1
|
Tao J, Tian B, Tu H, Guo R, Ma X, Yang Z, Wu J. Novel "Phenyl-Pyrazoline-Oxadiazole" Ternary Substructure Derivatives: Synthesis, Insecticidal Activities, and Structure-Activity Relationship Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39440947 DOI: 10.1021/acs.jafc.4c05484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In recent years, isoxazole insecticides or parasiticides targeting the γ-aminobutyric acid receptor, such as fluralaner or fluxametamide, featured a novel chemical structure and exhibited potent insecticidal activity with no-cross resistance. Thus, many research institutes have tried to modify the structures of these agents to find a new insecticide. Previously, the majority of researchers stuck to the "phenyl-isoxazole-phenyl" structure, making modifications only to other components. In this study, the "phenyl-isoxazole-phenyl" ternary motif was modified for the first time based on bioisosterism theory. A series of new derivatives carrying pyrazoline and 1,3,4-oxadiazole moieties were designed and synthesized to investigate their insecticidal activities against the diamondback moth (Plutella xylostella) and fall armyworm (Spodoptera frugiperda). Preliminary bioassay data showed that some of the target compounds exhibited good insecticidal activities against P. xylostella and S. frugiperda. Especially, compound A21 showed insecticidal activity against P. xylostella (LC50 = 1.2 μg/mL) better than commercial insecticide ethiprole (LC50 = 2.9 μg/mL) but worse than parasiticide fluralaner (LC50 = 0.5 μg/mL). Similarly, compound A21 exhibited insecticidal activity to S. frugiperda (LC50 = 13.2 μg/mL) better than commercial insecticide fipronil (LC50 = 78.8 μg/mL) but worse than fluralaner (LC50 = 0.7 μg/mL). Compound A21 could serve as a potential lead compound to control P. xylostella and S. frugiperda. The three-dimensional quantitative structure-activity relationship model revealed that the further introduction of an electron-donating group in the 2- or 3-site may increase the insecticidal activity of A21. Molecular dynamics simulations showed that the hydrogen bond of A21 and receptor was important for the binding receptor. This study has identified a new substructure called "phenyl-pyrroline-oxadiazole" instead of the previously known "phenyl-isoxazole-phenyl" substructure, offering a useful guide for the design of novel insecticide molecules.
Collapse
Affiliation(s)
- Jiaxu Tao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Bihong Tian
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hong Tu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Renjiang Guo
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xining Ma
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhaokai Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
2
|
Bendi A, Yadav P, Saini K, Singh Bhathiwal A, Raghav N. A Comprehensive Examination of Heterocyclic Scaffold Chemistry for Antitubercular Activity. Chem Biodivers 2024; 21:e202400067. [PMID: 38500408 DOI: 10.1002/cbdv.202400067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Tuberculosis is a communicable disease which affects humans particularly the lungs and is transmitted mainly through air. Despite two decades of intensive research aimed at understanding and combating tuberculosis, persistent biological uncertainties continue to hinder progress. Nowadays, heterocyclic compounds have proven themselves in effective treatment of tuberculosis because of their wide range of biological and pharmacological activities. Antituberculosis or antimycobacterial agents encompass a broad array of compounds utilized singly or in conjunction to combat Mycobacterium infections, spanning from tuberculosis to leprosy. Here, we summarize the synthesis of various heterocyclic compounds which includes the greener synthetic route as well as use of nano compounds as catalyst along with their anti TB activities.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Rajanukunte, Itgalpura, 560064, Bangalore, India
| | - Priyanka Yadav
- Department of Chemistry, Faculty of Science, SGT University, 122505, Gurugram, Haryana, India
| | - Komal Saini
- Applied Sciences and Humanities, World College of Technology and Management, 122506, Gurugram, Haryana, India
| | - Anirudh Singh Bhathiwal
- Department of Chemistry, Faculty of Science, SGT University, 122505, Gurugram, Haryana, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, 136119, Kurukshetra, Haryana, India
| |
Collapse
|
3
|
Kumar N, Khanna A, Kaur K, Kaur H, Sharma A, Bedi PMS. Quinoline derivatives volunteering against antimicrobial resistance: rational approaches, design strategies, structure activity relationship and mechanistic insights. Mol Divers 2023; 27:1905-1934. [PMID: 36197551 PMCID: PMC9533295 DOI: 10.1007/s11030-022-10537-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022]
Abstract
Emergence of antimicrobial resistance has become a great threat to human species as there is shortage of development of new antimicrobial agents. So, its mandatary to combat AMR by initiating research and developing new novel antimicrobial agents. Among phytoconstituents, Quinoline (nitrogen containing heterocyclic) have played a wide role in providing new bioactive molecules. So, this review provides rational approaches, design strategies, structure activity relationship and mechanistic insights of newly developed quinoline derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harmandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | | |
Collapse
|
4
|
Kumar R, Singh H, Mazumder A, Yadav RK. Synthetic Approaches, Biological Activities, and Structure-Activity Relationship of Pyrazolines and Related Derivatives. Top Curr Chem (Cham) 2023; 381:12. [PMID: 37029841 DOI: 10.1007/s41061-023-00422-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023]
Abstract
It has been established that pyrazolines and their analogs are pharmacologically active scaffolds. The pyrazoline moiety is present in several marketed molecules with a wide range of uses, which has established its importance in pharmaceutical and agricultural sectors, as well as in industry. Due to its broad-spectrum utility, scientists are continuously captivated by pyrazolines and their derivatives to study their chemistry. Pyrazolines or their analogs can be prepared by several synthesis strategies, and the focus will always be on new greener and more economical ways for their synthesis. Among these methods, chalcones, hydrazines, diazo compounds, and hydrazones are most commonly applied under different reaction conditions for the synthesis of pyrazoline and its analogs. However, there is scope for other molecules such as Huisgen zwitterions, different metal catalysts, and nitrile imine to be used as starting reagents. The present article consists of recently reported synthetic protocols, pharmacological activities, and the structure-activity relationship of pyrazoline and its derivatives, which will be very useful to researchers.
