1
|
Abd El-Mageed MMA, Fattah Ezzat MA, Moussa SA, Abdel-Aziz HA, Elmasry GF. Rational design, synthesis and computational studies of multi-targeted anti-Alzheimer's agents integrating coumarin scaffold. Bioorg Chem 2025; 154:108024. [PMID: 39642754 DOI: 10.1016/j.bioorg.2024.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
The traditional theory of "one drug, one target, one illness" has come under scrutiny owing to the multifactorial nature of Alzheimer's disease (AD) and the failure of most of its medications, therefore multi-target directed ligands (MTDLs) are prospective therapeutics for AD. In the present study, we synthesized novel series of coumarin derivatives and assessed their inhibitory actions against hAChE, hBuChE, GSK-3β, tau protein and Aβ aggregation. Compounds 6c and 6h stood out among the others with their multifunctional profile. With IC50 values of 28.88 and 26.03 nM, respectively, compounds 6c and 6h showed outstanding activity as hAChE inhibitors and demonstrated good inhibitory activity against hBuChE with IC50 values of 103.90 and 90.09 nM along with appropriate action against GSK-3β in nanomolar range. Also, both compounds 6c and 6h were found to outperform the reported anti-AD donepezil as tau protein aggregation and amyloid aggregation (Aβ) inhibitors as well as low cytotoxicity on healthy neuroblastoma SHSY5Y and hepatic THLE2 cells. Kinetic analysis and docking studies indicated hAChE dual site (mixed) inhibitory effect of compound 6h. Both compounds 6c and 6h complied with Lipinski's rule of five and were virtually able to cross the BBB. All the data suggested that compounds 6c and 6h have potential as a multifunctional therapy for AD.
Collapse
Affiliation(s)
- Menna M A Abd El-Mageed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Manal Abdel Fattah Ezzat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Shaimaa A Moussa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, P.O. Box 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University, Canal El Mahmoudia Street, 21648, Alexandria, Egypt
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| |
Collapse
|
2
|
Mahmoud E, Abdelhamid D, Youssif BGM, Gomaa HAM, Hayallah AM, Abdel-Aziz M. Design, synthesis, and antiproliferative activity of new indole/1,2,4-triazole/chalcone hybrids as EGFR and/or c-MET inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300562. [PMID: 39219313 DOI: 10.1002/ardp.202300562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 09/04/2024]
Abstract
A novel group of indolyl-1,2,4-triazole-chalcone hybrids was designed, synthesized, and assessed for their anticancer activity. The synthesized compounds exhibited significant antiproliferative activity. Compounds 9a and 9e exhibited significant cancer inhibition with GI50 ranging from 3.69 to 20.40 µM and from 0.29 to >100 µM, respectively. Both compounds displayed a broad spectrum of anticancer activity with selectivity ratios ranging between 0.50-2.78 and 0.25-2.81 at the GI50 level, respectively. The synthesized compounds were also screened for their cytotoxicity by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazol (MTT) assay and for inhibition of epidermal growth factor receptor (EGFR) and c-MET (mesenchymal-epithelial transition factor). Some of the tested compounds exhibited significant inhibition against EGFR and/or c-MET. Compound 9b showed the highest c-MET inhibition (IC50 = 4.70 nM) compared to foretinib (IC50 = 2.5 nM). Compound 9d showed equipotent activity compared with erlotinib against EGFR (IC50 = 0.052 µM) and displayed significant c-MET inhibition with an IC50 value of 4.90 nM.
Collapse
Affiliation(s)
- Esraa Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- Raabe College of Pharmacy, Ohio Northern University, Ohio, USA
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Alaa M Hayallah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New-Assiut, Egypt
| | - Mohamad Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
3
|
Wu X, Ze X, Qin S, Zhang B, Li X, Gong Q, Zhang H, Zhu Z, Xu J. Design, Synthesis, and Biological Evaluation of Novel Tetrahydroacridin Hybrids with Sulfur-Inserted Linkers as Potential Multitarget Agents for Alzheimer's Disease. Molecules 2024; 29:1782. [PMID: 38675602 PMCID: PMC11051924 DOI: 10.3390/molecules29081782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that can lead to the loss of cognitive function. The progression of AD is regulated by multiple signaling pathways and their associated targets. Therefore, multitarget strategies theoretically have greater potential for treating AD. In this work, a series of new hybrids were designed and synthesized by the hybridization of tacrine (4, AChE: IC50 = 0.223 μM) with pyrimidone compound 5 (GSK-3β: IC50 = 3 μM) using the cysteamine or cystamine group as the connector. The biological evaluation results demonstrated that most of the compounds exhibited moderate to good inhibitory activities against acetylcholinesterase (AChE) and glycogen synthase kinase 3β (GSK-3β). The optimal compound 18a possessed potent dual AChE/GSK-3β inhibition (AChE: IC50 = 0.047 ± 0.002 μM, GSK-3β: IC50 = 0.930 ± 0.080 μM). Further molecular docking and enzymatic kinetic studies revealed that this compound could occupy both the catalytic anionic site and the peripheral anionic site of AChE. The results also showed a lack of toxicity to SH-SY5Y neuroblastoma cells at concentrations of up to 25 μM. Collectively, this work explored the structure-activity relationships of novel tetrahydroacridin hybrids with sulfur-inserted linkers, providing a reference for the further research and development of new multitarget anti-AD drugs.
Collapse
Affiliation(s)
- Xiuyuan Wu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Xiaotong Ze
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Shuai Qin
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Beiyu Zhang
- Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK;
| | - Xinnan Li
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (Q.G.); (H.Z.)
