1
|
Mo S, Huang Z, Zeng H, Wang J, Zhang Y, Hu Z. Penicichrysol A: an unprecedented polyketide produced by Penicillium chrysogenum. Org Biomol Chem 2025; 23:608-613. [PMID: 39629544 DOI: 10.1039/d4ob01742k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Penicichrysol A (1), a highly oxygenated polyketide with an unprecedented skeleton, uniquely defined by multiple contiguous quaternary carbons, was isolated as a racemate from an endophytic fungus Penicillium chrysogenum that was sourced from the bulbs of the medicinal plant Lycoris radiata. Besides, three known biosynthetically related metabolites 2-4 were also obtained. The structure including the configuration of 1 was established via a combination of NMR spectroscopy and single-crystal X-ray diffraction analysis. A plausible biosynthetic pathway involving intriguing radical coupling and hemiketal reactions as key chemical transformations has been proposed.
Collapse
Affiliation(s)
- Shuyuan Mo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhihong Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hanxiao Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
2
|
Andreeva DV, Tikhomirov AS, Shchekotikhin AE. Synthesis and antiproliferative activity of thiazole-fused anthraquinones. Org Biomol Chem 2024; 22:8493-8504. [PMID: 39344399 DOI: 10.1039/d4ob01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Heterocyclic derivatives of anthraquinone demonstrated a high potential for the development of new antitumor compounds. In this study, we report a scheme for the synthesis of thiazole-fused anthraquinones and the results of their antiproliferative activity. A convenient metal-free method for the thiolation of anthraquinone derivatives has been proposed for the preparation of the key intermediates. C-S bond formation upon nucleophilic substitution of the bromine atom in anthraquinone with 4-methoxybenzyl mercaptan readily occurs under mild conditions using t-BuOK as a base. This process was used for the preparation of anthra[2,3-d]thiazoles with various substituents at position 2, in particular the alkoxycarbonyl group. Study of the chemical properties resulted in the transformation of anthra[2,3-d]thiazole-2-carboxylic acid into a series of carboxamides. Screening the antiproliferative effect revealed moderate activity of compounds 12b and 12d against human cancer cells, showing weaker activity than anthra[2,3-d]thiophene analogs and indicating a crucial role of the heterocyclic nucleus in the antitumor potency of heteroareneanthraquinones.
Collapse
Affiliation(s)
- Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation.
| | - Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation.
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation.
| |
Collapse
|
3
|
Shivani, Abdul Rahaman TA, Chaudhary S. Targeting cancer using scaffold-hopping approaches: illuminating SAR to improve drug design. Drug Discov Today 2024; 29:104115. [PMID: 39067613 DOI: 10.1016/j.drudis.2024.104115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Scaffold hopping is a design approach involving alterations to the core structure of an already bioactive scaffold to generate novel molecules to discover bioactive hit compounds with innovative core structures. Scaffold hopping enhances selectivity and potency while maintaining physicochemical, pharmacodynamic (PD), and pharmacokinetic (PK) properties, including toxicity parameters. Numerous molecules have been designed based on a scaffold-hopping strategy that showed potent inhibition activity against multiple targets for the diverse types of malignancy. In this review, we critically discuss recent applications of scaffold hopping along with essential components of medicinal chemistry, such as structure-activity relationship (SAR) profiles. Moreover, we shed light on the limitations and challenges associated with scaffold hopping-based anticancer drug discovery.
Collapse
Affiliation(s)
- Shivani
- Laboratory of Bioactive Heterocycles and Catalysis (BHC lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| | - T A Abdul Rahaman
- Laboratory of Bioactive Heterocycles and Catalysis (BHC lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| | - Sandeep Chaudhary
- Laboratory of Bioactive Heterocycles and Catalysis (BHC lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India.
| |
Collapse
|
4
|
Tikhomirov AS, Sinkevich YB, Dezhenkova LG, Kaluzhny DN, Ilyinsky NS, Borshchevskiy VI, Schols D, Shchekotikhin AE. Synthesis and antitumor activity of cyclopentane-fused anthraquinone derivatives. Eur J Med Chem 2024; 265:116103. [PMID: 38176358 DOI: 10.1016/j.ejmech.2023.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
In our pursuit of developing novel analogs of anthracyclines with enhanced antitumor efficacy and safety, we have designed a synthesis scheme for 4,11-dihydroxy-5,10-dioxocyclopenta[b]anthracene-2-carboxamides. These newly synthesized compounds exhibit remarkable antiproliferative potency against various mammalian tumor cell lines, including those expressing activated mechanisms of multidrug resistance. The structure of the diamine moiety in the carboxamide side chain emerges as a critical determinant for anticancer activity and interaction with key targets such as DNA, topoisomerase 1, and ROS induction. Notably, the introduced modification to the doxorubicin structure results in significantly increased lipophilicity, cellular uptake, and preferential distribution in lysosomes. Consequently, while maintaining an impact on anthracyclines targets, these novel derivatives also demonstrate the potential to induce cytotoxicity through pathways associated with lysosomes. In summary, derivatives of cyclic diamines, particularly 3-aminopyrrolidine, can be considered a superior choice compared to aminosugars for incorporation into natural and semi-synthetic anthracyclines or new anthraquinone derivatives, aiming to circumvent efflux-mediated drug resistance.
Collapse
Affiliation(s)
- Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation
| | - Yuri B Sinkevich
- Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow, 125047, Russian Federation
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991, Moscow, Russian Federation
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russian Federation
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russian Federation
| | - Dominique Schols
- Rega Institute for Medical Research, K.U. Leuven, 3000, Leuven, Belgium
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation.
| |
Collapse
|
5
|
da Rocha MN, da Fonseca AM, Dantas ANM, Dos Santos HS, Marinho ES, Marinho GS. In Silico Study in MPO and Molecular Docking of the Synthetic Drynaran Analogues Against the Chronic Tinnitus: Modulation of the M1 Muscarinic Acetylcholine Receptor. Mol Biotechnol 2024; 66:254-269. [PMID: 37079267 DOI: 10.1007/s12033-023-00748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
Tinnitus is a syndrome that affects the human auditory system and is characterized by a perception of sounds in the absence of acoustic stimuli, or in total silence. Research indicates that muscarinic acetylcholine receptors (mAChRs), especially the M1 type, have a fundamental role in the alterations of auditory perceptions of tinnitus. Here, a series of computer-aided tools were used, from molecular surface analysis software to services available on the web for estimating pharmacokinetics and pharmacodynamics. The results infer that the low lipophilicity ligands, that is, the 1a-d alkyl furans, present the best pharmacokinetic profile, as compounds with an optimal alignment between permeability and clearance. However, only ligands 1a and 1b have properties that are safe for the central nervous system, the site of cholinergic modulation. These ligands showed similarity with compounds deposited in the European Molecular Biology Laboratory chemical (ChEMBL) database acting on the mAChRs M1 type, the target selected for the molecular docking test. The simulations suggest that the 1 g ligand can form the ligand-receptor complex with the best affinity energy order and that, together with the 1b ligand, they are competitive agonists in relation to the antagonist Tiotropium, in addition to acting in synergism with the drug Bromazepam in the treatment of chronic tinnitus.
