in vivo models of transgenic Caenorhabditis elegans. In the present study, through extensive computational docking and multi-ns molecular dynamics (MD) simulation, we evaluated if cyclotides can stably bind to Aβ molecules and/or destabilize the Aβ fibril by preventing conformational changes from α-helical to β-sheet rich structures. We demonstrate that cyclotides bind effectively and stably to different forms of Aβ structures via hydrogen bonding and hydrophobic interactions. One of the conserved hydrophobic interface residues, Tyr10 was mutated to Ala and the impact of this virtual mutation was estimated by additional MD simulations for the wild-type (WT) and mutant protein-peptide complexes. A detailed MD simulation analyses revealed that cyclotides form hydrogen bonds with the toxic amyloid assemblies thereby weakening the inter-strand hydrogen bonds between the Aβ peptide. The φ-ѱ distribution map of residues in the cyclotide binding pocket that ideally adopt β-sheet conformation show deviation towards right-handed ɑ-helical (ɑR) conformation. This effect was similar to that observed for the Tyr10Ala mutant and doubly so, for the cyclotide bound form. It is therefore possible to hypothesise that the opening up of amyloid β-sheet is due to an unfolding process occurring in the Aβ caused by cyclotide binding and inhibition. Our current findings provide novel structural insights on the mode of interaction between cyclotides and Aβ fibrils and describe their anti-amyloid aggregation potential. This sheds light on the future of cyclotide-based drug design against protein aggregation, a hallmark event in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Neha V. Kalmankar
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bengaluru, Karnataka, India
| | | | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bengaluru, Karnataka, India
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- *Correspondence: Ramanathan Sowdhamini,
| |
Collapse
|
14
|
Giovannini J, Smeralda W, Jouanne M, Sopkova-de Oliveira Santos J, Catto M, Sophie Voisin-Chiret A. Tau protein aggregation: key features to improve drug discovery screening. Drug Discov Today 2022; 27:1284-1297. [DOI: 10.1016/j.drudis.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
|
15
|
Makwana KM, Sarnowski MP, Miao J, Lin YS, Del Valle JR. N-Amination Converts Amyloidogenic Tau Peptides into Soluble Antagonists of Cellular Seeding. ACS Chem Neurosci 2021; 12:3928-3938. [PMID: 34609825 PMCID: PMC9035343 DOI: 10.1021/acschemneuro.1c00528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The spread of neurofibrillary tangles composed of tau protein aggregates is a hallmark of Alzheimer's and related neurodegenerative diseases. Early oligomerization of tau involves conformational reorganization into parallel β-sheet structures and supramolecular assembly into toxic fibrils. Despite the need for selective inhibitors of tau propagation, β-rich protein assemblies are inherently difficult to target with small molecules. Here, we describe a minimalist approach to mimic the aggregation-prone modules within tau. We carried out a backbone residue scan and show that amide N-amination completely abolishes the tendency of these peptides to self-aggregate, rendering them soluble mimics of ordered β-strands from the tau R2 and R3 domains. Several N-amino peptides (NAPs) inhibit tau fibril formation in vitro. We further demonstrate that NAPs 12 and 13 are effective at blocking the cellular seeding of endogenous tau by interacting with monomeric or fibrillar forms of extracellular tau. Peptidomimetic 12 is serum stable, non-toxic to neuronal cells, and selectivity inhibits the fibrilization of tau over Aβ42. Structural analysis of our lead NAPs shows considerable conformational constraint imposed by the N-amino groups. The described backbone N-amination approach provides a rational basis for the mimicry of other aggregation-prone peptides that drive pathogenic protein assembly.
Collapse
Affiliation(s)
- Kamlesh M Makwana
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew P Sarnowski
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Juan R Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
16
|
Sun H, Zhong Y, Zhu X, Liao H, Lee J, Chen Y, Ma L, Ren J, Zhao M, Tu M, Li F, Zhang H, Tian M, Ling D. A Tauopathy-Homing and Autophagy-Activating Nanoassembly for Specific Clearance of Pathogenic Tau in Alzheimer's Disease. ACS NANO 2021; 15:5263-5275. [PMID: 33683854 DOI: 10.1021/acsnano.0c10690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The hyperphosphorylated and aggregated tau accumulation represents a significant pathological hallmark of tauopathies including Alzheimer's disease (AD), which is highly associated with defective autophagy in neuronal cells. Autophagy-activating strategies demonstrate the therapeutic potential for AD in many studies; however, further development is limited by their low efficacy and serious side effects that result from a lack of selectivity for diseased cells. Herein, we report a tauopathy-homing nanoassembly (THN) with autophagy-activating capacity for AD treatment. Specifically, the THN can bind to hyperphosphorylated and/or aggregated tau and selectively accumulate in cells undergoing tauopathy. The THN further promotes the clearance of pathogenic tau accumulation by stimulating autophagic flux, consequently rescuing neuron viability and cognitive functions in AD rats. This study presents a promising nanotechnology-based strategy for tauopathy-homing and autophagy-mediated specific removal of pathogenic tau in AD.