Collapse
Affiliation(s)
- Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India.
| | - Himanshu Singh
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Ranjeet Kumar Yadav
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| |
Collapse
|
5
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Pyrazole and pyrazoline derivatives as antimalarial agents: A key review. Eur J Pharm Sci 2023; 183:106365. [PMID: 36563914 DOI: 10.1016/j.ejps.2022.106365] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/28/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Malaria poses a severe public health risk and a significant economic burden in disease-endemic countries. One of the most severe issues in malaria control is the development of drug resistance in malaria parasites. The standard treatment for malaria is artemisinin-combination therapy (ACT). Nevertheless, the Plasmodium parasite's extensive resistance to prior drugs and reduced ACT efficiency necessitates novel drug discovery. The progress in discovering novel, affordable, and effective antimalarial agents is significant in combating drug resistance, and the hybrid drug concept can be used to covalently link two or more active pharmacophores that may act on multiple targets. Pyrazole and pyrazoline derivatives are considered pharmacologically necessary active heterocyclic scaffolds that possess almost all types of pharmacological activities. This review summarized recent progress in antimalarial activities of synthesized pyrazole and pyrazoline derivatives. The studies published since 2000 are included in this systematic review. This review is anticipated to be beneficial for future study and new ideas in searching for rational development strategies for more effective pyrazole and pyrazoline derivatives as antimalarial drugs.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 Selangor, Malaysia.
| |
Collapse
|
6
|
Synthesis, in vitro evaluation and molecular docking studies of hybrid 4-quinolinyl bearing 1,3,4-thiadiazole-2-amine as a new inhibitor of α-amylase and α-glucosidase. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
7
|
Vashistha A, Kumar S, Kirar S, Sharma N, Das B, Banerjee UC, Pawar SV, Kumar R, Yadav AK. Synthesis, biological evaluation and in silico studies of 2-aminoquinolines and 1-aminoisoquinolines as antimicrobial agents. Comput Biol Chem 2023; 102:107807. [PMID: 36587565 DOI: 10.1016/j.compbiolchem.2022.107807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
The current study reports synthesis of 2-aminoquinolines and 1-aminoisoquinolines derivatives and their characterization. Further, in vitro studies were conducted to determine antimicrobial activities. Compound 3 h showed maximum activity against B. subtilis (IC50: 0.10±0.02 µM) and E. coli (IC50: 0.13±0.01 µM) whereas compound 3i showed higher antimicrobial activity against E. coli (IC50: 0.11±0.01) and C. viswanathii (IC50: 0.10±0.05 µM). Safety profiles of the most potent derivatives were evaluated utilizing cell viability assay using RAW 264.7 and HeLa cell lines and in vitro hemolytic assay was carried out freshly isolated RBC from healthy rat. Furthermore, in silico studies, like molecular docking, binding free energy calculations and ADME predictions were done to get the best lead candidates. Additionally, molecular dynamic simulation for 100 ns was performed to know stability of protein and ligand complex. The active compounds were found to be non-toxic and non-hemolytic and hold great promise to become newer antimicrobial agents.
Collapse
Affiliation(s)
- Aditi Vashistha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Sunil Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Seema Kirar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Nikhil Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), India
| | | | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
8
|
Taha M, Salahuddin M, Rahim F, Imran S, Hussain S, Uddin N, Khan KM. New Quinoline Analogues: As Potential Diabetics Inhibitors and Molecular Docking Study. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2169471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi Mara Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi Mara (UiTM), Shah Alam, Selangor, Malaysia
| | - Shafqat Hussain
- Department of Chemistry, University of Baltistan, Gilgit-Baltistan, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
9
|
Drug repurposing strategy II: from approved drugs to agri-fungicide leads. J Antibiot (Tokyo) 2023; 76:131-182. [PMID: 36707717 PMCID: PMC9880955 DOI: 10.1038/s41429-023-00594-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023]
Abstract
Epidemic diseases of crops caused by fungi deeply affected the course of human history and processed a major restriction on social and economic development. However, with the enormous misuse of existing antimicrobial drugs, an increasing number of fungi have developed serious resistance to them, making the diseases caused by pathogenic fungi even more challenging to control. Drug repurposing is an attractive alternative, it requires less time and investment in the drug development process than traditional R&D strategies. In this work, we screened 600 existing commercially available drugs, some of which had previously unknown activity against pathogenic fungi. From the primary screen at a fixed concentration of 100 μg/mL, 120, 162, 167, 85, 102, and 82 drugs were found to be effective against Rhizoctonia solani, Sclerotinia sclerotiorum, Botrytis cinerea, Phytophthora capsici, Fusarium graminearum and Fusarium oxysporum, respectively. They were divided into nine groups lead compounds, including quinoline alkaloids, benzimidazoles/carbamate esters, azoles, isothiazoles, pyrimidines, pyridines, piperidines/piperazines, ionic liquids and miscellaneous group, and simple structure-activity relationship analysis was carried out. Comparison with fungicides to identify the most promising drugs or lead structures for the development of new antifungal agents in agriculture.
