1
|
Qi J, Meng M, Liu J, Song X, Chen Y, Liu Y, Li X, Zhou Z, Huang X, Wang X, Zhou Q, Zhao Z. Lycorine inhibits pancreatic cancer cell growth and neovascularization by inducing Notch1 degradation and downregulating key vasculogenic genes. Biochem Pharmacol 2023; 217:115833. [PMID: 37769714 DOI: 10.1016/j.bcp.2023.115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Pancreatic cancer is highly metastatic and lethal with an increasing incidence globally and a 5-year survival rate of only 8%. One of the factors contributing to the high mortality is the lack of effective drugs in the clinical setting. We speculated that effective compounds against pancreatic cancer exist in natural herbs and explored active small molecules among traditional Chinese medicinal herbs. The small molecule lycorine (MW: 323.77) derived from the herb Lycoris radiata inhibited pancreatic cancer cell growth with an IC50 value of 1 μM in a concentration-dependent manner. Lycorine markedly reduced pancreatic cancer cell viability, migration, invasion, neovascularization, and gemcitabine resistance. Additionally, lycorine effectively suppressed tumor growth in mouse xenograft models without obvious toxicity. Pharmacological studies revealed that the levels and half-life of Notch1 oncoprotein in the pancreatic cancer cells Panc-1 and Patu8988 were notably reduced. Moreover, the expression of the key vasculogenic genes Semaphorin 4D (Sema4D) and angiopoietin-2 (Ang-2) were also significantly inhibited by lycorine. Mechanistically, lycorine strongly triggered the degradation of Notch1 oncoprotein through the ubiquitin-proteasome system. In conclusion, lycorine effectively inhibits pancreatic cancer cell growth, migration, invasion, neovascularization, and gemcitabine resistance by inducing degradation of Notch1 oncoprotein and downregulating the key vasculogenic genes Sema4D and Ang-2. Our findings provide a new therapeutic candidate and treatment strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Jindan Qi
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China; School of Nursing, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Juntao Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xiaoxiao Song
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Yu Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Yuxi Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xu Li
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Zhou Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xiang Huang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xiaohua Wang
- School of Nursing, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, PR China; National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, PR China; Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123, PR China.
| |
Collapse
|
2
|
Tan TD, Qian GL, Su HZ, Zhu LJ, Ye LW, Zhou B, Hong X, Qian PC. Brønsted acid-catalyzed asymmetric dearomatization for synthesis of chiral fused polycyclic enone and indoline scaffolds. SCIENCE ADVANCES 2023; 9:eadg4648. [PMID: 36921050 PMCID: PMC10017053 DOI: 10.1126/sciadv.adg4648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In the past two decades, substantial advances have been made on the asymmetric alkyne functionalization by the activation of inert alkynes. However, these asymmetric transformations have so far been mostly limited to transition metal catalysis, and chiral Brønsted acid-catalyzed examples are rarely explored. Here, we report a chiral Brønsted acid-catalyzed dearomatization reaction of phenol- and indole-tethered homopropargyl amines, allowing the practical and atom-economical synthesis of a diverse array of valuable fused polycyclic enones and indolines bearing a chiral quaternary carbon stereocenter and two contiguous stereogenic centers in moderate to good yields with excellent diastereoselectivities and generally excellent enantioselectivities (up to >99% enantiomeric excess). This protocol demonstrates Brønsted acid-catalyzed asymmetric dearomatizations via vinylidene-quinone methides.