Collapse
Affiliation(s)
- Heng Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yan Zhong
- Department of Nuclear Medicine and PET/CT Center, The Second Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou 310009, P.R. China
| | - Xiandi Zhu
- Department of Nuclear Medicine and PET/CT Center, The Second Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou 310009, P.R. China
| | - Hongwei Liao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Lijuan Ma
- Department of Nuclear Medicine and PET/CT Center, The Second Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou 310009, P.R. China
| | - Jiafeng Ren
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - Meng Zhao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - Mengjiao Tu
- Department of Nuclear Medicine and PET/CT Center, The Second Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou 310009, P.R. China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - Hong Zhang
- Department of Nuclear Medicine and PET/CT Center, The Second Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou 310009, P.R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Mei Tian
- Department of Nuclear Medicine and PET/CT Center, The Second Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou 310009, P.R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, P.R. China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
17
|
De Simone A, Tumiatti V, Andrisano V, Milelli A. Glycogen Synthase Kinase 3β: A New Gold Rush in Anti-Alzheimer's Disease Multitarget Drug Discovery? J Med Chem 2020; 64:26-41. [PMID: 33346659 PMCID: PMC8016207 DOI: 10.1021/acs.jmedchem.0c00931] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Alzheimer’s
disease (AD), like other multifactorial diseases,
is the result of a systemic breakdown of different physiological networks.
As result, several lines of evidence suggest that it could be more
efficiently tackled by molecules directed toward different dysregulated
biochemical targets or pathways. In this context, the selection of
targets to which the new molecules will be directed is crucial. For
years, the design of such multitarget-directed ligands (MTDLs) has
been based on the selection of main targets involved in the “cholinergic”
and the “β-amyloid” hypothesis. Recently, there
have been some reports on MTDLs targeting the glycogen synthase kinase
3β (GSK-3β) enzyme, due to its appealing properties. Indeed,
this enzyme is involved in tau hyperphosphorylation, controls a multitude
of CNS-specific signaling pathways, and establishes strict connections
with several factors implicated in AD pathogenesis. In the present
Miniperspective, we will discuss the reasons behind the development
of GSK-3β-directed MTDLs and highlight some of the recent efforts
to obtain these new classes of MTDLs as potential disease-modifying
agents.
Collapse
Affiliation(s)
- Angela De Simone
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
18
|
de Veer SJ, White AM, Craik DJ. Sunflower Trypsin Inhibitor-1 (SFTI-1): Sowing Seeds in the Fields of Chemistry and Biology. Angew Chem Int Ed Engl 2020; 60:8050-8071. [PMID: 32621554 DOI: 10.1002/anie.202006919] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/24/2022]
Abstract
Nature-derived cyclic peptides have proven to be a vast source of inspiration for advancing modern pharmaceutical design and synthetic chemistry. The focus of this Review is sunflower trypsin inhibitor-1 (SFTI-1), one of the smallest disulfide-bridged cyclic peptides found in nature. SFTI-1 has an unusual biosynthetic pathway that begins with a dual-purpose albumin precursor and ends with the production of a high-affinity serine protease inhibitor that rivals other inhibitors much larger in size. Investigations on the molecular basis for SFTI-1's rigid structure and adaptable function have planted seeds for thought that have now blossomed in several different fields. Here we survey these applications to highlight the growing potential of SFTI-1 as a versatile template for engineering inhibitors, a prototypic peptide for studying inhibitory mechanisms, a stable scaffold for grafting bioactive peptides, and a model peptide for evaluating peptidomimetic motifs and platform technologies.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew M White
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
19
|
Veer SJ, White AM, Craik DJ. Der Sonnenblumen‐Trypsin‐Inhibitor 1 (SFTI‐1) in der Chemie und Biologie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Simon J. Veer
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| | - Andrew M. White
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| | - David J. Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| |
Collapse
|
20
|
González-Castro R, Gómez-Lim MA, Plisson F. Cysteine-Rich Peptides: Hyperstable Scaffolds for Protein Engineering. Chembiochem 2020; 22:961-973. [PMID: 33095969 DOI: 10.1002/cbic.202000634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Cysteine-rich peptides (CRPs) are small proteins of less than 100 amino acids in length characterized by the presence of disulfide bridges and common end-to-end macrocyclization. These properties confer hyperstability against high temperatures, salt concentration, serum presence, and protease degradation to CRPs. Moreover, their intercysteine domains (loops) are susceptible to residue hypervariability. CRPs have been successfully applied as stable scaffolds for molecular grafting, a protein engineering process in which cysteine-rich structures provide higher thermodynamic and metabolic stability to an epitope and acquire new biological function(s). This review describes the successes and limitations of seven cysteine-rich scaffolds, their bioactive epitopes, and the resulting grafted peptides.