Collapse
|
10
|
Kumar S, Saini A, Kumar A, Raj R, Kumar V. 7‐Chloroquinoline‐Chalcone
/‐Pyrazoline Conjugates: Synthesis,
anti‐Mycobacterial
and Cytotoxic activities. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sumit Kumar
- Department of Chemistry Guru Nanak Dev University Amritsar Punjab India
| | - Anu Saini
- Department of Chemistry Guru Nanak Dev University Amritsar Punjab India
| | - Ankush Kumar
- Department of Chemistry DAV College Amritsar Punjab India
| | - Raghu Raj
- Department of Chemistry DAV College Amritsar Punjab India
| | - Vipan Kumar
- Department of Chemistry Guru Nanak Dev University Amritsar Punjab India
| |
Collapse
|
11
|
Chloramine-T (N-chloro-p-toluenesulfonamide sodium salt), a versatile reagent in organic synthesis and analytical chemistry: An up to date review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101284] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Zaman K, Rahim F, Taha M, Sajid M, Hayat S, Nawaz M, Salahuddin M, Iqbal N, Khan NU, Shah SAA, Farooq RK, Bahadar A, Wadood A, Khan KM. Synthesis, in vitro antiurease, in vivo antinematodal activity of quinoline analogs and their in-silico study. Bioorg Chem 2021; 115:105199. [PMID: 34329995 DOI: 10.1016/j.bioorg.2021.105199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Synthesis of quinoline analogs and their urease inhibitory activities with reference to the standard drug, thiourea (IC50 = 21.86 ± 0.40 µM) are presented in this study. The inhibitory activity range is (IC50 = 0.60 ± 0.01 to 24.10 ± 0.70 µM) which displayed that it is most potent class of urease inhibitor. Analog 1-9, and 11-13 emerged with many times greater antiurease potential than thiourea, in which analog 1, 2, 3, 4, 8, 9, and 11 (IC50 = 3.50 ± 0.10, 7.20 ± 0.20, 1.30 ± 0.10, 2.30 ± 0.10, 0.60 ± 0.01, 1.05 ± 0.10 and 2.60 ± 0.10 µM respectively) were appeared the most potent ones among the series. In this context, most potent analogs such as 1, 3, 4, 8, and 9 were further subjected for their in vitro antinematodal study against C. elegans to examine its cytotoxicity under positive control of standard drug, Levamisole. Consequently, the cytotoxicity profile displayed that analogs 3, 8, and 9 were found with minimum cytotoxic outline at higher concentration (500 µg/mL). All analogs were characterized through 1H NMR, 13C NMR and HR-EIMS. The protein-ligand binding interaction for most potent analogs was confirmed via molecular docking study.
Collapse
Affiliation(s)
- Khalid Zaman
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Muhammad Sajid
- Department of Biochemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa
| | - Shawkat Hayat
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot, AJK, Pakistan
| | - Naqeeb Ullah Khan
- Department of Biochemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia; Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ali Bahadar
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
14
|
Farooq S, Ngaini Z, Daud AI, Khairul WM. Microwave Assisted Synthesis and Antimicrobial Activities of Carboxylpyrazoline Derivatives: Molecular Docking and DFT Influence in Bioisosteric Replacement. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1937236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Adibah Izzati Daud
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Padang Besar, Perlis, Malaysia
| | - Wan M. Khairul
- Faculty of Marine Science and Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
15
|
Zampieri D, Mamolo MG. Hybridization Approach to Drug Discovery Inhibiting Mycobacterium tuberculosis-An Overview. Curr Top Med Chem 2021; 21:777-788. [PMID: 32814528 DOI: 10.2174/1568026620666200819151342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Tuberculosis is one of the top 10 causes of death worldwide and the leading cause of death from a single infectious agent, mainly due to Mycobacterium tuberculosis (MTB). Recently, clinical prognoses have worsened due to the emergence of multi-drug resistant (MDR) and extensive-drug resistant (XDR) tuberculosis, which lead to the need for new, efficient and safe drugs. Among the several strategies, polypharmacology could be considered one of the best solutions, in particular, the multitarget directed ligands strategy (MTDLs), based on the synthesis of hybrid ligands acting against two targets of the pathogen. The framework strategy comprises linking, fusing and merging approaches to develop new chemical entities. With these premises, this review aims to provide an overview of the recent hybridization approach, in medicinal chemistry, of the most recent and promising multitargeting antimycobacterial candidates.
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| | - Maria G Mamolo
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
16
|
Bokosi FRB, Beteck RM, Mbaba M, Mtshare TE, Laming D, Hoppe HC, Khanye SD. Design, synthesis and biological evaluation of mono- and bisquinoline methanamine derivatives as potential antiplasmodial agents. Bioorg Med Chem Lett 2021; 38:127855. [PMID: 33609655 DOI: 10.1016/j.bmcl.2021.127855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Several classes of antimalarial drugs are currently available, although issues of toxicity and the emergence of drug resistant malaria parasites have reduced their overall therapeutic efficiency. Quinoline based antiplasmodial drugs have unequivocally been long-established and continue to inspire the design of new antimalarial agents. Herein, a series of mono- and bisquinoline methanamine derivatives were synthesised through sequential steps; Vilsmeier-Haack, reductive amination, and nucleophilic substitution, and obtained in low to excellent yields. The resulting compounds were investigated for in vitro antiplasmodial activity against the 3D7 chloroquine-sensitive strain of Plasmodium falciparum, and compounds 40 and 59 emerged as the most promising with IC50 values of 0.23 and 0.93 µM, respectively. The most promising compounds were also evaluated in silico by molecular docking protocols for binding affinity to the {001} fast-growing face of a hemozoin crystal model.