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (Q.G.); (H.Z.)
| | - Zheying Zhu
- Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK;
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| |
Collapse
|
4
|
Mishra S, Sahu A, Kaur A, Kaur M, Kumar J, Wal P. Recent Development in the Search for Epidermal Growth Factor Receptor (EGFR) Inhibitors based on the Indole Pharmacophore. Curr Top Med Chem 2024; 24:581-613. [PMID: 37909440 DOI: 10.2174/0115680266264206231020111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 11/03/2023]
Abstract
The signal transduction and cell proliferation are regulated by the epidermal growth factor receptor. The proliferation of tumor cells, apoptosis, invasion, and angiogenesis is inhibited by the epidermal growth factor receptor. Thus, breast cancer, non-small cell lung cancer, cervical cancer, glioma, and bladder cancer can be treated by targeting the epidermal growth factor receptor. Although third-generation epidermal growth factor receptor inhibitors are potent drugs, patients exhibit drug resistance after treatment. Thus, the search for new drugs is being continued. Among the different potent epidermal growth factor receptor inhibitors, we have reviewed the indole-based inhibitors. We have discussed the structure-activity relationship of the compounds with the active sites of the epidermal growth factor receptor receptors, their synthesis, and molecular docking studies.
Collapse
Affiliation(s)
- Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, 122505, India
| | - Adarsh Sahu
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar, 473003, Madhya Pradesh, India
- Amity Institute of Pharmacy, Amity University Rajasthan, NH11C Kant Kanwar Jaipur, 300202, India
| | - Avneet Kaur
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, 122505, India
| | | | - Jayendra Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad, UP, 201204, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, UP, India
| |
Collapse
|
5
|
Drakontaeidi A, Pontiki E. Multi-Target-Directed Cinnamic Acid Hybrids Targeting Alzheimer's Disease. Int J Mol Sci 2024; 25:582. [PMID: 38203753 PMCID: PMC10778916 DOI: 10.3390/ijms25010582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Progressive cognitive decline in Alzheimer's disease (AD) is a growing challenge. Present therapies are based on acetylcholinesterase inhibition providing only temporary relief. Promising alternatives include butyrylcholinesterase (BuChE) inhibitors, multi-target ligands (MTDLs) that address the multi-factorial nature of AD, and compounds that target oxidative stress and inflammation. Cinnamate derivatives, known for their neuroprotective properties, show potential when combined with established AD agents, demonstrating improved efficacy. They are being positioned as potential AD therapeutic leads due to their ability to inhibit Aβ accumulation and provide neuroprotection. This article highlights the remarkable potential of cinnamic acid as a basic structure that is easily adaptable and combinable to different active groups in the struggle against Alzheimer's disease. Compounds with a methoxy substitution at the para-position of cinnamic acid display increased efficacy, whereas electron-withdrawing groups are generally more effective. The effect of the molecular volume is worthy of further investigation.
Collapse
Affiliation(s)
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
6
|
Duan SF, Song L, Guo HY, Deng H, Huang X, Shen QK, Quan ZS, Yin XM. Research status of indole-modified natural products. RSC Med Chem 2023; 14:2535-2563. [PMID: 38107170 PMCID: PMC10718587 DOI: 10.1039/d3md00560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/19/2023] Open
Abstract
Indole is a heterocyclic compound formed by the fusion of a benzene ring and pyrrole ring, which has rich biological activity. Many indole-containing compounds have been sold on the market due to their excellent pharmacological activity. For example, vincristine and reserpine have been widely used in clinical practice. The diverse structures and biological activities of natural products provide abundant resources for the development of new drugs. Therefore, this review classifies natural products by structure, and summarizes the research progress of indole-containing natural product derivatives, their biological activities, structure-activity relationship and research mechanism which has been studied in the past 13 years, so as to provide a basis for the development of new drug development.
Collapse
Affiliation(s)
- Song-Fang Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Lei Song
- Yanbian University Hospital, Yanbian University Yanji 133002 People's Republic of China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xiu-Mei Yin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| |
Collapse
|
7
|
Singh YP, Kumar H. Tryptamine: A privileged scaffold for the management of Alzheimer's disease. Drug Dev Res 2023; 84:1578-1594. [PMID: 37675624 DOI: 10.1002/ddr.22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disease associated with aging. It is characterized by the progressive loss of memory and other cognitive functions. Although the exact etiology of AD is not well explored, several factors, such as the deposition of amyloid-β (Aβ) plaques, hyperphosphorylation of tau protein, presence of low levels of acetylcholine, and generation of oxidative stress, are key mediators in the progression of AD. Currently, the clinical treatment options for AD are limited and are based on cholinesterase (ChE) inhibitors (e.g., donepezil, rivastigmine, and galantamine), N-methyl- d-aspartic acid receptor antagonists (e.g., memantine), and the recently approved Aβ modulator (e.g., aducanumab). Tryptamine (2-(1H-indol-3-yl)ethan-1-amine) is a small molecule that contains an indole nucleus and an ethylamine side chain. It is also the active metabolite of tryptophan. It possesses a wide range of biological activities related to neurodegenerative disorders, such as ChE inhibition, Aβ aggregation inhibition, antioxidant effects, monoamine-oxidase inhibition, and neuroprotection. Several tryptamine-based hybrid analogs are currently being investigated as multifunctional agents for the development of novel hybrids for AD treatment. Thus, this review article aims to provide in-depth insights into the research progress and strategies for designing multifunctional agents used in Alzheimer's therapy.