Collapse
Affiliation(s)
- Tong-De Tan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gan-Lu Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Hao-Ze Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lu-Jing Zhu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Peng-Cheng Qian
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials and Industry Technology, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
3
|
Amaryllidaceae Alkaloids Decrease the Proliferation, Invasion, and Secretion of Clinically Relevant Cytokines by Cultured Human Colon Cancer Cells. Biomolecules 2022; 12:biom12091267. [PMID: 36139106 PMCID: PMC9496155 DOI: 10.3390/biom12091267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
Alkaloids isolated from members of the Amaryllidaceae plant family are promising anticancer agents. The purpose of the current study was to determine if the isocarbostyrils narciclasine, pancratistatin, lycorane, lycorine, crinane, and haemanthamine inhibit phenomena related to cancer progression in vitro. To achieve this, we examined the proliferation, adhesion, and invasion of cultured human colon cancer cells via MTT assay and Matrigel-coated Boyden chambers. In addition, Luminex assays were used to quantify the secretion of matrix metalloproteinases (MMP) and cytokines associated with poor clinical outcomes. We found that all alkaloids decreased cell proliferation regardless of TP53 status, with narciclasine exhibiting the greatest potency. The effects on cell proliferation also appear to be specific to cancer cells. Narciclasine, lycorine, and haemanthamine decrease both adhesion and invasion but with various potencies depending on the cell line. In addition, narciclasine, lycorine, and haemanthamine decreased the secretion of MMP-1, -2, and -7, as well as the secretion of the cytokines pentraxin 3 and vascular endothelial growth factor. In conclusion, the present study shows that Amaryllidaceae alkaloids decrease phenomena and cytokines associated with colorectal cancer progression, supporting future investigations regarding their potential as multifaceted drug candidates.
Collapse
|
4
|
Mamun AA, Pidaný F, Hulcová D, Maříková J, Kučera T, Schmidt M, Catapano MC, Hrabinová M, Jun D, Múčková L, Kuneš J, Janoušek J, Andrýs R, Nováková L, Peřinová R, Maafi N, Soukup O, Korábečný J, Cahlíková L. Amaryllidaceae Alkaloids of Norbelladine-Type as Inspiration for Development of Highly Selective Butyrylcholinesterase Inhibitors: Synthesis, Biological Activity Evaluation, and Docking Studies. Int J Mol Sci 2021; 22:8308. [PMID: 34361074 PMCID: PMC8348983 DOI: 10.3390/ijms22158308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative condition of the central nervous system (CNS) that is currently treated by cholinesterase inhibitors and the N-methyl-d-aspartate receptor antagonist, memantine. Emerging evidence strongly supports the relevance of targeting butyrylcholinesterase (BuChE) in the more advanced stages of AD. Within this study, we have generated a pilot series of compounds (1-20) structurally inspired from belladine-type Amaryllidaceae alkaloids, namely carltonine A and B, and evaluated their acetylcholinesterase (AChE) and BuChE inhibition properties. Some of the compounds exhibited intriguing inhibition activity for human BuChE (hBuChE), with a preference for BuChE over AChE. Seven compounds were found to possess a hBuChE inhibition profile, with IC50 values below 1 µM. The most potent one, compound 6, showed nanomolar range activity with an IC50 value of 72 nM and an excellent selectivity pattern over AChE, reaching a selectivity index of almost 1400. Compound 6 was further studied by enzyme kinetics, along with in-silico techniques, to reveal the mode of inhibition. The prediction of CNS availability estimates that all the compounds in this survey can pass through the blood-brain barrier (BBB), as disclosed by the BBB score.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (F.P.); (D.H.); (J.M.); (R.P.); (N.M.)
| | - Filip Pidaný
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (F.P.); (D.H.); (J.M.); (R.P.); (N.M.)
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (F.P.); (D.H.); (J.M.); (R.P.); (N.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Jana Maříková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (F.P.); (D.H.); (J.M.); (R.P.); (N.M.)
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Tomáš Kučera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; (T.K.); (M.H.); (D.J.); (L.M.); (O.S.)
| | - Monika Schmidt
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (M.S.); (R.A.)
| | - Maria Carmen Catapano
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (M.C.C.); (L.N.)
| | - Martina Hrabinová
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; (T.K.); (M.H.); (D.J.); (L.M.); (O.S.)
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; (T.K.); (M.H.); (D.J.); (L.M.); (O.S.)
| | - Lubica Múčková
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; (T.K.); (M.H.); (D.J.); (L.M.); (O.S.)
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Jiří Janoušek
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Rudolf Andrýs
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (M.S.); (R.A.)