Collapse
Affiliation(s)
- Matheus Nunes da Rocha
- Graduate Program in Natural Sciences, Center for Science and Technology, State University of Ceará, Fortaleza, CE, Brazil.
| | - Aluísio Marques da Fonseca
- Institute of Engineering and Sustainable Development, Academic Master in Sociobiodiversity and Sustainable Technologies, University of International Integration of Afro-Brazilian Lusofonia, Acarape, CE, Brazil
| | | | | | - Emmanuel Silva Marinho
- Graduate Program in Natural Sciences, Center for Science and Technology, State University of Ceará, Fortaleza, CE, Brazil
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Limoeiro Do Norte, CE, Brazil
| | - Gabrielle Silva Marinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Limoeiro Do Norte, CE, Brazil
| |
Collapse
|
6
|
Singh M, Haque MA, Tikhomirov AS, Shchekotikhin AE, Das U, Kaur P. Computational and Biophysical Characterization of Heterocyclic Derivatives of Anthraquinone against Human Aurora Kinase A. ACS OMEGA 2022; 7:39603-39618. [PMID: 36385832 PMCID: PMC9647706 DOI: 10.1021/acsomega.2c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Human Aurora kinase A (AurA) has recently garnered the attention of researchers worldwide as a promising effective mitotic drug target for its involvement in cancer and related inflammatory anomalies. This study has explored the binding affinity of newly identified heteroarene-fused anthraquinone derivatives against AurA. Molecular docking analyses showed that all the heteroanthraquinone compounds bind to AurA with different affinities. Molecular dynamics simulation studies revealed that the compounds maintained relatively stable binding modes in the active site pocket while inducing minimal conformational changes in the AurA structure, interacting with key residues through several noncovalent interactions, including hydrogen bonds. Fluorescence spectroscopy and biolayer interferometry binding assays with synthesized compounds against recombinantly expressed AurA further verified their binding efficacy. Naphthoisatine 3 proved to be the best binder, with compounds anthraimidazole 5 and anthrathiophene 2 showing comparable results. Overall, this study indicates decent binding of heterocyclic derivatives of anthraquinone with the target AurA, which can further be assessed by performing enzymatic assays and cellular studies. The studies also highlight the applicability of the heteroarene-fused anthraquinone scaffold to construct selective and potent inhibitors of Aurora kinases after necessary structural modifications for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Mandeep Singh
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| | - Md. Anzarul Haque
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| | | | | | - Uddipan Das
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| | - Punit Kaur
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| |
Collapse
|
7
|
Chang JS, Chen CY, Tikhomirov AS, Islam A, Liang RH, Weng CW, Wu WH, Shchekotikhin AE, Chueh PJ. Bis(chloroacetamidino)-Derived Heteroarene-Fused Anthraquinones Bind to and Cause Proteasomal Degradation of tNOX, Leading to c-Flip Downregulation and Apoptosis in Oral Cancer Cells. Cancers (Basel) 2022; 14:cancers14194719. [PMID: 36230644 PMCID: PMC9562014 DOI: 10.3390/cancers14194719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary New-generation anthraquinone derivatives attached with different heterocycles and bearing chloroacetamidines in the side chains have been synthesized to reduce side effects and drug resistance. In this study, we identified the cellular target of the studied compounds through ligand binding assays and in silico simulations. Our results illustrate that the studied compounds bound to and targeted the tumor-associated NADH oxidase (tNOX) in oral cancer cells. tNOX is a growth-related protein and is found to be expressed in cancer cells but not in non-transformed cells, and its knockdown by RNA interference in tumor cells overturns cancer phenotypes, supporting its role in cellular growth. We also identified that tNOX bound to the studied compounds and underwent degradation, which was correlated with apoptosis induction in oral cancer cells. Abstract Anthraquinone-based intercalating compounds, namely doxorubicin and mitoxantrone, have been used clinically based on their capacity to bind DNA and induce DNA damage. However, their applications have been limited by side effects and drug resistance. New-generation anthraquinone derivatives fused with different heterocycles have been chemically synthesized and screened for higher anticancer potency. Among the compounds reported in our previous study, 4,11-bis(2-(2-chloroacetamidine)ethylamino)anthra[2,3-b]thiophene-5,10-dione dihydrochloride (designated 2c) was found to be apoptotic, but the direct cellular target responsible for the cytotoxicity remained unknown. Here, we report the synthesis and anticancer properties of two other derivatives, 4,11-bis(2-(2-chloroacetamidine)ethylamino)naphtho[2,3-f]indole-5,10-dione dihydrochloride (2a) and 4,11-bis(2-(2-chloroacetamidine)ethylamino)-2-methylanthra[2,3-b]furan-5,10-dione dihydrochloride (2b). We sought to identify and validate the protein target(s) of these derivatives in oral cancer cells, using molecular docking simulations and cellular thermal shift assays (CETSA). Our CETSA results illustrate that these derivatives targeted the tumor-associated NADH oxidase (tNOX, ENOX2), and their direct binding downregulated tNOX in p53-functional SAS and p53-mutated HSC-3 cells. Interestingly, the compounds targeted and downregulated tNOX to reduce SIRT1 deacetylase activity and increase Ku70 acetylation, which triggers c-Flip ubiquitination and induces apoptosis in oral cancer cells. Together, our data highlight the potential value of these heteroarene-fused anthraquinones in managing cancer by targeting tNOX and augmenting apoptosis.
Collapse
Affiliation(s)
- Jeng Shiun Chang
- Department of Otolaryngology, Head and Neck Surgery, Jen-Ai Hospital, Taichung 41265, Taiwan
| | - Chien-Yu Chen
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | | | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Ru-Hao Liang
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Chia-Wei Weng
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wei-Hou Wu
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
- Correspondence: (A.E.S.); (P.J.C.); Tel.: +7-499-246-0228 (A.E.S.); +886-4-22840896 (P.J.C.)
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Basic Medicine, China Medical University, Taichung 40402, Taiwan
- Correspondence: (A.E.S.); (P.J.C.); Tel.: +7-499-246-0228 (A.E.S.); +886-4-22840896 (P.J.C.)
| |
Collapse
|
8
|
Tikhomirov AS, Tsvetkov VB, Volodina YL, Litvinova VA, Andreeva DV, Dezhenkova LG, Kaluzhny DN, Treshalin ID, Shtil AA, Shchekotikhin AE. Heterocyclic ring expansion yields anthraquinone derivatives potent against multidrug resistant tumor cells. Bioorg Chem 2022; 127:105925. [PMID: 35728293 DOI: 10.1016/j.bioorg.2022.105925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
Chemical modifications of anthraquiones are aimed at novel derivatives with improved antitumor properties. Emergence of multidrug resistance (MDR) due to overexpression of transmembrane ATP binding cassette transporters, in particular, MDR1/P-glycoprotein (Pgp), can limit the use of anthraquinone based drugs. Previously we have demonstrated that annelation of modified five-membered heterocyclic rings with the anthraquinone core yielded a series of compounds with optimized antitumor properties. In the present study we synthesized a series of anthraquinone derivatives with six-membered heterocycles. Selected new compounds showed the ability to kill parental and MDR tumor cell lines at low micromolar concentrations. Molecular docking into the human Pgp model revealed a stronger interaction of 2-methylnaphtho[2,3-g]quinoline-3-carboxamide 17 compared to naphtho[2,3-f]indole-3-carboxamide 3. The time course of intracellular accumulation of compound 17 in parental K562 leukemia cells and in Pgp-positive K562/4 subline was similar. In contrast, compound 3 was readily effluxed from K562/4 cells and was significantly less potent for this subline than for K562 cells. Together with reported strategies of drug optimization of the anthracycline core, these results add ring expansion to the list of perspective modifications of heteroarene-fused anthraquinones.