Collapse
Affiliation(s)
- Fostino R B Bokosi
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa.
| | - Richard M Beteck
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa; Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Mziyanda Mbaba
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa; Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa
| | - Thanduxolo E Mtshare
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa
| | - Heinrich C Hoppe
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda 6140, South Africa
| | - Setshaba D Khanye
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa; Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
17
|
Bokosi FRB, Beteck RM, Laming D, Hoppe HC, Tshiwawa T, Khanye SD. Synthesis of 2-(N-cyclicamino)quinoline combined with methyl (E)-3-(2/3/4-aminophenyl)acrylates as potential antiparasitic agents. Arch Pharm (Weinheim) 2021; 354:e2000331. [PMID: 33710656 DOI: 10.1002/ardp.202000331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/15/2023]
Abstract
A rationally designed series of 2-(N-cyclicamino)quinolines coupled with methyl (E)-3-(2/3/4-aminophenyl)acrylates was synthesized and subjected to in vitro screening bioassays for potential antiplasmodial and antitrypanosomal activities against a chloroquine-sensitive (3D7) strain of Plasmodium falciparum and nagana Trypanosoma brucei brucei 427, respectively. Substituent effects on activity were evaluated; meta-acrylate 24 and the ortho-acrylate 29 exhibited the highest antiplasmodial (IC50 = 1.4 µM) and antitrypanosomal (IC50 = 10.4 µM) activities, respectively. The activity against HeLa cells showed that the synthesized analogs are not cytotoxic at the maximum tested concentration. The ADME (absorption, distribution, metabolism, and excretion) drug-like properties of the synthesized compounds were predicted through the SwissADME software.
Collapse
Affiliation(s)
- Fostino R B Bokosi
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda, South Africa
| | - Richard M Beteck
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda, South Africa.,Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda, South Africa
| | - Heinrich C Hoppe
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda, South Africa.,Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda, South Africa
| | - Tendamudzimu Tshiwawa
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda, South Africa
| | - Setshaba D Khanye
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda, South Africa.,Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| |
Collapse
|
18
|
Lambat TL, Chopra PKPG, Mahmood SH. Microwave: A Green Contrivance for the Synthesis of N-Heterocyclic Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200622114919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microwave Mediated Organic Synthesis (MMOS) is typical on the proficient heat
shift carried out by dielectric heating, which in turn, is primarily dependent on the capability
of the reagent or solvent to take up microwave energy. The employment of microwave energy
has witnessed a fast expansion in the past two decades, with novel and pioneering
applications in peptide and organic synthesis, material sciences, polymer chemistry, biochemical
processes and nanotechnology. This review summarizes current MW- mediated
catalytic reactions in use for the synthesis of a diversity of N-heterocycles by Multi-
Component Reactions (MCRs) and a variety of miscellaneous reactions. In addition, the
review addresses some aspects of the use of nanoparticles for a diversity of applications in
microwave chemistry.
Collapse
Affiliation(s)
- Trimurti L. Lambat
- Department of Chemistry, Manoharbhai Patel College of Arts, Commerce & Science, Deori, Gondia 441901, Maharashtra, India
| | - Paavan Kavi Param Gaitry Chopra
- Department of Chemistry, Government Institute of Science, Civil lines, Rabindranath Tagore Road, Nagpur 440001, Maharashtra, India
| | - Sami H. Mahmood
- Department of Physics, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
19
|
Evranos AksÖz B, GÜrpinar SS, Eryilmaz M. Antimicrobial Activities of Some Pyrazoline and Hydrazone Derivatives. Turk J Pharm Sci 2020; 17:500-505. [PMID: 33177930 DOI: 10.4274/tjps.galenos.2019.42650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/22/2019] [Indexed: 12/01/2022]
Abstract
Objectives Resistance to antibiotics is recognized as one of the biggest threats to human health worldwide. Frequent and unnecessary use of antibiotics has caused infectious agents to adapt to antibiotics and thus drugs have become less effective. The resistance to many antibiotics necessitates the discovery of new antibiotics. In this study, two new and 23 previously reported 2-pyrazoline derivatives and one hydrazone derivative were evaluated for their in vitro antibacterial and antifungal activities. Materials and Methods For the determination of the minimum inhibitory concentration (MIC) values of compounds, microbroth dilution was used. Results The antimicrobial activities of the compounds were found in a wide range with MIC values of 32-512 μg/mL. Conclusion The synthesized compounds showed moderate antimicrobial activity compared with the standards. They can be used as lead molecules for the synthesis of more effective compounds.
Collapse
Affiliation(s)
- Begüm Evranos AksÖz
- Süleyman Demirel University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Isparta, Turkey
| | - Suna Sibel GÜrpinar
- Ankara University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Ankara, Turkey
| | - Müjde Eryilmaz
- Ankara University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Ankara, Turkey
| |
Collapse
|
20
|
Rasal NK, Sonawane RB, Jagtap SV. Synthesis, biological evaluation, and in silico study of pyrazoline-conjugated 2,4-dimethyl-1H-pyrrole-3-carboxylic acid derivatives. Arch Pharm (Weinheim) 2020; 354:e2000267. [PMID: 33078449 DOI: 10.1002/ardp.202000267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 11/12/2022]
Abstract
A potential molecular hybridization strategy was used to develop 24 novel pyrazoline-conjugated 2,4-dimethyl-1H-pyrrole-3-carboxylic acid and amide derivatives. The preliminary in vitro antimicrobial assay delivered four potential derivatives with growth inhibition in the range of 50.87-56.60% at the concentration of 32 µg/ml. In the search of an anticancer candidate, all derivatives were screened by NCI-60 at 10 µM concentration, revealing that 12 derivatives were potential agents against the various types of cancer cell lines, with growth inhibition in the range of 50.21-108.37%. The in vitro cytotoxicity assay against the cell line HEK293 (human embryonic kidney cells) and the hemolysis assay of the representative potent compounds propose their potential for a good therapeutic index. In silico studies of the most potent derivatives qualified their significant pharmacokinetic properties with good predicted oral bioavailability and their adherence to Lipinski's rule of five for druglikeness. A molecular docking study against VEGFR-2 with the best-scored conformations reinforced their anticancer potency. The docking study of the most potent compound against VEGFR-2 with the best-scored conformations displayed a binding affinity (-9.5 kcal/mol) comparable with the drug sunitinib (-9.9 kcal/mol) and exhibited that tighter interactions at the active adenosine triphosphate site might be responsible for anticancer potency.