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (M.C.C.); (L.N.)
| | - Rozálie Peřinová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (F.P.); (D.H.); (J.M.); (R.P.); (N.M.)
| | - Negar Maafi
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (F.P.); (D.H.); (J.M.); (R.P.); (N.M.)
| | - Ondřej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; (T.K.); (M.H.); (D.J.); (L.M.); (O.S.)
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; (T.K.); (M.H.); (D.J.); (L.M.); (O.S.)
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (F.P.); (D.H.); (J.M.); (R.P.); (N.M.)
| |
Collapse
|
5
|
Hu N, White LV, Lan P, Banwell MG. The Chemical Synthesis of the Crinine and Haemanthamine Alkaloids: Biologically Active and Enantiomerically-Related Systems that Serve as Vehicles for Showcasing New Methodologies for Molecular Assembly. Molecules 2021; 26:molecules26030765. [PMID: 33540725 PMCID: PMC7867252 DOI: 10.3390/molecules26030765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
The title alkaloids, often referred to collectively as crinines, are a prominent group of structurally distinct natural products with additional members being reported on a regular basis. As such, and because of their often notable biological properties, they have attracted attention as synthetic targets since the mid-1950s. Such efforts continue unabated and more recent studies on these alkaloids have focused on using them as vehicles for showcasing the utility of new synthetic methods. This review provides a comprehensive survey of the nearly seventy-year history of these synthetic endeavors.
Collapse
|
6
|
Yang L, Zhang JH, Zhang XL, Lao GJ, Su GM, Wang L, Li YL, Ye WC, He J. Tandem mass tag-based quantitative proteomic analysis of lycorine treatment in highly pathogenic avian influenza H5N1 virus infection. PeerJ 2019; 7:e7697. [PMID: 31592345 PMCID: PMC6778435 DOI: 10.7717/peerj.7697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Highly pathogenic H5N1 influenza viruses (HPAIV) cause rapid systemic illness and death in susceptible animals, leading to a disease with high morbidity and mortality rates. Although vaccines and drugs are the best solution to prevent this threat, a more effective treatment for H5 strains of influenza has yet to be developed. Therefore, the development of therapeutics/drugs that combat H5N1 influenza virus infection is becoming increasingly important. Lycorine, the major component of Amaryllidaceae alkaloids, exhibits better protective effects against A/CK/GD/178/04 (H5N1) (GD178) viruses than the commercial neuraminidase (NA) inhibitor oseltamivir in our prior study. Lycorine demonstrates outstanding antiviral activity because of its inhibitory activity against the export of viral ribonucleoprotein complexes (vRNPs) from the nucleus. However, how lycorine affects the proteome of AIV infected cells is unknown. Therefore, we performed a comparative proteomic analysis to identify changes in protein expression in AIV-infected Madin-Darby Canine Kidney cells treated with lycorine. Three groups were designed: mock infection group (M), virus infection group (V), and virus infection and lycorine-treated after virus infection group (L). The multiplexed tandem mass tag (TMT) approach was employed to analyze protein level in this study. In total, 5,786 proteins were identified from the three groups of cells by using TMT proteomic analysis. In the V/M group, 1,101 proteins were identified, of which 340 differentially expressed proteins (DEPs) were determined during HPAIV infection; among the 1,059 proteins identified from the lycorine-treated group, 258 proteins presented significant change. Here, 71 proteins showed significant upregulation or downregulation of expression in the virus-infected/mock and virus-infected/lycorine-treated comparisons, and the proteins in each fraction were functionally classified further. Interestingly, lycorine treatment decreased the levels of the nuclear pore complex protein 93 (Nup93, E2RSV7), which is associated with nuclear–cytoplasmic transport. In addition, Western blot experiments confirmed that the expression of Nup93 was significantly downregulated in lycorine treatment but induced after viral infection. Our results may provide new insights into how lycorine may trap vRNPs in the nucleus and suggest new potential therapeutic targets for influenza virus.