Collapse
Affiliation(s)
| | - Vladimir B Tsvetkov
- Sechenov First Moscow State Medical University, 8/2 Trubetskaya Street, 119146 Moscow, Russia; A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Avenue, 117912 Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a M. Pirogovskaya Street, Moscow 119435, Russia
| | - Yulia L Volodina
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; Blokhin Cancer Center, 24 Kashirskoye shosse, Moscow 115478, Russia
| | - Valeria A Litvinova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 11991 Moscow, Russia
| | - Ivan D Treshalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Alexander A Shtil
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; Blokhin Cancer Center, 24 Kashirskoye shosse, Moscow 115478, Russia
| | | |
Collapse
|
9
|
Synthesis of drynaran and analogues. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Copper-Containing Nanoparticles and Organic Complexes: Metal Reduction Triggers Rapid Cell Death via Oxidative Burst. Int J Mol Sci 2021; 22:ijms222011065. [PMID: 34681725 PMCID: PMC8539714 DOI: 10.3390/ijms222011065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/21/2022] Open
Abstract
Copper-containing agents are promising antitumor pharmaceuticals due to the ability of the metal ion to react with biomolecules. In the current study, we demonstrate that inorganic Cu2+ in the form of oxide nanoparticles (NPs) or salts, as well as Cu ions in the context of organic complexes (oxidation states +1, +1.5 and +2), acquire significant cytotoxic potency (2–3 orders of magnitude determined by IC50 values) in combinations with N-acetylcysteine (NAC), cysteine, or ascorbate. In contrast, other divalent cations (Zn, Fe, Mo, and Co) evoked no cytotoxicity with these combinations. CuO NPs (0.1–1 µg/mL) together with 1 mM NAC triggered the formation of reactive oxygen species (ROS) within 2–6 h concomitantly with perturbation of the plasma membrane and caspase-independent cell death. Furthermore, NAC potently sensitized HCT116 colon carcinoma cells to Cu–organic complexes in which the metal ion coordinated with 5-(2-pyridylmethylene)-2-methylthio-imidazol-4-one or was present in the coordination sphere of the porphyrin macrocycle. The sensitization effect was detectable in a panel of mammalian tumor cell lines including the sublines with the determinants of chemotherapeutic drug resistance. The components of the combination were non-toxic if added separately. Electrochemical studies revealed that Cu cations underwent a stepwise reduction in the presence of NAC or ascorbate. This mechanism explains differential efficacy of individual Cu–organic compounds in cell sensitization depending on the availability of Cu ions for reduction. In the presence of oxygen, Cu+1 complexes can generate a superoxide anion in a Fenton-like reaction Cu+1L + O2 → O2−. + Cu+2L, where L is the organic ligand. Studies on artificial lipid membranes showed that NAC interacted with negatively charged phospholipids, an effect that can facilitate the penetration of CuO NPs across the membranes. Thus, electrochemical modification of Cu ions and subsequent ROS generation, as well as direct interaction with membranes, represent the mechanisms of irreversible membrane damage and cell death in response to metal reduction in inorganic and organic Cu-containing compounds.
Collapse
|
11
|
Volodina YL, Tikhomirov AS, Dezhenkova LG, Ramonova AA, Kononova AV, Andreeva DV, Kaluzhny DN, Schols D, Moisenovich MM, Shchekotikhin AE, Shtil AA. Thiophene-2-carboxamide derivatives of anthraquinone: A new potent antitumor chemotype. Eur J Med Chem 2021; 221:113521. [PMID: 34082225 DOI: 10.1016/j.ejmech.2021.113521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/01/2023]
Abstract
The anthraquinone scaffold has long been known as a source of efficacious antitumor drugs. In particular, the various chemical modifications of the side chains in this scaffold have yielded the compounds potent for the wild type tumor cells, their counterparts with molecular determinants of altered drug response, as well as in vivo settings. Further exploring the chemotype of anticancer heteroarene-fused anthraquinones, we herein demonstrate that derivative of anthra[2,3-b]thiophene-2-carboxamide, (compound 8) is highly potent against a panel of human tumor cell lines and their drug resistant variants. Treatment with submicromolar or low micromolar concentrations of 8 for only 30 min was sufficient to trigger lethal damage of K562 chronic myelogenous leukemia cells. Compound 8 (2.5 μM, 3-6 h) induced an apoptotic cell death as determined by concomitant activation of caspases 3 and 9, cleavage of poly(ADP-ribose) polymerase, increase of Annexin V/propidium iodide double stained cells, DNA fragmentation (subG1 fraction) and a decrease of mitochondrial membrane potential. Neither a significant interaction with double stranded DNA nor strong inhibition of the DNA dependent enzyme topoisomerase 1 by 8 were detectable in cell free systems. Laser scanning confocal microscopy revealed that some amount of 8 was detectable in mitochondria as early as 5 min after the addition to the cells; exposure for 1 h caused significant morphological changes and clustering of mitochondria. The bioisosteric analog 2 in which the thiophene ring was replaced with furan was less active although the patterns of cytotoxicity of both derivatives were similar. These results point at the specific role of the sulfur atom in the antitumor properties of carboxamide derivatives of heteroarene-fused anthraquinone.
Collapse
Affiliation(s)
- Yulia L Volodina
- Blokhin Cancer Center, 24 Kashirskoye Shosse, Moscow, 115478, Russia; Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | | | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Alla A Ramonova
- Faculty of Biology, Moscow State University, 1 Leninskie Gory, Moscow, Russia
| | - Anastasia V Kononova
- I.M. Sechenov First Moscow State Medical University, 2 B. Pirogovskaya Street Bld.4, Moscow, 119435, Russia
| | - Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991, Moscow, Russia
| | - Dominique Schols
- Rega Institute for Medical Research, K.U. Leuven, 3000, Leuven, Belgium
| | | | | | - Alexander A Shtil
- Blokhin Cancer Center, 24 Kashirskoye Shosse, Moscow, 115478, Russia; Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| |
Collapse
|
12
|
Butowska K, Woziwodzka A, Borowik A, Piosik J. Polymeric Nanocarriers: A Transformation in Doxorubicin Therapies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2135. [PMID: 33922291 PMCID: PMC8122860 DOI: 10.3390/ma14092135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Doxorubicin, a member of the anthracycline family, is a common anticancer agent often used as a first line treatment for the wide spectrum of cancers. Doxorubicin-based chemotherapy, although effective, is associated with serious side effects, such as irreversible cardiotoxicity or nephrotoxicity. Those often life-threatening adverse risks, responsible for the elongation of the patients' recuperation period and increasing medical expenses, have prompted the need for creating novel and safer drug delivery systems. Among many proposed concepts, polymeric nanocarriers are shown to be a promising approach, allowing for controlled and selective drug delivery, simultaneously enhancing its activity towards cancerous cells and reducing toxic effects on healthy tissues. This article is a chronological examination of the history of the work progress on polymeric nanostructures, designed as efficient doxorubicin nanocarriers, with the emphasis on the main achievements of 2010-2020. Numerous publications have been reviewed to provide an essential summation of the nanopolymer types and their essential properties, mechanisms towards efficient drug delivery, as well as active targeting stimuli-responsive strategies that are currently utilized in the doxorubicin transportation field.