Collapse
Affiliation(s)
- Nishant K Rasal
- Department of Chemistry, Baburaoji Gholap College, Affiliated to Savitribai Phule Pune University, Pune, India
| | - Rahul B Sonawane
- Department of Chemistry, Baburaoji Gholap College, Affiliated to Savitribai Phule Pune University, Pune, India
| | - Sangeeta V Jagtap
- Department of Chemistry, Baburaoji Gholap College, Affiliated to Savitribai Phule Pune University, Pune, India
| |
Collapse
|
21
|
Song Y, Feng S, Feng J, Dong J, Yang K, Liu Z, Qiao X. Synthesis and biological evaluation of novel pyrazoline derivatives containing indole skeleton as anti-cancer agents targeting topoisomerase II. Eur J Med Chem 2020; 200:112459. [PMID: 32502865 DOI: 10.1016/j.ejmech.2020.112459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022]
Abstract
In order to develop potent anticaner agents, a novel series of 3-(1H-indol-3-yl)-2,3,3a,4-tetrahydrothiochromeno[4,3-c]pyrazole derivatives were synthesized. Structures of all compounds were confirmed. MTT assay has been employed to study antiproliferative activity of these compounds with four human cancer cell lines (MGC-803, Hela, MCF-7 and Bel-7404) and a normal cell line L929. Most of these compounds showed potential anticancer activity and low cytotoxicity on normal cell in vitro. 7d and 7f showed the best anticancer activity, whose IC50 value is 15.43 μM and 20.54 μM towards MGC-803, respectively. Most of them exhibited topoisomerase II selective inhibitory. Cleavage reaction assay and DNA unwinding assay showed that 7f was a nonintercalative Topo II catalytic inhibitor, which was consistent with the docking results. Laser scanning confocal microscopy system tracks the location of representative compounds 7d and 7f which can be abundantly entering the nucleus. In particular, the most potent compounds 7d and 7f were shown to be able to induce G2/M cell cycle arrest and apoptosis in MGC-803 cells.
Collapse
Affiliation(s)
- Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China.
| | - Siran Feng
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jiajia Feng
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jinjiao Dong
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoqiang Qiao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
22
|
Nehra B, Rulhania S, Jaswal S, Kumar B, Singh G, Monga V. Recent advancements in the development of bioactive pyrazoline derivatives. Eur J Med Chem 2020; 205:112666. [PMID: 32795767 DOI: 10.1016/j.ejmech.2020.112666] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/29/2022]
Abstract
Pyrazolines remain privileged heterocycles in drug discovery. 2-Pyrazoline scaffold has been proven as a ubiquitous motif which is present in a number of pharmacologically important drug molecules such as antipyrine, ramifenazone, ibipinabant, axitinib etc. They have been widely explored by the scientific community and are reported to possess wide spectrum of biological activities. For combating unprecedented diseases and worldwide increasing drug resistance, 2-pyrazoline has been tackled as a fascinating pharmacophore to generate new molecules with improved potency and lesser toxicity along with desired pharmacokinetic profile. This review aims to summarizes various recent advancements in the medicinal chemistry of pyrazoline based compounds with the following objectives: (1) To represent inclusive data on pyrazoline based marketed drugs as well as therapeutic candidates undergoing preclinical and clinical developments; (2) To discuss recent advances in the medicinal chemistry of pyrazoline derivatives with their numerous biological significances for the eradication of various diseases; (3) Summarizes structure-activity relationships (SAR) including in silico and mechanistic studies to afford ideas for the design and development of novel compounds with desired therapeutic implications.
Collapse
Affiliation(s)
- Bhupender Nehra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Sandeep Rulhania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
23
|
Design, Facile Synthesis and Characterization of Dichloro Substituted Chalcones and Dihydropyrazole Derivatives for Their Antifungal, Antitubercular and Antiproliferative Activities. Molecules 2020; 25:molecules25143188. [PMID: 32668655 PMCID: PMC7397056 DOI: 10.3390/molecules25143188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious diseases caused by fungi and mycobacteria pose an important problem for humankind. Similarly, cancer is one of the leading causes of death globally. Therefore, there is an urgent need for the development of novel agents to combat the deadly problems of cancer, tuberculosis, and also fungal infections. Hence, in the present study, we designed, synthesized, and characterized 30 compounds including 15 chalcones (2–16) and 15 dihydropyrazoles (17–31) containing dichlorophenyl moiety and also screened these compounds for their antifungal, antitubercular, and antiproliferative activities. Among these compounds, the dihydropyrazoles showed excellent antifungal and antitubercular activities whereas the chalcones exhibited promising antiproliferative activity. Among the dihydropyrazoles, compound 31 containing 2-thienyl moiety showed promising antifungal activity (MIC 5.35 µM), whereas compounds 22 and 24 containing 2,4-difluorophenyl and 4-trifluoromethyl scaffolds revealed significant antitubercular activity with the MICs of 3.96 and 3.67 µM, respectively. Compound 16 containing 2-thienyl moiety in the chalcone series showed the highest anti-proliferative activity with an IC50 value of 17 ± 1 µM. The most active compounds identified through this study could be considered as starting points in the development of drugs with potential antifungal, antitubercular, and antiproliferative activities.