Collapse
Affiliation(s)
- Rafael González-Castro
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, México.,Centro de Investigación y de Estudios Avanzados del IPN Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato, Guanajuato, 36824, México
| | - Miguel A Gómez-Lim
- Centro de Investigación y de Estudios Avanzados del IPN Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato, Guanajuato, 36824, México
| | - Fabien Plisson
- CONACYT, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, México
| |
Collapse
|
21
|
Simonson AW, Aronson MR, Medina SH. Supramolecular Peptide Assemblies as Antimicrobial Scaffolds. Molecules 2020; 25:E2751. [PMID: 32545885 PMCID: PMC7355828 DOI: 10.3390/molecules25122751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial discovery in the age of antibiotic resistance has demanded the prioritization of non-conventional therapies that act on new targets or employ novel mechanisms. Among these, supramolecular antimicrobial peptide assemblies have emerged as attractive therapeutic platforms, operating as both the bactericidal agent and delivery vector for combinatorial antibiotics. Leveraging their programmable inter- and intra-molecular interactions, peptides can be engineered to form higher ordered monolithic or co-assembled structures, including nano-fibers, -nets, and -tubes, where their unique bifunctionalities often emerge from the supramolecular state. Further advancements have included the formation of macroscopic hydrogels that act as bioresponsive, bactericidal materials. This systematic review covers recent advances in the development of supramolecular antimicrobial peptide technologies and discusses their potential impact on future drug discovery efforts.
Collapse
Affiliation(s)
- Andrew W. Simonson
- Department of Biomedical Engineering, The Pennsylvania State University, Suite 122, CBE Building, University Park, PA 16802-4400, USA; (A.W.S.); (M.R.A.)
| | - Matthew R. Aronson
- Department of Biomedical Engineering, The Pennsylvania State University, Suite 122, CBE Building, University Park, PA 16802-4400, USA; (A.W.S.); (M.R.A.)
| | - Scott H. Medina
- Department of Biomedical Engineering, The Pennsylvania State University, Suite 122, CBE Building, University Park, PA 16802-4400, USA; (A.W.S.); (M.R.A.)
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802-4400, USA
| |
Collapse
|
22
|
Monteiro KL, Alcântara MGDS, de Aquino TM, da Silva-Júnior EF. Tau Protein Aggregation in Alzheimer's Disease: Recent Advances in the Development of Novel Therapeutic Agents. Curr Pharm Des 2020; 26:1682-1692. [DOI: 10.2174/1381612826666200414164038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
:
Major research in Alzheimer’s disease (AD) related to disease-modifying agents is concentrated on
pharmacological approaches related to diagnostic markers, neurofibrillary tangles and amyloid plaques. Although
most studies focus on anti-amyloid strategies, investigations on tau protein have produced significant advances in
the modulation of the pathophysiology of several neurodegenerative diseases. Since the discovery of phenothiazines
as tau protein aggregation inhibitors (TAGIs), many additional small molecule inhibitors have been discovered
and characterized in biological model systems, which exert their interaction effects by covalent and noncovalent
means. In this paper, we summarize the latest advances in the discovery and development of tau aggregation
inhibitors using a specialized approach in their chemical classes. The design of new TAGIs and their encouraging
use in in vivo and clinical trials support their potential therapeutic use in AD.