Collapse
Affiliation(s)
- Kamila Butowska
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland; (K.B.); (A.W.); (A.B.)
| | - Anna Woziwodzka
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland; (K.B.); (A.W.); (A.B.)
| | - Agnieszka Borowik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland; (K.B.); (A.W.); (A.B.)
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA
| | - Jacek Piosik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland; (K.B.); (A.W.); (A.B.)
| |
Collapse
|
13
|
Shwetha B, Sudhanva MS, Jagadeesha GS, Thimmegowda NR, Hamse VK, Sridhar BT, Thimmaiah KN, Ananda Kumar CS, Shobith R, Rangappa KS. Furan-2-carboxamide derivative, a novel microtubule stabilizing agent induces mitotic arrest and potentiates apoptosis in cancer cells. Bioorg Chem 2021; 108:104586. [PMID: 33607574 DOI: 10.1016/j.bioorg.2020.104586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/12/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
The vital role played by microtubules in the cell division process, marks them as a potential druggable target to decimate cancer. A novel furan-2-carboxamide based small molecule, is a selective microtubule stabilizing agent (MSA) with IC50 ranging from 4 µM to 8 µM in different cancer cell lines. Inhibition of tubulin polymerization or stabilization of tubulin polymers abrogates chromosomal segregation during cell division, results in cell cycle arrest and leads to cell death due to the delayed repair mechanism. A novel furan-2-carboxamide based small molecule exhibited potent anti-proliferative and anti-metastatic property In-Vitro against the panel of cancer cells. Annexin V-FITC/PI, double staining reveals potent cytotoxic effect of SH09 against HeLa cells. FACS analysis displays induction of G2/M arrest and accumulation of subG1 population of cells upon treatment with SH09. Molecular docking study unveils SH09 binding affinity to the Taxol binding pocket of tubulin proteins and MM-GBSA also confirms strong binding energies of SH09 with tubulin proteins.
Collapse
Affiliation(s)
- B Shwetha
- Department of Nanotechnology, CPGS, Visvesvaraya Technological University, Muddenahalli, Karnataka 562101, India
| | - M Srinivasa Sudhanva
- Adichunchanagiri Institute for Molecular Medicine, AIMS, Adichunchanagiri University, BG Nagara 571448, Karnataka 02, India; Faculty of Natural Sciences, Adichunchanagiri University, BG Nagara 571448, Karnataka, India
| | - G S Jagadeesha
- Department of Chemistry, Govt. S. K. S. J. Technological Institute (Affiliated to Visvesvaraya Technological University), K R Circle, Bangalore, Karnataka 560001, India
| | - N R Thimmegowda
- Department of Chemistry, Govt. S. K. S. J. Technological Institute (Affiliated to Visvesvaraya Technological University), K R Circle, Bangalore, Karnataka 560001, India
| | - Vivek K Hamse
- Faculty of Natural Sciences, Adichunchanagiri University, BG Nagara 571448, Karnataka, India
| | - B T Sridhar
- Department of Chemistry, Maharani's Science College for Women, Palace Road, Bangalore, Karnataka 560001, India
| | - K N Thimmaiah
- Division of Natural Science Northwest Mississippi Community College, University of Mississippi Campus, Desoto Centre, Southaven, MS 38671, USA
| | - C S Ananda Kumar
- Department of Nanotechnology, CPGS, Visvesvaraya Technological University, Muddenahalli, Karnataka 562101, India; Centre for Material Science, University of Mysore, Mysore, Karnataka 570006, India.
| | - Rangappa Shobith
- Adichunchanagiri Institute for Molecular Medicine, AIMS, Adichunchanagiri University, BG Nagara 571448, Karnataka 02, India.
| | - K S Rangappa
- Institution of Excellence, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| |
Collapse
|
14
|
Singh M, Malhotra L, Haque MA, Kumar M, Tikhomirov A, Litvinova V, Korolev AM, Ethayathulla AS, Das U, Shchekotikhin AE, Kaur P. Heteroarene-fused anthraquinone derivatives as potential modulators for human aurora kinase B. Biochimie 2021; 182:152-165. [PMID: 33417980 DOI: 10.1016/j.biochi.2020.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023]
Abstract
The quest for effective anticancer therapeutics continues to be extensively pursued. Over the past century, several drugs have been developed, however, a majority of these drugs have a poor therapeutic index and increased toxicity profile. Hence, there still exists ample opportunity to discover safe and effective anticancer drugs. Aurora Kinase B (AurB), a member of the Aurora kinase family and a key regulator of mitotic cell division, is found to be frequently overexpressed in a variety of human cancers and has thus emerged as an attractive target for the design of anticancer therapeutics. In the present study, a structure-based scaffold hopping approach was utilized to modify the heterocyclic moiety of (S)-3-(3-aminopyrrolidine-1-carbonyl)-4,11-dihydroxy-2-methylanthra [2,3-b]furan-5,10-dione (anthrafuran 1) to generate a series of heteroarene-fused anthraquinone derivatives, which were then subjected to virtual screening for the identification of potential AurB inhibitors. The obtained hits were subsequently synthesized and evaluated by using a combination of in silico and biophysical techniques for elucidating their in vitro binding and inhibition activity with recombinantly expressed AurB. Four identified hits presented an improved binding profile as compared to their parent analog anthrafuran 1. One derivative, anthrathiophene 2 demonstrated excellent in vitro inhibition of AurB (7.3 μM).