Collapse
Affiliation(s)
- Li Yang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jia Hao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Li Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Guang Jie Lao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guan Ming Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lei Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Yao Lan Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Wen Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Jun He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.,Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Lan P, Banwell MG, Willis AC. Application of Electrocyclic Ring-Opening and Desymmetrizing Nucleophilic Trappings of meso-6,6-Dibromobicyclo[3.1.0]hexanes to Total Syntheses of Crinine and Haemanthamine Alkaloids. J Org Chem 2019; 84:3431-3466. [PMID: 30726669 DOI: 10.1021/acs.joc.9b00018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The thermally induced electrocyclic ring-opening of C2-symmetric ( meso) 6,6-dibromobicyclo[3.1.0]hexanes such as 10 in the presence of the chiral, nonracemic 1°-amine 28 afforded a ca. 1:1 mixture of the diastereoisomeric and chromatographically separable 1-amino-2-bromo-2-cyclohexenes 37 (42%) and 38 (45%). Each of these was elaborated over 13 steps, including Suzuki-Miyaura cross-coupling, radical cyclization, and Pictet-Spengler reactions, into (-)- or (+)-crinane (1 or ent-1, respectively). Variations on these protocols were applied to the total syntheses of (+)- and (-)-11-hydroxyvattitine [(+)- and (-)-3], (+)- and (-)-bulbispermine [(+)- and (-)-4], (+)- and (-)-haemanthamine [(+)- and (-)-5], (+)- and (-)-pretazettine [(+)- and (-)-6], and (+)- and (-)-tazettine [(+)- and (-)-7] as well as (±)-hamayne [(±)-8] and (±)-apohaemanthamine [(±)-9]. A number of these alkaloids were synthesized for the first time.
Collapse
Affiliation(s)
- Ping Lan
- Institute for Advanced and Applied Chemical Synthesis , Jinan University , Zhuhai 519070 , China.,Department of Food Science and Engineering , Jinan University , Guangzhou 510632 , China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis , Jinan University , Zhuhai 519070 , China.,Research School of Chemistry, Institute of Advanced Studies , The Australian National University , Canberra , ACT 2601 , Australia
| | - Anthony C Willis
- Research School of Chemistry, Institute of Advanced Studies , The Australian National University , Canberra , ACT 2601 , Australia
| |
Collapse
|
8
|
Zhang P, Zhang M, Yu D, Liu W, Hu L, Zhang B, Zhou Q, Cao Z. Lycorine inhibits melanoma cell migration and metastasis mainly through reducing intracellular levels of β-catenin and matrix metallopeptidase 9. J Cell Physiol 2018; 234:10566-10575. [PMID: 30565685 DOI: 10.1002/jcp.27732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
Abstract
Metastatic melanoma accounts for 60% of death for skin cancer. Although great efforts have been made to treat the disease, effective drugs against metastatic melanoma still lack at the clinical setting. In the current study, we found that lycorine, a small molecule of isoquinoline alkaloid, significantly suppressed melanoma cell migration and invasion in vitro, and decreased the metastasis of melanoma cells to lung tissues in tumor-bearing mice, resulting in significant prolongation of the survival of the mice without obvious toxicity. Molecular mechanistic studies revealed that lycorine significantly reduced intracellular levels of β-catenin protein through degradation of the protein via the ubiquitin-proteasome pathway, and decreased the expression of β-catenin downstream prometastatic matrix metallopeptidase 9 and Axin2 genes. Collectively, our findings support the notion that targeting the oncogenic β-catenin by lycorine is a new option to inhibit melanoma cell metastasis, providing a good drug candidate potential for development novel therapeutics against metastatic melanoma.