Collapse
Affiliation(s)
- Yash P Singh
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Harish Kumar
- Government College of Pharmacy, Shimla, Himachal Pradesh, India
- Department of Technical Education Vocational and Industrial Training, Sunder Nagar, Himachal Pradesh, India
| |
Collapse
|
8
|
Solangi M, Khan KM, Ji X, Özil M, Baltaş N, Salar U, Khan A, Haq ZU, Meghwar H, Taha M. Indole-pyridine carbonitriles: multicomponent reaction synthesis and bio-evaluation as potential hits against diabetes mellitus. Future Med Chem 2023; 15:1943-1965. [PMID: 37929570 DOI: 10.4155/fmc-2023-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Background: Diabetes mellitus is a significant health disorder; therefore, researchers should focus on discovering new drug candidates. Methods: A series of indole-pyridine carbonitrile derivatives, 1-34, were synthesized through a one-pot multicomponent reaction and evaluated for antidiabetic and antioxidant potential. Results: In this library, 12 derivatives - 1, 2, 4, 5, 7, 8, 10-12, 14, 15 and 31 - exhibited potent inhibitory activities against α-glucosidase and α-amylase enzymes, in comparison to acarbose (IC50 = 14.50 ± 0.11 μM). Furthermore, kinetics, absorption, distribution, metabolism, excretion and toxicity and molecular docking studies were used to interpret the type of inhibition, binding energies and interactions of ligands with target enzymes. Conclusion: These results indicate that the compounds may be promising hits for controlling diabetes mellitus and its related complications.
Collapse
Affiliation(s)
- Mehwish Solangi
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Pakistan Academy of Sciences, 3 Constitution Avenue, Sector G-5/2, Islamabad, Pakistan
| | - Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Alamgir Khan
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zaheer Ul Haq
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Herchand Meghwar
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, PO Box 31441, Dammam, Saudi Arabia
| |
Collapse
|
9
|
Al-Humaidi J, Gomha SM, Riyadh SM, Ibrahim MS, Zaki MEA, Abolibda TZ, Jefri OA, Abouzied AS. Synthesis, Biological Evaluation, and Molecular Docking of Novel Azolylhydrazonothiazoles as Potential Anticancer Agents. ACS OMEGA 2023; 8:34044-34058. [PMID: 37744790 PMCID: PMC10515364 DOI: 10.1021/acsomega.3c05038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023]
Abstract
A novel set of thiazolylhydrazonothiazoles bearing an indole moiety were synthesized by subjection reactions of carbothioamide derivative and hydrazonoyl chlorides (or α-haloketones). The cytotoxicity of the synthesized compounds was evaluated against the colon carcinoma cell line (HCT-116), liver carcinoma cell line (HepG2), and breast carcinoma cell line (MDA-MB-231), and demonstrated encouraging activity. Furthermore, when representative products were assessed for toxicity against normal cells, minimal toxic effects were observed, indicating their potential safety for use in pharmacological studies. The mechanism of action of the tested products, as inhibitors of the epidermal growth factor receptor tyrosine kinase domain (EGFR TK) protein, was suggested through docking studies that assessed their binding scores and modes, in comparison to a reference standard (W19), thus endorsing their anticancer activity.
Collapse
Affiliation(s)
- Jehan
Y. Al-Humaidi
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. .BOX 84428, Riyadh 11671, Saudi Arabia
| | - Sobhi M. Gomha
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Sayed M. Riyadh
- Department
of Chemistry, Faculty of Science, Cairo
University, Cairo 12613, Egypt
| | - Mohamed S. Ibrahim
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Magdi E. A. Zaki
- Department
of Chemistry, Faculty of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Tariq Z. Abolibda
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Ohoud A. Jefri
- Department
of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amr S. Abouzied
- Department
of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Department
of Pharmaceutical Chemistry, National Organization
for Drug Control and Research (NODCAR), Giza 12311, Egypt
| |
Collapse
|
10
|
Kamel NN, Aly HF, Fouad GI, Abd El-Karim SS, Anwar MM, Syam YM, Elseginy SA, Ahmed KA, Booles HF, Shalaby MB, Khalil WKB, Sandhir R, Deshwal S, Rizk MZ. Anti-Alzheimer activity of new coumarin-based derivatives targeting acetylcholinesterase inhibition. RSC Adv 2023; 13:18496-18510. [PMID: 37346948 PMCID: PMC10280131 DOI: 10.1039/d3ra02344c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
New 2-oxo-chromene-7-oxymethylene acetohydrazide derivatives 4a-d were designed and synthesized with a variety of bioactive chemical fragments. The newly synthesized compounds were evaluated as acetylcholinesterase (AChE) inhibitors and antioxidant agents in comparison to donepezil and ascorbic acid, respectively. Compound 4c exhibited a promising inhibitory impact with an IC50 value of 0.802 μM and DPPH scavenging activity of 57.14 ± 2.77%. Furthermore, biochemical and haematological studies revealed that compound 4c had no effect on the blood profile, hepatic enzyme levels (AST, ALT, and ALP), or total urea in 4c-treated rats compared to the controls. Moreover, the histopathological studies of 4c-treated rats revealed the normal architecture of the hepatic lobules and renal parenchyma, as well as no histopathological damage in the examined hepatic, kidney, heart, and brain tissues. In addition, an in vivo study investigated the amelioration in the cognitive function of AD-rats treated with 4c through the T-maze and beam balance behavioural tests. Also, 4c detectably ameliorated MDA and GSH, reaching 90.64 and 27.17%, respectively, in comparison to the standard drug (90.64% and 35.03% for MDA and GSH, respectively). The molecular docking study exhibited a good fitting of compound 4c in the active site of the AChE enzyme and a promising safety profile. Compound 4c exhibited a promising anti-Alzheimer's disease efficiency compared to the standard drug donepezil.