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Md Anzarul Haque
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Alexander Tikhomirov
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Valeria Litvinova
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Alexander M Korolev
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
15
|
A facile access to 2-substituted naphtho[2,3-g]quinoline-3-carboxylic acid esters via intramolecular cyclization and PyBOP-promoted functionalization. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Novel curcumin derivatives as P-glycoprotein inhibitors: Molecular modeling, synthesis and sensitization of multidrug resistant cells to doxorubicin. Eur J Med Chem 2020; 198:112331. [DOI: 10.1016/j.ejmech.2020.112331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 01/18/2023]
|
17
|
Tikhomirov AS, Litvinova VA, Andreeva DV, Tsvetkov VB, Dezhenkova LG, Volodina YL, Kaluzhny DN, Treshalin ID, Schols D, Ramonova AA, Moisenovich MM, Shtil AA, Shchekotikhin AE. Amides of pyrrole- and thiophene-fused anthraquinone derivatives: A role of the heterocyclic core in antitumor properties. Eur J Med Chem 2020; 199:112294. [PMID: 32428792 DOI: 10.1016/j.ejmech.2020.112294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022]
Abstract
Heteroarene-fused anthraquinone derivatives represent a class of perspective anticancer drug candidates capable of targeting multiple vital processes including drug resistance. Taking advantage of previously demonstrated potential of amide derivatives of heteroarene-fused anthraquinones, we herein dissected the role of the heterocyclic core in antitumor properties. A new series of naphtho[2,3-f]indole-3- and anthra[2,3-b]thiophene-3-carboxamides was synthesized via coupling the respective acids with cyclic diamines. New compounds demonstrated a submicromolar antiproliferative potency close to doxorubicin (Dox) against five tumor cell lines of various tissue origin. In contrast to Dox, the new compounds were similarly cytotoxic for HCT116 colon carcinoma cells (wild type p53) and their isogenic p53 knockout counterparts. Modification of the heterocyclic core changed the targeting properties: the best-in-series naphtho[2,3-f]indole-3-carboxamide 8 formed more affine complexes with DNA duplex than furan and thiophene analogs, a property that can be translated into a stronger inhibition of topoisomerase 1 mediated DNA unwinding. At tolerable doses the water soluble derivative 8 significantly inhibited tumor growth (up to 79%) and increased the lifespan (153%) of mice bearing P388 lymphoma transplants. Together with better solubility for parenteral administration and well tolerance by animals of the indole derivative 8 indicates prospects for further search of new antitumor drug candidates among the heteroarene-fused anthraquinones.
Collapse
Affiliation(s)
- Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow, 125047, Russian Federation
| | - Valeria A Litvinova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Vladimir B Tsvetkov
- Computational Oncology Group, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya, 119991, Moscow, Russia; Research and Clinical Center for Physical Chemical Medicine, 1A M. Pirogovskaya Street, Moscow, 119435, Russia
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Yulia L Volodina
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow, 119991, Russia
| | - Ivan D Treshalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Dominique Schols
- Rega Institute for Medical Research, K.U. Leuven, 3000, Leuven, Belgium
| | - Alla A Ramonova
- Department of Biology, Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Mikhail M Moisenovich
- Department of Biology, Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Alexander A Shtil
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | | |
Collapse
|
18
|
Preclinical Pharmacokinetic and Toxicity Studies of Anthrafuran – A New Antitumor Agent. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Shchekotikhin AE, Treshalina HM, Treshchalin MI, Pereverzeva ER, Isakova HB, Tikhomirov AS. Experimental Evaluation of Anticancer Efficiency and Acute Toxicity of Anthrafuran for Oral Administration. Pharmaceuticals (Basel) 2020; 13:ph13050081. [PMID: 32353946 PMCID: PMC7281648 DOI: 10.3390/ph13050081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 12/26/2022] Open
Abstract
The new antitumor agent anthrafuran has demonstrated a consistent effect in murine tumor models when administered parenterally due to the simultaneous inhibition of multiple cellular targets such as topoisomerases I/II and protein kinases. In this study, we assessed the anticancer efficiency and acute toxicity of anthrafuran administered orally. The action of anthrafuran was studied on transplanted tumor models which included P388 leukemia, Ca755 mammary adenocarcinoma, LLC lung carcinoma, and T47D human breast cancer xenografts on Balb/c nude mice. A significant antitumor efficacy of oral anthrafuran was revealed for all tested tumor models as follows: T/Cmax = 219% for P388, TGImax = 91% for Ca755, TGImax = 84% with CRmax = 54% for LLC, and T/C = 38% for T47D. The optimal treatment schedule of orally administered anthrafuran was 70–100 mg/kg given daily for five days. The LD50 value of orally administered anthrafuran (306.7 mg/kg) in mice was six times higher than that for i.p. administration (52.5 mg/kg). The rates of antitumor efficacy and acute toxicity indicate the high potential for further research on anthrafuran as a new original oral anticancer multitarget agent with an expected satisfactory tolerability and bioavailability.
Collapse
Affiliation(s)
- Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (M.I.T.); (E.R.P.); (H.B.I.); (A.S.T.)
- Correspondence:
| | - Helen M. Treshalina
- Federal State Budgetary Institution «National Medical Research Center of Oncology of N.N.Blokhin», Ministry of Health of Russia, 24 Kashirskoye sh., Moscow 115548, Russia;
| | - Michael I. Treshchalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (M.I.T.); (E.R.P.); (H.B.I.); (A.S.T.)
| | - Eleonora R. Pereverzeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (M.I.T.); (E.R.P.); (H.B.I.); (A.S.T.)
| | - Helen B. Isakova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (M.I.T.); (E.R.P.); (H.B.I.); (A.S.T.)
| | - Alexander S. Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (M.I.T.); (E.R.P.); (H.B.I.); (A.S.T.)
| |
Collapse
|
20
|
Lee JF, Chang TY, Liu ZF, Lee NZ, Yeh YH, Chen YS, Chen TC, Chou HS, Li TK, Lee SB, Lin MH. RETRACTED: Design, synthesis, and biological evaluation of heterotetracyclic quinolinone derivatives as anticancer agents targeting topoisomerases. Eur J Med Chem 2020; 190:112074. [PMID: 32045788 DOI: 10.1016/j.ejmech.2020.112074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 01/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors. The authors regret to inform that they would like to withdraw this accepted article, due to serious errors in authorship, affiliations, material sources and supporting grant names/numbers. The authors sincerely apologize for these oversights and miscommunications the study caused.