Collapse
Affiliation(s)
- Kadja L.C. Monteiro
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Marcone G. dos S. Alcântara
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Thiago M. de Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, Brazil
| | | |
Collapse
|
23
|
Moreno-Castillo E, Álvarez-Ginarte YM, Valdés-Tresanco ME, Montero-Cabrera LA, Moreno E, Valiente PA. Understanding the disrupting mechanism of the Tau aggregation motif " 306 VQIVYK 311 " by phenylthiazolyl-hydrazides inhibitors. J Mol Recognit 2020; 33:e2848. [PMID: 32227525 DOI: 10.1002/jmr.2848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by the abnormal processing of the Tau and the amyloid precursor proteins. The unusual aggregation of Tau is based on the formation of intermolecular β-sheets through two motifs: 275 VQIINK280 and 306 VQIVYK311 . Phenylthiazolyl-hydrazides (PTHs) are capable of inhibiting/disassembling Tau aggregates. However, the disaggregation mechanism of Tau oligomers by PTHs is still unknown. In this work, we studied the disruption of the oligomeric form of the Tau motif 306 VQIVYK311 by PTHs through molecular docking, molecular dynamics, and free energy calculations. We predicted hydrophobic interactions as the major driving forces for the stabilization of Tau oligomer, with V306 and I308 being the major contributors. Nonpolar component of the binding free energy is essential to stabilize Tau-PTH complexes. PTHs disrupted mainly the van der Waals interactions between the monomers, leading to oligomer destabilization. Destabilization of full Tau filament by PTHs and emodin was not observed in the sampled 20 ns; however, in all cases, the nonpolar component of the binding free energy is essential for the formation of Tau filament-PTH and Tau filament-emodin. These results provide useful clues for the design of more effective Tau-aggregation inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Ernesto Moreno
- Faculty of Basic Sciences, Universidad de Medellín, Medellín, Colombia
| | - Pedro A Valiente
- Center of Protein Studies, Faculty of Biology, University of Havana, La Habana, Cuba
| |
Collapse
|
24
|
Dangi A, Balmik AA, Ghorpade AK, Gorantla NV, Sonawane SK, Chinnathambi S, Marelli UK. Residue-based propensity of aggregation in the Tau amyloidogenic hexapeptides AcPHF6* and AcPHF6. RSC Adv 2020; 10:27331-27335. [PMID: 35516938 PMCID: PMC9055513 DOI: 10.1039/d0ra03809a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 11/21/2022] Open
Abstract
In Alzheimer's disease and related tauopathies, the aggregation of microtubule-associated protein, Tau, into fibrils occurs via the interaction of two hexapeptide motifs PHF* 275VQIINK280 and PHF 306VQIVYK311 as β-sheets. To understand the role of the constituent amino acids of PHF and PHF* in the aggregation, a set of 12 alanine mutant peptides was synthesized by replacing each amino acid in PHF and PHF* with alanine and they were characterized by nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD), transmission electron microscopy (TEM) and ThS/ANS fluorescence assay. Our studies show that while the aggregation was suppressed in most of the alanine mutant peptides, replacement of glutamine by alanine in both PHF and PHF* enhanced the fibrillization. In the alanine mutant peptides of AcPHF6* and AcPHF6, only the peptides with glutamine to alanine substitution show aggregation akin to that of the parent peptides.![]()
Collapse
Affiliation(s)
- Abha Dangi
- Central NMR Facility
- CSIR-National Chemical Laboratory
- 411008 Pune
- India
- Division of Organic Chemistry
| | - Abhishek Ankur Balmik
- Academy of Scientific and Innovative Research (AcSIR)
- 110025 New Delhi
- India
- Neurobiology Group
- Division of Biochemical Sciences
| | - Archana Kisan Ghorpade
- Central NMR Facility
- CSIR-National Chemical Laboratory
- 411008 Pune
- India
- Division of Organic Chemistry
| | - Nalini Vijay Gorantla
- Academy of Scientific and Innovative Research (AcSIR)
- 110025 New Delhi
- India
- Neurobiology Group
- Division of Biochemical Sciences
| | - Shweta Kishor Sonawane
- Academy of Scientific and Innovative Research (AcSIR)
- 110025 New Delhi
- India
- Neurobiology Group
- Division of Biochemical Sciences
| | - Subashchandrabose Chinnathambi
- Academy of Scientific and Innovative Research (AcSIR)
- 110025 New Delhi
- India
- Neurobiology Group
- Division of Biochemical Sciences
| | - Udaya Kiran Marelli
- Central NMR Facility
- CSIR-National Chemical Laboratory
- 411008 Pune
- India
- Division of Organic Chemistry
| |
Collapse
|
25
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
26
|
Franke B, Mylne JS, Rosengren KJ. Buried treasure: biosynthesis, structures and applications of cyclic peptides hidden in seed storage albumins. Nat Prod Rep 2019; 35:137-146. [PMID: 29379937 DOI: 10.1039/c7np00066a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Covering: 1999 up to the end of 2017The small cyclic peptide SunFlower Trypsin Inhibitor-1 (SFTI-1) from sunflower seeds is the prototypic member of a novel family of natural products. The biosynthesis of these peptides is intriguing as their gene-encoded peptide backbone emerges from a precursor protein that also contains a seed storage albumin. The peptide sequence is cleaved out from the precursor and cyclised by the albumin-maturing enzymatic machinery. Three-dimensional solution NMR structures of a number of these peptides, and of the intact precursor protein preproalbumin with SFTI-1, have now been elucidated. Furthermore, the evolution of the family has been described and a detailed understanding of the biosynthetic steps, which are necessary to produce cyclic SFTI-1, is emerging. Macrocyclisation provides peptide stability and thus represents a key strategy in peptide drug development. Consequently the constrained structure of SFTI-1 has been explored as a template for protein engineering, for tuning selectivity towards clinically relevant proteases and for grafting in sequences with completely novel functions. Here we review the discovery of the SFTI-1 peptide family, their evolution, biosynthetic origin, and structural features, as well as highlight the potential applications of this unique class of natural products.