Collapse
Affiliation(s)
- Nahla N Kamel
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Hanan F Aly
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Ghadha I Fouad
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Yasmin M Syam
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Samia A Elseginy
- Green Chemistry Department, Chemical Industries Research Division, National Research Centre P. O. Box 12622 Egypt
| | - Kawkab A Ahmed
- Pathology Departments, Faculty of Veterinary Medicine, Cairo University Giza 12211 Egypt
| | - Hoda F Booles
- Department of Cell Biology, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Mohamed B Shalaby
- Toxicology Research Department, Research Institute of Medical Entomology (RIME), General Organization of Teaching Hospitals and Institutes (GOTHI), Ministry of Health and Population (MoHP) Dokki, P. O. Box 12311 Cairo Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University Chandigarh India
| | - Sonam Deshwal
- Department of Biochemistry, Panjab University Chandigarh India
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| |
Collapse
|
11
|
Ibrahim MS, Farag B, Y. Al-Humaidi J, Zaki MEA, Fathalla M, Gomha SM. Mechanochemical Synthesis and Molecular Docking Studies of New Azines Bearing Indole as Anticancer Agents. Molecules 2023; 28:3869. [PMID: 37175279 PMCID: PMC10180502 DOI: 10.3390/molecules28093869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
The development of new approaches for the synthesis of new bioactive heterocyclic derivatives is of the utmost importance for pharmaceutical industry. In this regard, the present study reports the green synthesis of new benzaldazine and ketazine derivatives via the condensation of various carbonyl compounds (aldehydes and ketones with the 3-(1-hydrazineylideneethyl)-1H-indole using the grinding method with one drop of acetic acid). Various spectroscopic techniques were used to identify the structures of the synthesized derivatives. Furthermore, the anticancer activities of the reported azine derivatives were evaluated against colon, hepatocellular, and breast carcinoma cell lines using the MTT technique with doxorubicin as a reference medication. The findings suggested that the synthesized derivatives exhibited potential anti-tumor activities toward different cell lines. For example, 3c, 3d, 3h, 9, and 13 exhibited interesting activity with an IC50 value of 4.27-8.15 µM towards the HCT-116 cell line as compared to doxorubicin (IC50 = 5.23 ± 0.29 µM). In addition, 3c, 3d, 3h, 9, 11, and 13 showed excellent cytotoxic activities (IC50 = 4.09-9.05 µM) towards the HePG-2 cell line compared to doxorubicin (IC50 = 4.50 ± 0.20 µM), and 3d, 3h, 9, and 13 demonstrated high potency (IC50 = 6.19-8.39 µM) towards the breast cell line (MCF-7) as compared to the reference drug (IC50 = 4.17 ± 0.20 µM). The molecular interactions between derivatives 3a-h, 7, 9, 11, 13, and the CDK-5 enzyme (PDB ID: 3IG7) were studied further using molecular docking indicating a high level of support for the experimental results. Furthermore, the drug-likeness analysis of the reported derivatives indicated that derivative 9 (binding affinity = -8.34 kcal/mol) would have a better pharmacokinetics, drug-likeness, and oral bioavailability as compared to doxorubicin (-7.04 kcal/mol). These results along with the structure-activity relationship (SAR) of the reported derivatives will pave the way for the design of additional azines bearing indole with potential anticancer activities.
Collapse
Affiliation(s)
- Mohamed S. Ibrahim
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.S.I.); (M.F.)
| | - Basant Farag
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Jehan Y. Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Maher Fathalla
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.S.I.); (M.F.)
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.S.I.); (M.F.)
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
12
|
Recent advances on biologically active coumarin-based hybrid compounds. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Synthesis, Characterization, Crystal Structure, and cholinesterase Inhibitory Activity of 2-Phenylthiazole Derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
14
|
Current Pharmacotherapy and Multi-Target Approaches for Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 15:ph15121560. [PMID: 36559010 PMCID: PMC9781592 DOI: 10.3390/ph15121560] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by decreased synaptic transmission and cerebral atrophy with appearance of amyloid plaques and neurofibrillary tangles. Cognitive, functional, and behavioral alterations are commonly associated with the disease. Different pathophysiological pathways of AD have been proposed, some of which interact and influence one another. Current treatment for AD mainly involves the use of therapeutic agents to alleviate the symptoms in AD patients. The conventional single-target treatment approaches do not often cause the desired effect in the disease due to its multifactorial origin. Thus, multi-target strategies have since been undertaken, which aim to simultaneously target multiple targets involved in the development of AD. In this review, we provide an overview of the pathogenesis of AD and the current drug therapies for the disease. Additionally, rationales of the multi-target approaches and examples of multi-target drugs with pharmacological actions against AD are also discussed.
Collapse
|
15
|
Liu W, Tian L, Wu L, Chen H, Wang N, Liu X, Zhao C, Wu Z, Jiang X, Wu Q, Xu Z, Liu W, Zhao Q. Discovery of novel β-carboline-1,2,3-triazole hybrids as AChE/GSK-3β dual inhibitors for Alzheimer's disease treatment. Bioorg Chem 2022; 129:106168. [DOI: 10.1016/j.bioorg.2022.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
|
16
|
Hari Gangadhar K, Benarjee V, Ratnamala A. Synthesis of 4‐Azaindole‐morpholine‐1,3,4‐oxadiazole Conjugates as Epidermal Growth Factor Receptor Inhibitors. ChemistrySelect 2022. [DOI: 10.1002/slct.202202593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Velaga Benarjee
- Department of Inorganic and Analytical Chemistry Andhra University Visakhapatnam, Andhra Pradesh India
| | | |
Collapse
|
17
|
Synthesis of indole-tetrazole coupled aromatic amides; In vitro anticancer activity, in vitro tubulin polymerization inhibition assay and in silico studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Su JB, Wu WL, Dong CE, Yang S, Feng YY, Qin T, Chen KQ, Qian JJ, Zou JP, Liu YH, Liu SM, Liu WW, Da-hua S. Synthesis, characterization, crystal structure and biological evaluation of 1,3,5-triazine-quinoline derivatives as butyrylcholinesterase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Piperidine-Iodine as Efficient Dual Catalyst for the One-Pot, Three-Component Synthesis of Coumarin-3-Carboxamides. Molecules 2022; 27:molecules27144659. [PMID: 35889530 PMCID: PMC9323834 DOI: 10.3390/molecules27144659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
A simple and efficient one-pot, three-component synthetic method for the preparation of coumarin-3-carboxamides was carried out by the reaction of salicylaldehyde, aliphatic primary/secondary amines, and diethylmalonate. The protocol employs piperidine-iodine as a dual system catalyst and ethanol, a green solvent. The main advantages of this approach are that it is a metal-free and clean reaction, has low catalyst loading, and requires no tedious workup.