Collapse
Affiliation(s)
- Jiann-Fong Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Ting-Yu Chang
- PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Zheng-Fang Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Nian-Zhe Lee
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hsiu Yeh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Song Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | - Tsai-Kun Li
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Bau Lee
- PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
21
|
Nikoofar K, Shahriyari F. Novel bio-based core-shell organic-inorganic nanohybrid from embedding aspartic acid-guanine ionic liquid on the hydroxylated nano silica surface (nano [(Asp-Gua) IL@PEG-SiO2]): A versatile nanostructure for the synthesis of bis(2,3-dihydroquinazolin-4(1H)-one) derivatives and tricarboxamides under green media. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Radchenko AS, Kostyukov AA, Markova AA, Shtil AA, Nekipelova TD, Borissevitch IE, Kuzmin VA. Photoactivated biscarbocyanine dye with two conjugated chromophores: complexes with albumin, photochemical and phototoxic properties. Photochem Photobiol Sci 2019; 18:2461-2468. [PMID: 31410432 DOI: 10.1039/c9pp00241c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexes of photosensitizers with blood proteins play an essential role in their delivery to the cell, as well as in the efficacy of photodynamic therapy. Biscarbocyanine dye non-covalently binds human serum albumin (HSA), the dissociation constant of the dye with albumin being Kd = (1.7 ± 0.1) × 10-5 M. According to time correlated single photon counting (TCSPC) fluorescence lifetime spectroscopy data, two types of complexes with lifetimes of 1.0 ns and 2.5 ns are formed between the dye and HSA. Confocal fluorescence microscopy has unambiguously shown the penetration of biscarbocyanine into endoplasmic reticulum, lysosomes, mitochondria and nuclei of the cells. The dye demonstrates photocytotoxicity towards the colon carcinoma HCT116 cells with IC50 = 0.3 μM. Hydrophobicity of the polymethine chain and the presence of two positive charges on the dye molecule contribute to the effective binding of the dye with HSA and the penetration into cells. These facts allow considering the biscarbocyanine dye as a promising agent for the photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Alexandra S Radchenko
- Emanuel Institute of Biochemical Physics RAS, Kosygin st., 4, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Tikhomirov AS, Ivanov IV, Korolev AM, Shchekotikhin AE. β-Hydroxylation of anthraquinone derivatives with benzaldehyde oxime as a source of hydroxyl group. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Farcas M, Gavrea AA, Gulei D, Ionescu C, Irimie A, Catana CS, Berindan-Neagoe I. SIRT1 in the Development and Treatment of Hepatocellular Carcinoma. Front Nutr 2019; 6:148. [PMID: 31608282 PMCID: PMC6773871 DOI: 10.3389/fnut.2019.00148] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Current treatment options for inoperable HCCs have decreased therapeutic efficacy and are associated with systemic toxicity and chemoresistance. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide–dependent enzyme that is frequently overexpressed in HCC, where it promotes tumorigenicity, metastasis, and chemoresistance. SIRT1 also maintains the tumorigenic and self-renewal proprieties of liver cancer stem cells. Multiple tumor-suppressive microRNAs (miRNAs) are downregulated in HCC and, as a consequence, permit SIRT1-induced tumorigenicity. However, either directly targeting SIRT1, combining conventional chemotherapy with SIRT1 inhibitors, or upregulating tumor-suppressive miRNAs may improve therapeutic efficacy and patient outcomes. Here, we present the interaction between SIRT1, miRNAs, and liver cancer stem cells and discuss the consequences of their interplay for the development and treatment of HCC.
Collapse
Affiliation(s)
- Marius Farcas
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Alexandru Gavrea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Calin Ionescu
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,5th Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| | - Cristina S Catana
- Department of Medical Biochemistry, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| |
Collapse
|
25
|
Ivanova ES, Tatarskiy VV, Yastrebova MA, Khamidullina AI, Shunaev AV, Kalinina AA, Zeifman AA, Novikov FN, Dutikova YV, Chilov GG, Shtil AA. PF‑114, a novel selective inhibitor of BCR‑ABL tyrosine kinase, is a potent inducer of apoptosis in chronic myelogenous leukemia cells. Int J Oncol 2019; 55:289-297. [PMID: 31115499 DOI: 10.3892/ijo.2019.4801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/11/2019] [Indexed: 11/06/2022] Open
Abstract
A t(9;22) chromosomal translocation which forms the chimeric tyrosine kinase breakpoint cluster region (BCR)‑Abelson murine leukemia viral oncogene homolog 1 (ABL) is a key mechanism underlying the pathogenesis of chronic myelogenous leukemia (CML). Pharmacological inhibition of BCR‑ABL with imatinib (Gleevec) has been reported as an effective targeted therapy; however, mutations (including the kinase domain of ABL) suppress the efficacy of inhibitors. PF‑114, a derivative of the third generation BCR‑ABL inhibitor ponatinib, demonstrated a high inhibitory activity against wild-type and mutant BCR‑ABL forms, such as the clinically important T315I. Furthermore, PF‑114 exhibited preferential kinase selectivity, safety, notable pharmacokinetic properties and therapeutic efficacy in a murine model. Investigation into the mechanisms of CML cell death revealed an exceptional potency of PF‑114 (at low nanomolar concentrations) for the CML‑derived K562 cell line, whereas leukemia cell lines that lack the chimeric tyrosine kinase were markedly more refractory. The molecular ordering of events mechanistically associated with K562 cell death included the dephosphorylation of CrkL adaptor protein followed by inhibition of ERK1/2 and Akt, G1 arrest, a decrease of phosphorylated Bcl‑2‑associated death promoter, Bcl‑2‑like protein 11, BH3 interacting‑domain death agonist, Bcl‑extra large and Bcl‑2 family apoptosis regulator, and reduced mitochondrial transmembrane potential. Increased Annexin V reactivity, activation of caspases and poly(ADP‑ribose)polymerase cleavage were proposed to lead to internucleosomal DNA fragmentation. Thus, PF‑114 may be a potent inducer of apoptosis in CML cells. Nevertheless, activation of STAT3 phosphorylation in response to PF‑114 may permit cell rescue; thus, a combination of BCR‑ABL and STAT3 inhibitors should be considered for improved therapeutic outcome. Collectively, the targeted killing of BCR‑ABL‑positive cells, along with other beneficial properties, such as in vivo characteristics, suggests PF‑114 as a potential candidate for analysis in clinical trials with CML patients.
Collapse
Affiliation(s)
| | | | | | | | - Alexei V Shunaev
- Blokhin National Medical Center of Oncology, 115478 Moscow, Russia
| | | | - Alexei A Zeifman
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, and FusionPharma, 119991 Moscow, Russia
| | - Fedor N Novikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, and FusionPharma, 119991 Moscow, Russia
| | | | - Ghermes G Chilov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, and FusionPharma, 119991 Moscow, Russia
| | | |
Collapse
|
26
|
Li Y, Jiang JG. Health functions and structure-activity relationships of natural anthraquinones from plants. Food Funct 2019; 9:6063-6080. [PMID: 30484455 DOI: 10.1039/c8fo01569d] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anthraquinone compounds with the anthraquinone ring structure are widely found in traditional Chinese medicines and they are attracting a lot of attention due to their good pharmacological activity. Diversities of anthraquinones depend on their chemical structures, such as the number of anthraquinone rings and the substituents; what's more, the difference in chemical structure determines the difference in physiological activity. Based on results of previous studies, this review summarizes several natural anthraquinones identified from Chinese herbal medicines and their physiological activities including anti-cancer, anti-pathogenic microorganisms, anti-inflammatory, anti-oxidation, anti-osteoporosis, anti-depression, and anti-constipation. The source, effect, model, and action mechanism of the active anthraquinones are described in detail, from which their structure-activity relationship is summarized. By analyzing the relationship between anthraquinone structure and function, we found that, on the whole structure, the anthraquinone ring and anthraquinone glycosides have significant anticancer activity and anti-constipation activity, while for their substituents, anthraquinones substituted by alizarin have significant antioxidant activity and the polarity of the substituents is closely related to their antibacterial activities.