Collapse
|
24
|
Bhaskaruni SV, Maddila S, Gangu KK, Jonnalagadda SB. A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.09.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
25
|
Narula AK, Azad CS, Nainwal LM. New dimensions in the field of antimalarial research against malaria resurgence. Eur J Med Chem 2019; 181:111353. [DOI: 10.1016/j.ejmech.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
26
|
Lee SM, Kim MS, Hayat F, Shin D. Recent Advances in the Discovery of Novel Antiprotozoal Agents. Molecules 2019; 24:E3886. [PMID: 31661934 PMCID: PMC6864685 DOI: 10.3390/molecules24213886] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
Parasitic diseases have serious health, social, and economic impacts, especially in the tropical regions of the world. Diseases caused by protozoan parasites are responsible for considerable mortality and morbidity, affecting more than 500 million people worldwide. Globally, the burden of protozoan diseases is increasing and is been exacerbated because of a lack of effective medication due to the drug resistance and toxicity of current antiprotozoal agents. These limitations have prompted many researchers to search for new drugs against protozoan parasites. In this review, we have compiled the latest information (2012-2017) on the structures and pharmacological activities of newly developed organic compounds against five major protozoan diseases, giardiasis, leishmaniasis, malaria, trichomoniasis, and trypanosomiasis, with the aim of showing recent advances in the discovery of new antiprotozoal drugs.
Collapse
Affiliation(s)
- Seong-Min Lee
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Min-Sun Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Faisal Hayat
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| |
Collapse
|
27
|
Yang GZ, Zhu JK, Yin XD, Yan YF, Wang YL, Shang XF, Liu YQ, Zhao ZM, Peng JW, Liu H. Design, Synthesis, and Antifungal Evaluation of Novel Quinoline Derivatives Inspired from Natural Quinine Alkaloids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11340-11353. [PMID: 31532201 DOI: 10.1021/acs.jafc.9b04224] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by quinine and its analogues, we designed, synthesized, and evaluated two series of quinoline small molecular compounds (a and 2a) and six series of quinoline derivatives (3a-f) for their antifungal activities. The results showed that compounds 3e and 3f series exhibited significant fungicidal activities. Significantly, compounds 3f-4 (EC50 = 0.41 μg/mL) and 3f-28 (EC50 = 0.55 μg/mL) displayed the superior in vitro fungicidal activity and the potent in vivo curative effect against Sclerotinia sclerotiorum. Preliminary mechanism studies showed that compounds 3f-4 and 3f-28 could cause changes in the cell membrane permeability, accumulation of reactive oxygen species, loss of mitochondrial membrane potential, and effective inhibition of germination and formation of S. sclerotiorum sclerotia. These results indicate that compounds 3f-4 and 3f-28 are novel potential fungicidal candidates against S. sclerotiorum derived from natural products.
Collapse
Affiliation(s)
- Guan-Zhou Yang
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Jia-Kai Zhu
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Xiao-Dan Yin
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Yin-Fang Yan
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Yu-Ling Wang
- Gansu Academy of Agricultural Sciences , Lanzhou 730000 , People's Republic of China
| | - Xiao-Fei Shang
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Zhong-Min Zhao
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Jing-Wen Peng
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Hua Liu
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , People's Republic of China
| |
Collapse
|
28
|
Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorg Med Chem 2019; 27:4081-4088. [DOI: 10.1016/j.bmc.2019.07.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 11/20/2022]
|
29
|
Dihydrofolate reductase inhibition effect of 5-substituted pyrido[2,3-d]pyrimidines: Synthesis, antitumor activity and molecular modeling study. Bioorg Chem 2019; 90:103076. [DOI: 10.1016/j.bioorg.2019.103076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
|
30
|
Synthesis of thymol-based pyrazolines: An effort to perceive novel potent-antimalarials. Bioorg Chem 2019; 88:102933. [DOI: 10.1016/j.bioorg.2019.102933] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 11/19/2022]
|
31
|
Khan SA, Kumar P. Photophysical and Physicochemical Investigation of Newly Synthesized Polycyclic Pyrazoline-Benzothiazole as Fluorescence Chemosensor for the Detection of Cu2+ Metal Ion. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1607411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Salman A. Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Parveen Kumar
- Deparment of Chemistry, DAV College Faridabad, Faridabad, Haryana, India
| |
Collapse
|
32
|
Santos FRS, Andrade JT, Sousa CDF, Fernandes JS, Carmo LF, Araújo MGF, Ferreira JMS, Villar JAFP. Synthesis and Evaluation of the in vitro Antimicrobial Activity of Triazoles, Morpholines and Thiosemicarbazones. Med Chem 2019; 15:38-50. [PMID: 30058497 DOI: 10.2174/1573406414666180730111954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microbial infections is a global public health problem. The aim of this work was to synthesize and evaluate the antimicrobial activity of novel triazoles, morpholines and thiosemicarbazones. METHODS Compounds were synthesized using 2,4-Dihydroxyacetophenone and 4-hydroxybenzaldehyde as starting materials. The antimicrobial activity of these compounds against bacteria and yeast was evaluated by the broth microdilution method. RESULTS The proposed route for synthesis gave high to moderate yields, moreover these compounds were successfully characterized by 1H NMR, 13C NMR and LC-MS. Antimicrobial testing indicated that the thiosemicarbazone and morphine derivatives had the best antimicrobial activity against the microorganisms tested with minimum inhibitory concentrations (MIC) between 0.29 and 5.30 µM. Thiosemicarbazone derivative (12) was able to inhibit the growth of C. tropicalis, with minimum fungicidal concentration (MFC) of 0.55 µM. In addition, this compound was active against E. coli, S. aureus and S. epidermidis, with MIC values ranging from 0.29 to 1.11 µM. Moreover, the morpholine derivative (15) had an MIC value of 0.83 µM against C. albicans and E. coli. CONCLUSION We have efficiently synthesized a series of eleven novel triazoles, thiosemicarbazones and morpholine derivatives using 2,4-Dihydroxyacetophenone and 4-hydroxybenzaldehyde as starting materials. Thiosemicarbazone derivative (12) showed promising antifungal and antibacterial activity and these findings suggest that this compound can be used as scaffolds to design new antimicrobial drugs.