Collapse
|
20
|
George N, Jawaid Akhtar M, Al Balushi KA, Alam Khan S. Rational drug design strategies for the development of promising multi-target directed indole hybrids as Anti-Alzheimer agents. Bioorg Chem 2022; 127:105941. [PMID: 35714473 DOI: 10.1016/j.bioorg.2022.105941] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a neurological disorder that leads to dementia i.e., progressive memory loss accompanied with worsening of thinking ability of an individual. The cause of AD is not fully understood but it progresses with age where brain cells gradually die over time. According to the World Health Organization (WHO), currently 50 million people worldwide are affected by dementia and 60-70% of the cases belong to AD. Cumulative research over the past few decades have shown that molecules that act at a single target possess limited efficacy since these investigational drugs are not able to act against complex pathologies and thus do not provide permanent cure. Designing of multi-target directed ligands (MTDLs) appears to be more beneficial and a rational approach to treat chronic complex diseases including neurodegenerative diseases. Recently, MTDLs are being extensively researched by the medicinal chemists for the development of drugs for the treatment of various multifactorial diseases. Indole is one of the privileged scaffolds which is considered as an essential mediator between the gut-brain axis because of its neuroprotective, anti-inflammatory, β-amyloid anti-aggregation and antioxidant activities. Herein, we have reviewed the potential of some indole-hybrids acting at multiple targets in the pathogenesis of AD. We have reviewed research articles from the year 2014-2021 from various scientific databases and highlighted the synthetic strategies, mechanisms of neuroprotection, toxicity, structure activity relationships and molecular docking studies of various indole-hybrid derivatives. This literature review of published data on indole derivatives indicated that developing indole hybrids have improved the pharmacokinetic profile with lower toxicity, provided synergistic effect, helped to develop more potent compounds and prevented drug-drug interactions. It is evident that this class of compounds have potential to inhibit multiple enzymes targets involved in the pathogenesis of AD and therefore indole hybrids as MTDLs may play an important role in the development of anti-AD molecules.
Collapse
Affiliation(s)
- Namy George
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Md Jawaid Akhtar
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Khalid A Al Balushi
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman.
| |
Collapse
|
21
|
Mahmoud E, Hayallah AM, Kovacic S, Abdelhamid D, Abdel-Aziz M. Recent progress in biologically active indole hybrids: a mini review. Pharmacol Rep 2022; 74:570-582. [PMID: 35594012 DOI: 10.1007/s43440-022-00370-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 01/06/2023]
Abstract
The indole moiety is one of the most widespread heterocycles found in both natural products and biological systems. Indoles have important biological activities including anticancer, antioxidant, anti-inflammatory, antifungal, anticholinesterase, and antibacterial properties. Scientists are therefore interested in the synthesis of biologically active indole-based hybrids such as indole-coumarin, indole-chalcone, indole-isatin, indole-pyrimidine and so on, with the aim of improving activity, selectivity, and mitigating side effects. This review will discuss the newly synthesized indole-based hybrids along with their biological activity which will be useful in drug discovery and development.
Collapse
Affiliation(s)
- Esraa Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Alaa M Hayallah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New-Assiut, Egypt
| | - Suzana Kovacic
- Department of Chemistry, Simon Fraser University, British Columbia, Canada
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Mohamad Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
22
|
Onder FC, Sahin K, Senturk M, Durdagi S, Ay M. Identifying highly effective coumarin-based novel cholinesterase inhibitors by in silico and in vitro studies. J Mol Graph Model 2022; 115:108210. [DOI: 10.1016/j.jmgm.2022.108210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022]
|
23
|
kudapa V, B S, Sailaja BBV. Synthesis and Anticancer Activity of Some New 4-Azaindoleisoxazoles. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s107036322203015x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Novel thiophene Chalcones-Coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorg Chem 2021; 119:105572. [PMID: 34971946 DOI: 10.1016/j.bioorg.2021.105572] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
A series of around eight novel chalcone based coumarin derivatives (23a-h) was designed, subjected to in-silico ADMET prediction, synthesized, characterized by IR, NMR, Mass analytical techniques and evaluated as acetylcholinesterase (AChE) inhibitor for the treatment of Alzheimer's disease (AD). The results of predicted ADMET study demonstrated the drug-likeness properties of the titled compounds with developmental challenges in lipophilicity and solubility parameters. The in vitro assessment of the synthesized compounds revealed that all of them showed significant activity (IC50 ranging from 0.42 to 1.296 µM) towards AChE compared to the standard drug, galantamine (IC50 = 1.142 ± 0.027 µM). Among these, compound 23e displayed the most potent inhibitory activity with IC50 value of 0.42 ± 0.019 µM. Cytotoxicity of all compounds was tested on normal human hepatic (THLE-2) cell lines at three different concentrations using the MTT assay, in which none of the compound showed significant toxicity at the highest concentration of 1000 µg/ml compared to the control group. Based on the docking study against AChE, the most active derivative 23e was orientated towards the active site and occupied both catalytic anionic site (CAS) and peripheral anionic site (PAS) of the target enzyme. In-silico studies revealed tested showed better inhibition activity of AChE compared to Butyrylcholinesterase (BuChE). Molecular dynamics simulation explored the stability and dynamic behavior of 23e- AChE complex.