Collapse
Affiliation(s)
- B Franke
- The University of Queensland, Faculty of Medicine, School of Biomedical Sciences, Brisbane, QLD 4072, Australia.
| | | | | |
Collapse
|
27
|
Yin H, Craik DJ, Wang CK. Anchor Residues Guide Form and Function in Grafted Peptides. Angew Chem Int Ed Engl 2019; 58:7652-7656. [DOI: 10.1002/anie.201901572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Huawu Yin
- Institute for Molecular BioscienceThe University of Queensland Brisbane Queensland 4072 Australia
| | - David J. Craik
- Institute for Molecular BioscienceThe University of Queensland Brisbane Queensland 4072 Australia
| | - Conan K. Wang
- Institute for Molecular BioscienceThe University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
28
|
Kuo YC, Rajesh R. Challenges in the treatment of Alzheimer’s disease: recent progress and treatment strategies of pharmaceuticals targeting notable pathological factors. Expert Rev Neurother 2019; 19:623-652. [DOI: 10.1080/14737175.2019.1621750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
29
|
Abstract
Tau is a microtubule-associated protein involved in the regulation of axonal microtubules in neurons. In pathological conditions, it forms fibrils that are molecular hallmarks of neurological disorders known as tauopathies. In the last 2 years, cryo-EM has given unprecedented high-resolution views of Tau in both physiological and pathological conditions. We review here these new findings and put them into the context of the knowledge about Tau before this structural breakthrough. The first structures of Tau fibrils, a molecular hallmark of Alzheimer's disease (AD), were based on fibrils from the brain of an individual with AD and, along with similar patient-derived structures, have set the gold standard for the field. Cryo-EM structures of Tau fibers in three distinct diseases, AD, Pick's disease, and chronic traumatic encephalopathy, represent the end points of Tau's molecular trajectory. We propose that the recent Tau structures may call for a re-examination of databases that link different Tau variants to various forms of dementia. We also address the question of how this structural information may link Tau's functional and pathological aspects. Because this structural information on Tau was obtained in a very short period, the new structures should be viewed in light of earlier structural observations and past and present functional data to shed additional light on Tau function and dysfunction.
Collapse
Affiliation(s)
- Guy Lippens
- From the Laboratoire d'Ingénierie des Systèmes Biologiques (LISBP), Université de Toulouse, CNRS, INRA, INSA, 135 avenue de Rangueil, 31077 Toulouse Cedex 04, France and
| | - Benoît Gigant
- the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
30
|
Yin H, Craik DJ, Wang CK. Anchor Residues Guide Form and Function in Grafted Peptides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huawu Yin
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland 4072 Australia
| | - David J. Craik
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland 4072 Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
31
|
Using backbone-cyclized Cys-rich polypeptides as molecular scaffolds to target protein-protein interactions. Biochem J 2019; 476:67-83. [PMID: 30635453 DOI: 10.1042/bcj20180792] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022]
Abstract
The use of disulfide-rich backbone-cyclized polypeptides, as molecular scaffolds to design a new generation of bioimaging tools and drugs that are potent and specific, and thus might have fewer side effects than traditional small-molecule drugs, is gaining increasing interest among the scientific and in the pharmaceutical industries. Highly constrained macrocyclic polypeptides are exceptionally more stable to chemical, thermal and biological degradation and show better biological activity when compared with their linear counterparts. Many of these relatively new scaffolds have been also found to be highly tolerant to sequence variability, aside from the conserved residues forming the disulfide bonds, able to cross cellular membranes and modulate intracellular protein-protein interactions both in vitro and in vivo These properties make them ideal tools for many biotechnological applications. The present study provides an overview of the new developments on the use of several disulfide-rich backbone-cyclized polypeptides, including cyclotides, θ-defensins and sunflower trypsin inhibitor peptides, in the development of novel bioimaging reagents and therapeutic leads.