Collapse
Affiliation(s)
- Pan Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Di Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenming Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Lin Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Bin Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
9
|
Verma P, Chandra A, Pandey G. Diversity-Oriented Approach Toward the Syntheses of Amaryllidaceae Alkaloids via a Common Chiral Synthon. J Org Chem 2018; 83:9968-9977. [PMID: 30005155 DOI: 10.1021/acs.joc.8b01368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalized hydroindole (1), a common chiral synthon, for versatile transformations to synthesize a broad range of Amaryllidaceae alkaloids (AAs) including (-)-crinine, (-)-crinane, (-)-amabiline, (+)-mesembrine, (-)-maritidine, (-)-oxomaritidine, and (+)-mesembrane is reported. Scaffold 1 is found as a prime structural motif in a wide variety of the AAs and is a novel synthon toward designing a divergent route for the synthesis of these natural products. This is established in a few steps, starting from a chiral aza-bicyclo-heptene sulfone scaffold (2) via conjugate addition and concomitant stereoselective ring opening with allylmagnesium bromide, a key step that generates a crucial quaternary stereocenter, fixing the stereochemistry of the rest of the molecule at an early stage. One carbon truncation followed by intramolecular reductive amination led to the desired core 1 in a multigram scale.
Collapse
Affiliation(s)
- Prachi Verma
- Molecular Synthesis and Drug Discovery Lab , Centre of Biomedical Research, SGPGI Campus , Raibarely Road , Lucknow , Uttar Pradesh 226014 , India
| | - Atish Chandra
- Molecular Synthesis and Drug Discovery Lab , Centre of Biomedical Research, SGPGI Campus , Raibarely Road , Lucknow , Uttar Pradesh 226014 , India
| | - Ganesh Pandey
- Molecular Synthesis and Drug Discovery Lab , Centre of Biomedical Research, SGPGI Campus , Raibarely Road , Lucknow , Uttar Pradesh 226014 , India
| |
Collapse
|
10
|
Shen J, Zhang T, Cheng Z, Zhu N, Wang H, Lin L, Wang Z, Yi H, Hu M. Lycorine inhibits glioblastoma multiforme growth through EGFR suppression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:157. [PMID: 30016965 PMCID: PMC6050662 DOI: 10.1186/s13046-018-0785-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
Background Lycorine has been revealed to inhibit the development of many kinds of malignant tumors, including glioblastoma multiforme (GBM). Although compelling evidences demonstrated Lycorine’s inhibition on cancers through some peripheral mechanism, in-depth mechanism studies of Lycotine’s anti-GBM effects still call for further exploration. Epidermal Growth Factor Receptor (EGFR) gene amplification and mutations are the most common oncogenic events in GBM. Targeting EGFR by small molecular inhibitors is a rational strategy for GBM treatment. Methods The molecular docking modeling and in vitro EGFR kinase activity system were employed to identify the potential inhibitory effects of Lycorine on EGFR. And the Biacore assay was used to confirm the direct binding status between Lycorine and the intracellular EGFR (696–1022) domain. In vitro assays were conducted to test the suppression of Lycorine on the biological behavior of GBM cells. By RNA interference, EGFR expression was reduced then cells underwent proliferation assay to investigate whether Lycorine’s inhibition on GBM cells was EGFR-dependent or not. RT-PCR and western blotting analysis were carried out to investigate the underlined molecular mechanism that Lycorine exerted on EGFR itself and EGFR signaling pathway. Three different xenograft models (an U251-luc intracranially orthotopic transplantation model, an EGFR stably knockdown U251 subcutaneous xenograft model and a patient-derived xenograft model) were performed to verify Lycorine’s therapeutic potential on GBM in vivo. Results We identified a novel small natural molecule Lycorine binding to the intracellular EGFR (696–1022) domain as an inhibitor of EGFR. Lycorine decreased GBM cell proliferation, migration and colony formation by inducing cell apoptosis in an EGFR-mediated manner. Furthermore, Lycorine inhibited the xenograft tumor growths in three animal models in vivo. Besides, Lycorine impaired the phosphorylation of EGFR, AKT, which were mechanistically associated with expression alteration of a series of cell survival and death regulators and metastasis-related MMP9 protein. Conclusions Our findings identify Lycorine directly interacts with EGFR and inhibits EGFR activation. The most significant result is that Lycorine displays satisfactory therapeutic effect in our patient-derived GBM tumor xenograft, thus supporting the conclusion that Lycorine may be considered as a promising candidate in clinical therapy for GBM.