Collapse
|
25
|
Cocco A, Caria P, Sanna G, Stagi L, Cadoni E, Corpino R, Ricci PC, Carbonaro CM, Secci F. Synthesis and Photophysical Properties of Fluorescent 6-Aryl-D-π-A Coumarin Derivatives. ACS OMEGA 2021; 6:33708-33716. [PMID: 34926919 PMCID: PMC8675031 DOI: 10.1021/acsomega.1c04810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
A series of 6-aryl coumarin dyes were synthesized in satisfactory yields by Pd-catalyzed Suzuki cross-coupling reactions with a panel of boronic acids and coumarin bromides. Photophysical studies highlighted a large Stoke shift and interesting fluorescence quantum yield for these compounds. Optical properties were also investigated with the aid of quantum chemical calculations. The treatment of selected coumarin dyes with increasing amounts of trifluoroacetic acid showed that their fluorescence can be strongly influenced by pH (fluorescence quenching at high acid concentrations), while the addition of Fe3+ and Al3+ metal ions allowed to highlight dichotomous behavior with the corresponding reduction in fluorescence with the increase of [Fe3+] or [Al3+]. Finally, biological assays and fluorescence microscopy imaging investigations indicated that these compounds can be used as potential biomarkers in living and fixed cells.
Collapse
Affiliation(s)
- Andrea Cocco
- Department
of Chemical and Geological Sciences, University
of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Paola Caria
- Department
of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Giuseppina Sanna
- Department
of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Luigi Stagi
- Department
of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology,
CR-INSTM, University of Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Enzo Cadoni
- Department
of Chemical and Geological Sciences, University
of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Riccardo Corpino
- Department
of Physics, University of Cagliari, SP 8, Monserrato, 09042 Cagliari, Italy
| | - Pier Carlo Ricci
- Department
of Physics, University of Cagliari, SP 8, Monserrato, 09042 Cagliari, Italy
| | - Carlo Maria Carbonaro
- Department
of Physics, University of Cagliari, SP 8, Monserrato, 09042 Cagliari, Italy
| | - Francesco Secci
- Department
of Chemical and Geological Sciences, University
of Cagliari, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
26
|
Balewski Ł, Szulta S, Jalińska A, Kornicka A. A Mini-Review: Recent Advances in Coumarin-Metal Complexes With Biological Properties. Front Chem 2021; 9:781779. [PMID: 34926402 PMCID: PMC8671816 DOI: 10.3389/fchem.2021.781779] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The coumarin nucleus is a recurring motif in both natural and synthetic compounds that exhibit a broad spectrum of biological properties including anticoagulant, anti-inflammatory, antioxidant, antiviral, antimicrobial and anticancer agents as well as enzyme inhibitors. On the other hand, it has been reported that the incorporation of a metal ion into coumarin derivatives can increase the activity of such complexes compared to coumarin-based ligands. Accordingly, some of them have been found to display promising antioxidant, antitumor or antibacterial activities. This mini-review briefly summarizes the recent development of coumarin-metal complexes with proven biological properties. The attention is also paid to agents for which practical applications in the detection of biologically important species may be found.
Collapse
Affiliation(s)
- Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
27
|
Dorababu A. Pharmacological report of recently designed multifunctional coumarin and coumarin-heterocycle derivatives. Arch Pharm (Weinheim) 2021; 355:e2100345. [PMID: 34693550 DOI: 10.1002/ardp.202100345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022]
Abstract
Coumarin is a naturally available molecule and has been identified as a potent pharmacophore due to its pharmacological activity. Because of this, coumarin has been exploited synthetically to prepare a wide range of derivatives. In fact, most coumarin derivatives have been found to be less toxic, which is the most essential property for a drug molecule. Such molecules are being prepared for therapeutic use as broad-spectrum pharmacological agents. Microbial diseases including viral diseases have become very common and are responsible for many deaths worldwide. In particular, microbial drug resistance is a problem that needs to be tackled in an effective manner. Also, for Alzheimer's disease, which affects most elderly persons, no efficient chemotherapy exists. In addition, although diabetes, a metabolic syndrome, can be treated with many drugs, there is no complete cure. Thus, more potent antidiabetic agents are required for the management of diabetes. Likewise, for the treatment of a wide range of ailments caused by microbes, genetic factors, or lifestyle-related factors, an efficient drug regimen is needed. In view of this, coumarin derivatives are designed and evaluated. Here, coumarin derivatives that have been reported recently are compiled, classified and evaluated critically. This study briefly takes the structure-activity relationship into consideration and suggests the next suitable step. With a focus on the most potent molecules, the pharmacological activity of the evaluated molecules is described.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry, SRMPP Government First Grade College, Huvinahadagali, Karnataka, India
| |
Collapse
|
28
|
Husain A, Balushi K A, Akhtar MJ, Khan SA. Coumarin linked heterocyclic hybrids: A promising approach to develop multi target drugs for Alzheimer's disease. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Wang L, Ding S, Shen H, Wang Y, Hao S, Yin G, Qiu J, Lin B, Wu Z, Zhao M. Generation of Coumarin‐3‐Carboxamides From Coumarin‐3‐Carboxylic Acids and Tetraalkylthiuram Disulfides Catalyzed by Copper Salts. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Longfei Wang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road, Zhengzhou 450002 Henan P. R. China