Collapse
Affiliation(s)
- Felipe R S Santos
- Laboratorio de Sintese Organica e Nanoestruturas, Universidade Federal de Sao Joao del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - Jéssica T Andrade
- Laboratorio de Microbiologia, Universidade Federal de Sao Joao del- Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - Carla D F Sousa
- Laboratorio de Microbiologia, Universidade Federal de Sao Joao del- Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - Joice S Fernandes
- Laboratorio de Sintese Organica e Nanoestruturas, Universidade Federal de Sao Joao del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - Lucas F Carmo
- Laboratorio de Sintese Organica e Nanoestruturas, Universidade Federal de Sao Joao del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - Marcelo G F Araújo
- Laboratorio de Farmacologia, Universidade Federal de Sao Joao del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - Jaqueline M S Ferreira
- Laboratorio de Microbiologia, Universidade Federal de Sao Joao del- Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - José A F P Villar
- Laboratorio de Sintese Organica e Nanoestruturas, Universidade Federal de Sao Joao del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| |
Collapse
|
33
|
Nusrat B, Siddiqui N, Sahu M, Naim MJ, Shahar Yar M, Ali R, Ozair A. Anticonvulsant evaluation of 2-pyrazolines carrying naphthyl moiety: An insight into synthesis and molecular docking study. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000100249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Meeta Sahu
- Faculty of Pharmacy Jamia Hamdard, India
| | | | | | - Ruhi Ali
- Faculty of Pharmacy Jamia Hamdard, India
| | - Alam Ozair
- Faculty of Pharmacy Jamia Hamdard, India
| |
Collapse
|
34
|
Kalaria PN, Karad SC, Raval DK. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur J Med Chem 2018; 158:917-936. [PMID: 30261467 DOI: 10.1016/j.ejmech.2018.08.040] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/18/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
The upward extend of malaria collectively with the emergence of resistance against predictable drugs has put enormous pressure on public health systems to introduce new malaria treatments. Heterocycles play an important role in the design and discovery of new malaria active compounds. Heterocyclic compounds have attracted significant attention for malaria treatment because of simplicity of parallelization and the examining power with regard to chemical space. Introduction of a variety of heterocyclic compounds have enabled to maintain the high levels of antimalarial potency observed for other more lipophilic analogues whilst improving the solubility and the oral bioavailability in pre-clinical species. In this review, we present an overview of recent literature to provide imminent into the applications of different heterocyclic scaffolds in fighting against malaria.
Collapse
Affiliation(s)
- Piyush N Kalaria
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| | - Sharad C Karad
- Department of Chemistry, Marwadi University, Rajkot, Gujarat, India.
| | - Dipak K Raval
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| |
Collapse
|
35
|
Andrade JT, Santos FRS, Lima WG, Sousa CDF, Oliveira LSFM, Ribeiro RIMA, Gomes AJPS, Araújo MGF, Villar JAFP, Ferreira JMS. Design, synthesis, biological activity and structure-activity relationship studies of chalcone derivatives as potential anti-Candida agents. J Antibiot (Tokyo) 2018; 71:702-712. [DOI: 10.1038/s41429-018-0048-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 01/05/2023]
|
36
|
Nocentini A, Moi D, Balboni G, Salvadori S, Onnis V, Supuran CT. Synthesis and biological evaluation of novel pyrazoline-based aromatic sulfamates with potent carbonic anhydrase isoforms II, IV and IX inhibitory efficacy. Bioorg Chem 2018; 77:633-639. [PMID: 29502024 DOI: 10.1016/j.bioorg.2018.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 02/04/2023]
Abstract
Herein we report the synthesis of a new series of aromatic sulfamates designed considering the sulfonamide COX-2 selective inhibitors celecoxib and valdecoxib as lead compounds. These latter were shown to possess important human carbonic anhydrase (CA, EC 4.2.1.1) inhibitory properties, with the inhibition of the tumor-associated isoform hCA IX likely being co-responsible of the celecoxib anti-tumor effects. Bioisosteric substitution of the pyrazole or isoxazole rings from these drugs with the pyrazoline one was considered owing to the multiple biological activities ascribed to this latter heterocycle and paired with the replacement of the sulfonamide of celecoxib and valdecoxib with its equally potent bioisoster sulfamate. The synthesized derivatives were screened for the inhibition of four human carbonic anhydrase isoforms, namely hCA I, II, IV, and IX. All screened sulfamates exhibited great potency enhancement in inhibiting isoform II and IV, widely involved in glaucoma (KIs in the range of 0.4-12.4 nM and 17.7 and 43.3 nM, respectively), compared to the lead compounds, whereas they affected the tumor-associated hCA IX as potently as celecoxib.