Collapse
Affiliation(s)
- Yu Li
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | | |
Collapse
|
27
|
Lin CY, Islam A, Su CJ, Tikhomirov AS, Shchekotikhin AE, Chuang SM, Chueh PJ, Chen YL. Engagement with tNOX (ENOX2) to Inhibit SIRT1 and Activate p53-Dependent and -Independent Apoptotic Pathways by Novel 4,11-Diaminoanthra[2,3- b]furan-5,10-diones in Hepatocellular Carcinoma Cells. Cancers (Basel) 2019; 11:cancers11030420. [PMID: 30909652 PMCID: PMC6468551 DOI: 10.3390/cancers11030420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of the liver and is among the top three causes of cancer-associated death worldwide. However, the clinical use of chemotherapy for HCC has been limited by various challenges, emphasizing the urgent need for novel agents with improved anticancer properties. We recently synthesized and characterized a series of 4,11-diaminoanthra[2,3-b]furan-5,10-dione derivatives that exhibit potent apoptotic activity against an array of cancer cell lines, including variants with multidrug resistance. Their effect on liver cancer cells, however, was unknown. Here, we investigated three selected 4,11-diaminoanthra[2,3-b]furan-5,10-dione derivatives (compounds 1–3) for their cytotoxicity and the underlying molecular mechanisms in wild-type or p53-deficient HCC cells. Cytotoxicity was determined by WST-1 assays and cell impedance measurements and apoptosis was analyzed by flow cytometry. The interaction between compounds and tumor-associated NADH oxidase (tNOX, ENOX2) was studied by cellular thermal shift assay (CETSA). We found that compound 1 and 2 induced significant cytotoxicity in both HepG2 and Hep3B lines. CETSA revealed that compounds 1 and 2 directly engaged with tNOX, leading to a decrease in the cellular NAD+/NADH ratio. This decreased the NAD+-dependent activity of Sirtuin 1 (SIRT1) deacetylase. In p53-wild-type HepG2 cells, p53 acetylation/activation was enhanced, possibly due to the reduction in SIRT1 activity, and apoptosis was observed. In p53-deficient Hep3B cells, the reduction in SIRT1 activity increased the acetylation of c-Myc, thereby reactivating the TRAIL pathway and, ultimately leading to apoptosis. These compounds thus trigger apoptosis in both cell types, but via different pathways. Taken together, our data show that derivatives 1 and 2 of 4,11-diaminoanthra[2,3-b]furan-5,10-diones engage with tNOX and inhibit its oxidase activity. This results in cytotoxicity via apoptosis through tNOX-SIRT1 axis to enhance the acetylation of p53 or c-Myc in HCC cells, depending on their p53 status.
Collapse
Affiliation(s)
- Chia-Yang Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Claire J Su
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Morrison Academy in Taichung, 216 Si Ping Road, Taichung 40679, Taiwan.
| | - Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11B. Pirogovskaya Street, Moscow 119021, Russia.
- Department of Organic Chemistry, Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047, Russia.
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11B. Pirogovskaya Street, Moscow 119021, Russia.
- Department of Organic Chemistry, Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047, Russia.
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Graduate Institute of Basic Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Yao Li Chen
- tian Hospital, Changhua 50008, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
28
|
Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 2019; 171:129-168. [PMID: 30917303 DOI: 10.1016/j.ejmech.2019.03.034] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The topoisomerase enzymes play an important role in DNA metabolism, and searching for enzyme inhibitors is an important target in the search for new anticancer drugs. Discovery of new anticancer chemotherapeutical capable of inhibiting topoisomerase enzymes is highlighted in anticancer research. Therefore, biologists, organic chemists and medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase inhibitors in the past decade, and divides them into nine classes by structural characteristics, including N-heterocycles compounds, quinone derivatives, flavonoids derivatives, coumarin derivatives, lignan derivatives, polyphenol derivatives, diterpenes derivatives, fatty acids derivatives, and metal complexes. Then we discussed the application prospect and development of these anticancer compounds, as well as concluded parts of their structural-activity relationships. We believe this review would be invaluable in helping to further search potential topoisomerase inhibition as antitumor agent in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhixiang Yuan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
29
|
Volodina YL, Dezhenkova LG, Tikhomirov AS, Tatarskiy VV, Kaluzhny DN, Moisenovich AM, Moisenovich MM, Isagulieva AK, Shtil AA, Tsvetkov VB, Shchekotikhin AE. New anthra[2,3-b]furancarboxamides: A role of positioning of the carboxamide moiety in antitumor properties. Eur J Med Chem 2019; 165:31-45. [DOI: 10.1016/j.ejmech.2018.12.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/09/2018] [Accepted: 12/25/2018] [Indexed: 01/10/2023]
|
30
|
Sha Q, Liu H, Li Y. Trifluoroacetic Acid Catalyzed Cascade Reactions of 2,3‐Diketoesters with Cyclohexane‐1,3‐diones: Strategy Towards 4‐Hydroxybenzofuran Derivatives. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qiang Sha
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Haixuan Liu
- Sanhome R&D CentreNanjing Sanhome Pharmaceutical Co., Ltd. Nanjing 211135 People's Republic of China
| | - Yuan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
31
|
Marinello J, Delcuratolo M, Capranico G. Anthracyclines as Topoisomerase II Poisons: From Early Studies to New Perspectives. Int J Mol Sci 2018; 19:ijms19113480. [PMID: 30404148 PMCID: PMC6275052 DOI: 10.3390/ijms19113480] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian DNA topoisomerases II are targets of anticancer anthracyclines that act by stabilizing enzyme-DNA complexes wherein DNA strands are cut and covalently linked to the protein. This molecular mechanism is the molecular basis of anthracycline anticancer activity as well as the toxic effects such as cardiomyopathy and induction of secondary cancers. Even though anthracyclines have been used in the clinic for more than 50 years for solid and blood cancers, the search of breakthrough analogs has substantially failed. The recent developments of personalized medicine, availability of individual genomic information, and immune therapy are expected to change significantly human cancer therapy. Here, we discuss the knowledge of anthracyclines as Topoisomerase II poisons, their molecular and cellular effects and toxicity along with current efforts to improve the therapeutic index. Then, we discuss the contribution of the immune system in the anticancer activity of anthracyclines, and the need to increase our knowledge of molecular mechanisms connecting the drug targets to the immune stimulatory pathways in cancer cells. We propose that the complete definition of the molecular interaction of anthracyclines with the immune system may open up more effective and safer ways to treat patients with these drugs.