Collapse
|
32
|
Abstract
Matriptase-2 (MT2) is a membrane-anchored proteolytic enzyme. It acts as the proteolytic key regulator in human iron homeostasis. A high expression level can lead to iron overload diseases, whereas mutations in the gene encoding MT2, TMPRSS6, may result in various forms of iron deficiency anemia. Recently, MT2 has been reported as a positive prognostic factor in breast and prostate cancers. However, the exact functions of MT2 in various pathophysiological conditions are still not fully understood. In this review, we describe the synthetic tools designed and synthesized to regulate or monitor MT2 proteolytic activity and present the latest knowledge about the role of MT2 in iron homeostasis and cancer.
Collapse
|
33
|
Gandini A, Bartolini M, Tedesco D, Martinez-Gonzalez L, Roca C, Campillo NE, Zaldivar-Diez J, Perez C, Zuccheri G, Miti A, Feoli A, Castellano S, Petralla S, Monti B, Rossi M, Moda F, Legname G, Martinez A, Bolognesi ML. Tau-Centric Multitarget Approach for Alzheimer’s Disease: Development of First-in-Class Dual Glycogen Synthase Kinase 3β and Tau-Aggregation Inhibitors. J Med Chem 2018; 61:7640-7656. [DOI: 10.1021/acs.jmedchem.8b00610] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Annachiara Gandini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Daniele Tedesco
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | | | - Carlos Roca
- Centro de Investigaciones Biologica, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Nuria E. Campillo
- Centro de Investigaciones Biologica, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Josefa Zaldivar-Diez
- Centro de Investigaciones Biologica, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Concepción Perez
- Instituto de Quimica Medica, CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
- S3 Center of the Institute of Nanosciences, Italian National Research Council (CNR), I-41125 Modena, Italy
| | - Andrea Miti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
- S3 Center of the Institute of Nanosciences, Italian National Research Council (CNR), I-41125 Modena, Italy
| | - Alessandra Feoli
- EpigeneticMedChemLab, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Sabrina Castellano
- EpigeneticMedChemLab, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Martina Rossi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, I-20133 Milan, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - Ana Martinez
- Centro de Investigaciones Biologica, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
34
|
Ryan P, Patel B, Makwana V, Jadhav HR, Kiefel M, Davey A, Reekie TA, Rudrawar S, Kassiou M. Peptides, Peptidomimetics, and Carbohydrate-Peptide Conjugates as Amyloidogenic Aggregation Inhibitors for Alzheimer's Disease. ACS Chem Neurosci 2018; 9:1530-1551. [PMID: 29782794 DOI: 10.1021/acschemneuro.8b00185] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder accounting for 60-80% of dementia cases. For many years, AD causality was attributed to amyloid-β (Aβ) aggregated species. Recently, multiple therapies that target Aβ aggregation have failed in clinical trials, since Aβ aggregation is found in AD and healthy patients. Attention has therefore shifted toward the aggregation of the tau protein as a major driver of AD. Numerous inhibitors of tau-based pathology have recently been developed. Diagnosis of AD has shifted from measuring late stage senile plaques to early stage biomarkers, amyloid-β and tau monomers and oligomeric assemblies. Synthetic peptides and some derivative structures are being explored for use as theranostic tools as they possess the capacity both to bind the biomarkers and to inhibit their pathological self-assembly. Several studies have demonstrated that O-linked glycoside addition can significantly alter amyloid aggregation kinetics. Furthermore, natural O-glycosylation of amyloid-forming proteins, including amyloid precursor protein (APP), tau, and α-synuclein, promotes alternative nonamyloidogenic processing pathways. As such, glycopeptides and related peptidomimetics are being investigated within the AD field. Here we review advancements made in the last 5 years, as well as the arrival of sugar-based derivatives.
Collapse
Affiliation(s)
- Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Hemant R. Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani-333031, Rajasthan, India
| | - Milton Kiefel
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Andrew Davey
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
35
|
Wang CK, Ghani HA, Bundock A, Weidmann J, Harvey PJ, Edwards IA, Schroeder CI, Swedberg JE, Craik DJ. Calcium-Mediated Allostery of the EGF Fold. ACS Chem Biol 2018; 13:1659-1667. [PMID: 29715432 DOI: 10.1021/acschembio.8b00291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The epidermal growth factor (EGF)-like domain is one of the most abundant disulfide-containing domains in nature and is involved in many cellular processes critical to life. Although many EGF-like domains participate in calcium-dependent functions by responding to the local calcium concentration, little is known about how this responsiveness is programmed at the molecular level. Here, we reveal the structural and environmental determinants underpinning the folding of a synthetic analogue of the EGF-A domain (from the low-density lipoprotein receptor). We show that calcium sensitivity is enabled by an allosteric folding pathway, in which calcium binding is connected to the peptide core through local inter-residue interactions. In the absence of calcium, the fold favors disorder because the inherently weak core is insufficient to stabilize the active form, resulting in substantial loss in activity of 2 orders of magnitude. The EGF-A fold, which can freely transition between active and disordered states, is volatile, and we found it to be intolerant of mutations, unlike other disulfide-rich peptides that have been used as stabilizing frameworks. This volatility is beneficial for modularity/plasticity and appears to have evolved for such a purpose, allowing cellular pathways to sense and respond to environmental cues.