Collapse
Affiliation(s)
- Jia Shen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Tao Zhang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Zheng Cheng
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Ni Zhu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Hua Wang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Li Lin
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Zexia Wang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Haotian Yi
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Meichun Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China.
| |
Collapse
|
11
|
Lan P, Banwell MG, Willis AC. Total Synthesis of (±)-Crinane from 6,6-Dibromobicyclo[3.1.0]hexane Using a 5- exo- trig Radical Cyclization Reaction to Assemble the C3a-Arylated Perhydroindole Substructure. J Org Chem 2018; 83:8493-8498. [PMID: 29792804 DOI: 10.1021/acs.joc.8b01088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crinane embodies the tetracyclic framework associated with some of the most common Amaryllidaceae alkaloids. It has now been prepared in 10 steps from 6,6-dibromobicyclo[3.1.0]hexane (2). The initial step involves the thermally induced electrocyclic ring opening of cyclopropane 3 and capture of the resulting π-allyl cation with benzylamine to give an allylic amine that is readily elaborated to the 3°-amine 10. This last compound was engaged in a 5- exo- trig free radical cyclization reaction to give the C3a-arylated perhydroindole 11. Compound 11 was then converted, over two steps, into (±)-crinane, the hydrochloride salt of which has been subjected to single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Ping Lan
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 , China
| | - Martin G Banwell
- Research School of Chemistry , Institute of Advanced Studies, The Australian National University , Canberra , ACT 2601 , Australia.,College of Pharmacy , Jinan University , Guangzhou , 510632 , China
| | - Anthony C Willis
- Research School of Chemistry , Institute of Advanced Studies, The Australian National University , Canberra , ACT 2601 , Australia
| |
Collapse
|
12
|
van Otterlo WAL, Green IR. A Review on Recent Syntheses of Amaryllidaceae Alkaloids and Isocarbostyrils (Time period mid-2016 to 2017). Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alkaloids from the Amaryllidaceae have become valuable targets for synthetic organic chemists, mainly due to their wide variety of bioactivities and potential for utilization in medicinal chemistry ventures. In addition, the structural complexity of a number of these alkaloids has also been a reason for the interest in these compounds. In this review, the last 18 months of literature was perused and synthetic highlights have been presented here, with the hope to further focus attention on this interesting class of compounds and to encourage others to synthesize these compounds and their derivatives and/or analogues. The review contains examples of syntheses from most of the important alkaloid scaffold classes previously isolated from the Amaryllidaceae, namely: lycorine, crinine, galanthamine, tazettine, montanine, phenanthridone, phenanthridine, plicamine, mesembrine and some minor scaffolds (like gracilamine).
Collapse
Affiliation(s)
- Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Ivan R. Green
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
13
|
Seifrtová M, Havelek R, Cahlíková L, Hulcová D, Mazánková N, Řezáčová M. Haemanthamine alters sodium butyrate-induced histone acetylation, p21 WAF1/Cip1 expression, Chk1 and Chk2 activation and leads to increased growth inhibition and death in A2780 ovarian cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 35:1-10. [PMID: 28991639 DOI: 10.1016/j.phymed.2017.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/03/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Haemanthamine (HA) and sodium butyrate (NaB) are promising candidates for chemotherapy as a treatment for cancer. PURPOSE We aimed to determine the anticancer potential of HA and NaB, alone and in combination, in A2780 ovarian cancer cells and concurrently investigated anticancer potential in contrast to non-cancer human MRC-5 fibroblasts. METHODS Antiproliferative effects were determined by WST-1 assay and by Trypan blue exclusion staining. Cell cycle distributions were studied by flow cytometry and protein levels were determined by Western blotting. RESULTS The combination of HA and NaB caused a significant decrease in the proliferation of A2780 cells compared to the stand-alone treatment of cells by HA or NaB. This effect was less pronounced in non-cancer MRC-5 fibroblasts. In the later intervals, the number of A2780 living cells was strongly decreased by treatment using a combination of NaB and HA. This simultaneous application had no considerable effect in MRC-5 fibroblasts. The combination of NaB and HA led to the suppression of cells in the G1 phase and caused an accumulation of cells in the S and G2 phase in comparison to those treated with NaB and HA alone. Treatment of cells with NaB alone led to the activation of proteins regulating the cell cycle. Notably, p21WAF1/Cip1 was upregulated in both A2780 and MRC-5 cells, while checkpoint kinases 1 and 2 were activated via phosphorylation only in A2780 cells. Unexpectedly, NaB in combination with HA suppressed the phosphorylation of Chk2 on threonine 68 and Chk1 on serine 345 in A2780 cells and downregulated p21WAF1/Cip1 in both tested cell lines. The sensitization of cells to HA and NaB treatment seems to be accompanied by increased histone acetylation. NaB-induced acetylation of histone H3 and H4 and histone acetylation increased markedly when a combination of NaB and HA was applied. Whereas the most prominent hyperacetylation after HA and NaB treatment was observed in A2780 cells, the acetylation of histones occurred in both cell lines. CONCLUSION In summary, we have demonstrated the enhanced activity of HA and NaB against A2780 cancer cells, while eliciting no such effect in non-cancer MRC-5 cells.