| | - SongShuang Ding
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road, Zhengzhou 450002 Henan P. R. China
| | - Hongtao Shen
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9 3th Jingkai Avenue, Zhengzhou 450000 Henan P. R. China
| | - Yiying Wang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road, Zhengzhou 450002 Henan P. R. China
| | - Shuai Hao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road, Zhengzhou 450002 Henan P. R. China
| | - Guangting Yin
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9 3th Jingkai Avenue, Zhengzhou 450000 Henan P. R. China
| | - Jianhua Qiu
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9 3th Jingkai Avenue, Zhengzhou 450000 Henan P. R. China
| | - Beisen Lin
- Hainan Provincial Branch of China National Tobacco Corporation No. 120, Hongchenghu Road, Haikou 571103 Hainan P. R. China
| | - Zhiyong Wu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road, Zhengzhou 450002 Henan P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University 95 Wenhua Road, Zhengzhou 450002 Henan P. R. China
| |
Collapse
|
30
|
Karcz D, Starzak K, Ciszkowicz E, Lecka-Szlachta K, Kamiński D, Creaven B, Jenkins H, Radomski P, Miłoś A, Ślusarczyk L, Matwijczuk A. Novel Coumarin-Thiadiazole Hybrids and Their Cu(II) and Zn(II) Complexes as Potential Antimicrobial Agents and Acetylcholinesterase Inhibitors. Int J Mol Sci 2021; 22:ijms22189709. [PMID: 34575894 PMCID: PMC8471537 DOI: 10.3390/ijms22189709] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
A series of coumarin-thiadiazole hybrids and their corresponding Cu(II) and Zn(II) complexes were synthesized and characterized with the use of spectroscopic techniques. The results obtained indicate that all the coumarin-thiadiazole hybrids act as bidentate chelators of Cu(II) and Zn(II) ions. The complexes isolated differ in their ligand:metal ratio depending on the central metal. In most cases, the Zn(II) complexes are characteristic of a 1:1 ligand:metal ratio, while in the Cu(II) complexes the ligand:metal ratio is 2:1. All compounds were tested as potential antibacterial agents against Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacterial strains demonstrating activities notably lower than commercially available antibiotics. The more promising results were obtained from the assessment of antineurodegenerative potency as all compounds showed moderate acetylcholinesterase (AChE) inhibition activity.
Collapse
Affiliation(s)
- Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland; (K.S.); (P.R.)
- Correspondence: ; Tel.: +48-(12)-628-2177
| | - Karolina Starzak
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland; (K.S.); (P.R.)
| | - Ewa Ciszkowicz
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (E.C.); (K.L.-S.)
| | - Katarzyna Lecka-Szlachta
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (E.C.); (K.L.-S.)
| | - Daniel Kamiński
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland;
| | - Bernadette Creaven
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, Central Quad, D07 ADY7 Grangegorman, Ireland;
| | - Hollie Jenkins
- Department of Applied Science, Technological University Dublin, D24 FKT9 Tallaght, Ireland;
| | - Piotr Radomski
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland; (K.S.); (P.R.)
| | - Anna Miłoś
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, 35-959 Rzeszow, Poland;
| | - Lidia Ślusarczyk
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (L.Ś.); (A.M.)
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (L.Ś.); (A.M.)
| |
Collapse
|
31
|
Sagam RR, Nukala SK, Nagavath R, Sirassu N, Gundepaka P, Manchal R, Thirukovela NS. In‐vitro Anticancer and Molecular Docking Studies of 4‐Azaindole‐1,2,4‐Oxadiazole Hybrids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ravikumar Reddy Sagam
- Department of Chemistry Chaitanya (Deemed to be University) Warangal Telangana India
| | - Satheesh Kumar Nukala
- Department of Chemistry Chaitanya (Deemed to be University) Warangal Telangana India
| | - Rajkumar Nagavath
- Department of Chemistry Chaitanya (Deemed to be University) Warangal Telangana India
| | - Narsimha Sirassu
- Department of Chemistry Chaitanya (Deemed to be University) Warangal Telangana India
| | - Prasad Gundepaka
- Centre for Pharmaceutical Science Jawaharlal Nehru Technlogical University Hyderabad India
| | - Ravinder Manchal
- Department of Chemistry Chaitanya (Deemed to be University) Warangal Telangana India
| | | |
Collapse
|
32
|
fard MA, Manafi M, Motevalian M, Homami SS. Design, Synthesis and Acetylcholinesterase and Butylcholinesterase Inhibition Activity of Novel 1-(Alkyl)-3-(2-oxo-2H-chromenyloxy Acetamido) methylpyridinium Salts. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200818165935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this paper, a novel series of 1-(alkyl)-3-(2-oxo-2H-chromenyloxy acetamido) methylpyridinium
salts were synthesized in a simple and efficient way. The method showed to be facile and the
compounds were obtained in high isolated yields. All the synthesized compounds were characterized
by <sup>1</sup>H NMR, <sup>13</sup>C NMR, FT-IR, Mass and elemental analysis. AChE and BuChE inhibition activity of
the synthesized compounds were evaluated and the results showed that all the compounds were active
in the inhibition of the mentioned enzymes. All the compounds were active in the inhibition of the two
studied enzymes. Among all the compounds, the compound 6a (1.85 μM) and 6i (0.106 μM) showed
the highest inhibition activity against AChE and BuChE, respectively. The kinetic study was performed
to get more insight into the mechanism of action of the synthesized compounds. Docking studies were
also performed to obtain the interactions between the synthesized compounds and the enzymes.