Collapse
Affiliation(s)
- Alessio Nocentini
- Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Davide Moi
- Department of Life and Environmental Sciences - Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, via Ospedale 72, I-09124 Cagliari, Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences - Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, via Ospedale 72, I-09124 Cagliari, Italy
| | - Severo Salvadori
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, via Fossato di Mortara 17/19, I-44100 Ferrara, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences - Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, via Ospedale 72, I-09124 Cagliari, Italy.
| | - Claudiu T Supuran
- Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
37
|
Hu YQ, Gao C, Zhang S, Xu L, Xu Z, Feng LS, Wu X, Zhao F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur J Med Chem 2017; 139:22-47. [DOI: 10.1016/j.ejmech.2017.07.061] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022]
|
38
|
Pisal MM, Nawale LU, Patil MD, Bhansali SG, Gajbhiye JM, Sarkar D, Chavan SP, Borate HB. Hybrids of thienopyrimidinones and thiouracils as anti-tubercular agents: SAR and docking studies. Eur J Med Chem 2017; 127:459-469. [DOI: 10.1016/j.ejmech.2017.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 11/25/2022]
|
39
|
Varghese B, Al-Busafi SN, Suliman FO, Al-Kindy SMZ. Unveiling a versatile heterocycle: pyrazoline – a review. RSC Adv 2017. [DOI: 10.1039/c7ra08939b] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The design and synthesis of novel fluorescent heterocyclic dyes is a “hotspot” research area, due to their favourable photophysical and electronic properties, which could allow huge advances in the fields of physics, chemistry and biology.
Collapse
Affiliation(s)
- Beena Varghese
- Department of Chemistry
- College of Science
- Sultan Qaboos University
- Sultanate of Oman
| | - Saleh N. Al-Busafi
- Department of Chemistry
- College of Science
- Sultan Qaboos University
- Sultanate of Oman
| | | | - Salma M. Z. Al-Kindy
- Department of Chemistry
- College of Science
- Sultan Qaboos University
- Sultanate of Oman
| |
Collapse
|
40
|
El-Hiti GA, Abdel-Wahab BF, Alamri M, Al-Omar MA, Ghabbour HA. Crystal structure of 5-(2-chloro-5-nitrophenyl)-3-(4-chlorophenyl)-N-ethyl-4,5-dihydro-1H-pyrazole-1-carbothioamide, C18H16Cl2N4O2S. Z KRIST-NEW CRYST ST 2016. [DOI: 10.1515/ncrs-2016-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractC18H16Cl2N4O2S, monoclinic, P21/c (no. 14), a = 9.1950(5) Å, b = 23.9750(13) Å, c = 9.5514(5) Å, β = 111.136(2)°, V = 1963.96(18) Å3, Z = 4, Rgt(F) = 0.0516, wRref(F2) = 0.139, T = 296 K.
Collapse
Affiliation(s)
- Gamal A. El-Hiti
- 1Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Bakr F. Abdel-Wahab
- 2Department of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia
- 3Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Mesfer Alamri
- 4School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom of Great Britain and Northern Ireland
- 5School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom of Great Britain and Northern Ireland
| | - Mohamed A. Al-Omar
- 6Pharmaceutical Chemistry Department, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hazem A. Ghabbour
- 7Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riaydh 11451, Saudi Arabia
- 8Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
41
|
Thakor P, Mehta JB, Patel RR, Patel DD, Subramanian RB, Thakkar VR. Extraction and purification of phytol from Abutilon indicum: cytotoxic and apoptotic activity. RSC Adv 2016. [DOI: 10.1039/c5ra24464a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abutilon indicumis widely used as a medicinal plant in Indian system of medicine. In the present study, we have evaluated the apoptosis inducing ability of leaf extract ofA. indicum.
Collapse
Affiliation(s)
- Parth Thakor
- BRD School of Biosciences
- Sardar Patel University
- India
| | - Japan B. Mehta
- Department of Marine and Environmental Sciences
- Northeastern University
- Boston
- USA
| | - Ravi R. Patel
- BRD School of Biosciences
- Sardar Patel University
- India
| | | | | | | |
Collapse
|
42
|
Purohit VB, Karad SC, Patel KH, Raval DK. Palladium N-heterocyclic carbene catalyzed expected and unexpected C–C and C–N functionalization reactions of 1-aryl-3-methyl-1H-pyrazol-5(4H)-ones. RSC Adv 2016. [DOI: 10.1039/c6ra22779a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A palladium N-heterocyclic carbene complex of vitamin B1 developed earlier in our laboratory was successfully employed as an efficient catalyst for the regioselective C–C and C–N functionalization reactions of 1-aryl-3-methyl-1H-pyrazol-5(4H)-ones.
Collapse
Affiliation(s)
- Vishal B. Purohit
- Department of Chemistry
- Sardar Patel University
- Vallabh Vidyanagar-388 120
- India
| | - Sharad C. Karad
- Department of Chemistry
- Sardar Patel University
- Vallabh Vidyanagar-388 120
- India
| | - Kirit H. Patel
- Department of Chemistry
- Sardar Patel University
- Vallabh Vidyanagar-388 120
- India
| | - Dipak K. Raval
- Department of Chemistry
- Sardar Patel University
- Vallabh Vidyanagar-388 120
- India
| |
Collapse
|