Collapse
Affiliation(s)
- Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Maria Delcuratolo
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
32
|
Heterocyclic analogs of 5,12-naphthacenequinone 15*. Synthesis of new anthra[2,3-b]thiophene-3(2)-carboxylic acids. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2316-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Konovalov AI, Antipin IS, Burilov VA, Madzhidov TI, Kurbangalieva AR, Nemtarev AV, Solovieva SE, Stoikov II, Mamedov VA, Zakharova LY, Gavrilova EL, Sinyashin OG, Balova IA, Vasilyev AV, Zenkevich IG, Krasavin MY, Kuznetsov MA, Molchanov AP, Novikov MS, Nikolaev VA, Rodina LL, Khlebnikov AF, Beletskaya IP, Vatsadze SZ, Gromov SP, Zyk NV, Lebedev AT, Lemenovskii DA, Petrosyan VS, Nenaidenko VG, Negrebetskii VV, Baukov YI, Shmigol’ TA, Korlyukov AA, Tikhomirov AS, Shchekotikhin AE, Traven’ VF, Voskresenskii LG, Zubkov FI, Golubchikov OA, Semeikin AS, Berezin DB, Stuzhin PA, Filimonov VD, Krasnokutskaya EA, Fedorov AY, Nyuchev AV, Orlov VY, Begunov RS, Rusakov AI, Kolobov AV, Kofanov ER, Fedotova OV, Egorova AY, Charushin VN, Chupakhin ON, Klimochkin YN, Osyanin VA, Reznikov AN, Fisyuk AS, Sagitullina GP, Aksenov AV, Aksenov NA, Grachev MK, Maslennikova VI, Koroteev MP, Brel’ AK, Lisina SV, Medvedeva SM, Shikhaliev KS, Suboch GA, Tovbis MS, Mironovich LM, Ivanov SM, Kurbatov SV, Kletskii ME, Burov ON, Kobrakov KI, Kuznetsov DN. Modern Trends of Organic Chemistry in Russian Universities. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s107042801802001x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Yu SW, Zhao SH, Chen H, Xu XY, Yuan WC, Zhang XM. Construction of Novel Kojic Acid Fused Furans by Domino Reactions of a Kojic Acid Derivative with (Z
)-Bromonitroalkenes. ChemistrySelect 2018. [DOI: 10.1002/slct.201800396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shuo-Wen Yu
- Key Laboratory for Asymmetric Synthesis and Chiraltechnology of Sichuan Province; Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Si-Han Zhao
- Key Laboratory for Asymmetric Synthesis and Chiraltechnology of Sichuan Province; Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Hui Chen
- Key Laboratory for Asymmetric Synthesis and Chiraltechnology of Sichuan Province; Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Xiao-Ying Xu
- Key Laboratory for Asymmetric Synthesis and Chiraltechnology of Sichuan Province; Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| | - Wei-Cheng Yuan
- Key Laboratory for Asymmetric Synthesis and Chiraltechnology of Sichuan Province; Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| | - Xiao-Mei Zhang
- Key Laboratory for Asymmetric Synthesis and Chiraltechnology of Sichuan Province; Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| |
Collapse
|
35
|
Singh PK, Silakari O. The Current Status of O-Heterocycles: A Synthetic and Medicinal Overview. ChemMedChem 2018; 13:1071-1087. [PMID: 29603634 DOI: 10.1002/cmdc.201800119] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/23/2018] [Indexed: 12/20/2022]
Abstract
O-Heterocycles have been explored in the field of medicinal chemistry for a long time, but their significance has not been duly recognised and they are often shunned in favour of N-heterocycles. The design of bioactive molecules for nearly every pathophysiological condition is primarily focused on novel N-heterocycles. The main reasons for such bias include the ease of synthesis and possible mimicking of physiological molecules by N-heterocycles. But considering only this criterion rarely provides breakthrough molecules for a given disease condition, and instead the risks of toxicity or side effects are increased with such molecules. On the other hand, owing to improved synthetic feasibility, O-heterocycles have established themselves as equally potent lead molecules for a wide range of pathophysiological conditions. In the last decade there have been hundreds of reports validating the fact that equally potent molecules can be designed and developed by using O-heterocycles, and these are also expected to have comparably low toxicity. Even so, researchers tend to remain biased toward the use of N-heterocycles over O-heterocycles. Thus, this review provides a critical analysis of the synthesis and medicinal attributes of O-heterocycles, such as pyrones, oxazolones, furanones, oxetanes, oxazolidinones, and dioxolonones, and others, reported in the last five years, underlining the need for and the advantages guiding researchers toward them.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
36
|
Monier M, El-Mekabaty A, Elattar KM. Five-membered ring systems with one heteroatom: Synthetic routes, chemical reactivity, and biological properties of furan-carboxamide analogues. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1421227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M. Monier
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu, KSA
| | - Ahmed El-Mekabaty
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Khaled M. Elattar
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
37
|
Tikhomirov AS, Lin CY, Volodina YL, Dezhenkova LG, Tatarskiy VV, Schols D, Shtil AA, Kaur P, Chueh PJ, Shchekotikhin AE. New antitumor anthra[2,3-b]furan-3-carboxamides: Synthesis and structure-activity relationship. Eur J Med Chem 2018; 148:128-139. [DOI: 10.1016/j.ejmech.2018.02.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 11/16/2022]
|
38
|
Heterocyclic Analogs of 5,12-Naphthacenequinone 14*. Synthesis of naphtho[2,3-f]indole-3-carboxylic Acid Derivatives. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2173-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Treshalina HM, Romanenko VI, Kaluzhny DN, Treshalin MI, Nikitin AA, Tikhomirov AS, Shchekotikhin AE. Development and pharmaceutical evaluation of the anticancer Anthrafuran/Cavitron complex, a prototypic parenteral drug formulation. Eur J Pharm Sci 2017; 109:631-637. [DOI: 10.1016/j.ejps.2017.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/24/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022]
|
40
|
Vasilyeva SV, Shtil AA, Petrova AS, Balakhnin SM, Achigecheva PY, Stetsenko DA, Silnikov VN. Conjugates of phosphorylated zalcitabine and lamivudine with SiO2 nanoparticles: Synthesis by CuAAC click chemistry and preliminary assessment of anti-HIV and antiproliferative activity. Bioorg Med Chem 2017; 25:1696-1702. [DOI: 10.1016/j.bmc.2017.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 12/01/2022]
|
41
|
Vijayaprasad P, Venkanna A, Shanker M, Kishan E, Venkateswar Rao P. Triflic acid promoted solvent free synthesis of densely functionalized furans. RSC Adv 2017. [DOI: 10.1039/c7ra00489c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple, efficient and novel methodology has been developed for the synthesis of substituted furans mediated by triflic acid. In the reaction initial step involves the Friedel–Crafts arylation, followed by the dehydrative cyclization.
Collapse
Affiliation(s)
- Pulaganti Vijayaprasad
- Department of Chemistry
- University College of Science
- Osmania University
- Hyderabad 500007
- India
| | - Avudoddi Venkanna
- Department of Chemistry
- University College of Science
- Osmania University
- Hyderabad 500007
- India
| | - Medi Shanker
- Department of Chemistry
- University College of Science
- Osmania University
- Hyderabad 500007
- India
| | - Eslavath Kishan
- Department of Chemistry
- University College of Science
- Osmania University
- Hyderabad 500007
- India
| | | |
Collapse
|
42
|
Mazza A, Beccalli EM, Contini A, Garcia-Argaez AN, Dalla Via L, Gelmi ML. A new scaffold of topoisomerase I inhibitors: Design, synthesis and biological evaluation. Eur J Med Chem 2016; 124:326-339. [DOI: 10.1016/j.ejmech.2016.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/09/2016] [Accepted: 08/21/2016] [Indexed: 01/24/2023]
|