Collapse
Affiliation(s)
- Martina Seifrtová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, Hradec Kralove 500 38, Czech Republic.
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, Hradec Kralove 500 38, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Králové 500 05, Czech Republic
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Králové 500 05, Czech Republic
| | - Naděžda Mazánková
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, Hradec Kralove 500 38, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, Hradec Kralove 500 38, Czech Republic
| |
Collapse
|
14
|
Cimmino A, Masi M, Evidente M, Superchi S, Evidente A. Amaryllidaceae alkaloids: Absolute configuration and biological activity. Chirality 2017. [PMID: 28649696 DOI: 10.1002/chir.22719] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plants belonging to the Amaryllidaceae family are well known for their ornamental and medicinal use. Plant members of this group are distributed through both tropical and subtropical regions of the world and are dominant in Andean South America, the Mediterranean basin, and southern Africa. Amaryllidaceae plants have been demonstrated to be a good source of alkaloids with a large spectrum of biological activities, the latter being strictly related to the absolute stereochemistry of the alkaloid scaffold. Among them, great importance for practical applications in medicine has galanthamine, which has already spawned an Alzheimer's prescription drug as a potent and selective inhibitor of the enzyme acetylcholinesterase. Furthermore, lycorine as well as its related isocarbostyryl analogs narciclasine and pancratistatine have shown a strong anticancer activity in vitro against different solid tumors with malignant prognosis. This review addresses the assignment of the absolute configuration of several Amaryllidaceae alkaloids and its relationship with their biological activities.
Collapse
Affiliation(s)
- Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Napoli, Italy
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Napoli, Italy
| | - Marco Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Napoli, Italy
| | - Stefano Superchi
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Napoli, Italy
| |
Collapse
|
15
|
Gao YR, Wang DY, Wang YQ. Asymmetric Syntheses of Amaryllidaceae Alkaloids (-)-Crinane and (+)-4a-Dehydroxycrinamabine. Org Lett 2017; 19:3516-3519. [PMID: 28598164 DOI: 10.1021/acs.orglett.7b01486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A palladium-catalyzed asymmetric allyl-allyl cross-coupling reaction to construct the chiral quaternary carbon center of crinane alkaloids has been developed. On the basis of an efficient approach, the enantioselective synthesis of (-)-crinane (1) is presented, and the first asymmetric total synthesis of (+)-4a-dehydroxycrinamabine (2) was achieved by subsequent oxidation, 1,4-conjugate addition, RCM reaction, reductive amination, and Pictet-Spengler reaction. The method provided an alternative strategy for the syntheses of crinane alkaloids and other Amaryllidaceae natural products.
Collapse
Affiliation(s)
- Ya-Ru Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University , Xi'an 710069, P. R. China
| | - Da-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University , Xi'an 710069, P. R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University , Xi'an 710069, P. R. China
| |
Collapse
|