Collapse
Affiliation(s)
- Conan K. Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hafiza Abdul Ghani
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anna Bundock
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joachim Weidmann
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peta J. Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ingrid A. Edwards
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joakim E. Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
36
|
Designing macrocyclic disulfide-rich peptides for biotechnological applications. Nat Chem Biol 2018; 14:417-427. [DOI: 10.1038/s41589-018-0039-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
|
37
|
Belostozky A, Richman M, Lisniansky E, Tovchygrechko A, Chill JH, Rahimipour S. Inhibition of tau-derived hexapeptide aggregation and toxicity by a self-assembled cyclic d,l-α-peptide conformational inhibitor. Chem Commun (Camb) 2018; 54:5980-5983. [DOI: 10.1039/c8cc01233d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Self-assembled cyclic d,l-α-peptide CP-2 cross-interacts with tau-derived AcPHF6 peptide to inhibit its aggregation, membrane perturbation and toxicity.
Collapse
Affiliation(s)
- A. Belostozky
- Department of Chemistry
- Bar-Ilan University
- Ramat-Gan 5290002
- Israel
| | - M. Richman
- Department of Chemistry
- Bar-Ilan University
- Ramat-Gan 5290002
- Israel
| | - E. Lisniansky
- Department of Chemistry
- Bar-Ilan University
- Ramat-Gan 5290002
- Israel
| | - A. Tovchygrechko
- Department of Chemistry
- Bar-Ilan University
- Ramat-Gan 5290002
- Israel
| | - J. H. Chill
- Department of Chemistry
- Bar-Ilan University
- Ramat-Gan 5290002
- Israel
| | - S. Rahimipour
- Department of Chemistry
- Bar-Ilan University
- Ramat-Gan 5290002
- Israel
| |
Collapse
|
38
|
Craik DJ, Lee MH, Rehm FBH, Tombling B, Doffek B, Peacock H. Ribosomally-synthesised cyclic peptides from plants as drug leads and pharmaceutical scaffolds. Bioorg Med Chem 2017; 26:2727-2737. [PMID: 28818463 DOI: 10.1016/j.bmc.2017.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 08/06/2017] [Indexed: 12/28/2022]
Abstract
Owing to their exceptional stability and favourable pharmacokinetic properties, plant-derived cyclic peptides have recently attracted significant attention in the field of peptide-based drug design. This article describes the three major classes of ribosomally-synthesised plant peptides - the cyclotides, the PawS-derived peptides and the orbitides - and reviews their applications as leads or scaffolds in drug design. These ribosomally-produced peptides have a range of biological activities, including anti-HIV, cytotoxic and immunomodulatory activity. In addition, recent interest has focused on their use as scaffolds to stabilise bioactive peptide sequences, thereby enhancing their biopharmaceutical properties. There are now more than 30 published papers on such 'grafting' applications, most of which have been reported only in the last few years, and several such studies have reported in vivo activity of orally delivered cyclic peptides. In this article, we describe approaches to the synthesis of cyclic peptides and their pharmaceutically-grafted derivatives as well as outlining their biosynthetic routes. Finally, we describe possible bioproduction routes for pharmaceutically active cyclic peptides, involving plants and plant suspension cultures.
Collapse
Affiliation(s)
- David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Meng-Han Lee
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fabian B H Rehm
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin Tombling
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin Doffek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hayden Peacock
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
39
|
Li Y, Aboye T, Breindel L, Shekhtman A, Camarero JA. Efficient recombinant expression of SFTI-1 in bacterial cells using intein-mediated protein trans-splicing. Biopolymers 2017; 106:818-824. [PMID: 27178003 DOI: 10.1002/bip.22875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/07/2016] [Accepted: 05/04/2016] [Indexed: 01/22/2023]
Abstract
We report for the first time the recombinant expression of bioactive wild-type sunflower trypsin inhibitor 1 (SFTI-1) inside E. coli cells by making use of intracellular protein trans-splicing in combination with a high efficient split-intein. SFTI-1 is a small backbone-cyclized polypeptide with a single disulfide bridge and potent trypsin inhibitory activity. Recombinantly produced SFTI-1 was fully characterized by NMR and was observed to actively inhibit trypsin. The in-cell expression of SFTI-1 was very efficient reaching intracellular concentration ≈ 40 µM. This study clearly demonstrates the possibility of generating genetically encoded SFTI-based peptide libraries in live E. coli cells, and is a critical first step for developing in-cell screening and directed evolution technologies using the cyclic peptide SFTI-1 as a molecular scaffold. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 818-824, 2016.
Collapse
Affiliation(s)
- Yilong Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089-9121
| | - Teshome Aboye
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089-9121
| | - Leonard Breindel
- Department of Chemistry, State University of New York, Albany, NY, 12222
| | | | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089-9121.,Department of Chemistry, University of Southern California, Los Angeles, CA, 90089-9121
| |
Collapse
|
40
|
Franke B, Jayasena AS, Fisher MF, Swedberg JE, Taylor NL, Mylne JS, Rosengren KJ. Diverse cyclic seed peptides in the Mexican zinnia (Zinnia haageana). Biopolymers 2017; 106:806-817. [PMID: 27352920 DOI: 10.1002/bip.22901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/19/2016] [Accepted: 06/25/2016] [Indexed: 12/18/2022]
Abstract
A new family of small plant peptides was recently described and found to be widespread throughout the Millereae and Heliantheae tribes of the sunflower family Asteraceae. These peptides originate from the post-translational processing of unusual seed-storage albumin genes, and have been termed PawS-derived peptides (PDPs). The prototypic family member is a 14-residue cyclic peptide with potent trypsin inhibitory activity named SunFlower Trypsin Inhibitor (SFTI-1). In this study we present the features of three new PDPs discovered in the seeds of the sunflower species Zinnia haageana by a combination of de novo transcriptomics and liquid chromatography-mass spectrometry. Two-dimensional solution NMR spectroscopy was used to elucidate their structural characteristics. All three Z. haageana peptides have well-defined folds with a head-to-tail cyclized peptide backbone and a single disulfide bond. Although two possess an anti-parallel β-sheet structure, like SFTI-1, the Z. haageana peptide PDP-21 has a more irregular backbone structure. Despite structural similarities with SFTI-1, PDP-20 was not able to inhibit trypsin, thus the functional roles of these peptides is yet to be discovered. Defining the structural features of the small cyclic peptides found in the sunflower family will be useful for guiding the exploitation of these peptides as scaffolds for grafting and protein engineering applications.
Collapse
Affiliation(s)
- Bastian Franke
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Achala S Jayasena
- School of Chemistry and Biochemistry & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Mark F Fisher
- School of Chemistry and Biochemistry & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Joakim E Swedberg
- The University of Queensland, Institute for Molecular Bioscience, St, Lucia, QLD, 4072, Australia
| | - Nicolas L Taylor
- School of Chemistry and Biochemistry & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Joshua S Mylne
- School of Chemistry and Biochemistry & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
41
|
Hsp90 directly interacts, in vitro, with amyloid structures and modulates their assembly and disassembly. Biochim Biophys Acta Gen Subj 2016; 1860:2598-2609. [DOI: 10.1016/j.bbagen.2016.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/22/2023]
|
42
|
|
43
|
Wang CK, King GJ, Conibear AC, Ramos MC, Chaousis S, Henriques ST, Craik DJ. Mirror Images of Antimicrobial Peptides Provide Reflections on Their Functions and Amyloidogenic Properties. J Am Chem Soc 2016; 138:5706-13. [PMID: 27064294 DOI: 10.1021/jacs.6b02575] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enantiomeric forms of BTD-2, PG-1, and PM-1 were synthesized to delineate the structure and function of these β-sheet antimicrobial peptides. Activity and lipid-binding assays confirm that these peptides act via a receptor-independent mechanism involving membrane interaction. The racemic crystal structure of BTD-2 solved at 1.45 Å revealed a novel oligomeric form of β-sheet antimicrobial peptides within the unit cell: an antiparallel trimer, which we suggest might be related to its membrane-active form. The BTD-2 oligomer extends into a larger supramolecular state that spans the crystal lattice, featuring a steric-zipper motif that is common in structures of amyloid-forming peptides. The supramolecular structure of BTD-2 thus represents a new mode of fibril-like assembly not previously observed for antimicrobial peptides, providing structural evidence linking antimicrobial and amyloid peptides.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Gordon J King
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Anne C Conibear
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Mariana C Ramos
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Stephanie Chaousis
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| |
Collapse
|