Collapse
Affiliation(s)
- Mehri Abdollahi fard
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran,Iran
| | - Mohammadreza Manafi
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran,Iran
| | - Manijeh Motevalian
- Medical School & Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| | - Seyed Saied Homami
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran,Iran
| |
Collapse
|
33
|
Song MQ, Min W, Wang J, Si XX, Wang XJ, Liu YW, Shi DH. Design, synthesis and biological evaluation of new carbazole-coumarin hybrids as dual binding site inhibitors of acetylcholinesterase. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Amin KM, Abdel Rahman DE, Abdelrasheed Allam H, El-Zoheiry HH. Design and synthesis of novel coumarin derivatives as potential acetylcholinesterase inhibitors for Alzheimer's disease. Bioorg Chem 2021; 110:104792. [PMID: 33799178 DOI: 10.1016/j.bioorg.2021.104792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Twenty novel 7-benzyloxycoumarin based compounds were synthesized with a variety of bioactive chemical fragments. The synthesized compounds showed remarkable acetylcholinesterase (AChE) inhibitory activity. In vitro assay revealed that compounds 7-benzyloxy-4-{[(4-phenylthiazol-2(3H)-ylidene)hydrazono]methyl}-2H-chromen-2-one (5b, IC50= 0.451μM), 7-benzyloxy-4-({[4-(4-methoxyphenyl)thiazol-2(3H)-ylidene]hydrazono}methyl)-2H-chromen-2-one (5d, IC50= 0.625μM), 5-amino-1-[2-(7-benzyloxy-2-oxo-2H-chromen-4-yl)acetyl]-1H-pyrazole-4-carbonitrile (13c, IC50= 0.466μM), 2-(7-benzyloxy-2-oxo-2H-chromen-4-yl)-N-(2-methylimino-4-phenylthiazol-3(2H)-yl)acetamide (16a, IC50= 0.500μM) and 2-(7-benzyloxy-2-oxo-2H-chromen-4-yl)-N-[4-(4-methoxyphenyl)-2-methyliminothiazol-3(2H)-yl]acetamide (16b, IC50= 0.590μM) exhibited promising AChE inhibitory activity even better than donepezil (IC50= 0.711μM). Kinetic study for compound 5b implied mixed type inhibitor which could bind peripheral anionic site (PAS) and catalytic active site (CAS) of AChE enzyme. In addition, in vivo evaluation of compounds 5b, 13c and 16a confirmed significant memory improvement in scopolamine-induced impairment model in tested mice. Furthermore, in silico studies were performed on the synthesized compounds which included molecular docking study at the active site of recombinant human acetylcholinesterase enzyme (rhAChE) as well as prediction of ADMET and other physicochemical parameters. A correlation between the docking results and IC50 of tested compounds was routinely observed and shared similar binding pattern to the co-crystallized ligand donepezil.
Collapse
Affiliation(s)
- Kamilia M Amin
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Doaa E Abdel Rahman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Heba Abdelrasheed Allam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Haidy H El-Zoheiry
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt.
| |
Collapse
|
35
|
Shaikh S, Pavale G, Dhavan P, Singh P, Uparkar J, Vaidya SP, Jadhav BL, Ramana MMV. Design, synthesis and evaluation of dihydropyranoindole derivatives as potential cholinesterase inhibitors against Alzheimer's disease. Bioorg Chem 2021; 110:104770. [PMID: 33667902 DOI: 10.1016/j.bioorg.2021.104770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023]
Abstract
A series of novel dihydropyranoindole derivatives containing sulphonamide group were designed, synthesized and evaluated for in-vitro anti-cholinesterase activity. The result showed that all the compounds exhibited potent acetylcholinesterase (AChE) activity (IC50 = 0.41-8.79 µM) while demonstrated moderate to good activity for butyrylcholinesterase (BuChE) (IC50 = 1.17-30.17 µM). The tested compounds exhibited selectivity towards AChE over BuChE. Compound 5o was most potent towards both AChE (IC50 = 0.41 µM) and BuChE (IC50 = 1.17 µM) when compared to standard galantamine and rivastigmine. Enzyme kinetics and molecular docking studies revealed that compound 5o shows mixed type inhibition and binds to peripheral anionic site (PAS) and the catalytic sites (CAS) of both the enzymes. Furthermore, cell viability studies were also performed against N2a cells along with neuroprotection studies against H2O2 in the same cell line. Antioxidant studies using DPPH radical and H2O2 were also performed which revealed that all compounds possessed some antioxidant activity. Also, DNA damage protection assay for compound 5o was performed implying that compound 5o was protective in nature. ADME studies were also performed which demonstrated good pharmacokinetics. These findings indicated that dihydropyranoindole derivatives could be possible drug lead in the search for new multifunctional AD drugs.
Collapse
Affiliation(s)
- Sarfaraz Shaikh
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400 098, India
| | - Ganesh Pavale
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400 098, India
| | - Pratik Dhavan
- Department of Life Sciences, University of Mumbai, Santacruz (E), Mumbai 400 098, India
| | - Pinky Singh
- Department of Microbiology, Haffkine Institute, Parel, Mumbai 400012, India
| | - Jasmin Uparkar
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400 098, India
| | - S P Vaidya
- Department of Microbiology, Haffkine Institute, Parel, Mumbai 400012, India
| | - B L Jadhav
- Department of Life Sciences, University of Mumbai, Santacruz (E), Mumbai 400 098, India
| | - M M V Ramana
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400 098, India.
| |
Collapse
|
36
|
Ghafary S, Ghobadian R, Mahdavi M, Nadri H, Moradi A, Akbarzadeh T, Najafi Z, Sharifzadeh M, Edraki N, Moghadam FH, Amini M. Design, synthesis, and evaluation of novel cinnamic acid-tryptamine hybrid for inhibition of acetylcholinesterase and butyrylcholinesterase. Daru 2020; 28:463-477. [PMID: 32372339 PMCID: PMC7704987 DOI: 10.1007/s40199-020-00346-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/03/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Acetylcholine deficiencies in hippocampus and cortex, aggregation of β-amyloid, and β-secretase over activity have been introduced as main reasons in pathogenesis of Alzheimer's disease. METHODS Colorimetric Ellman's method was used for determination of IC50 value in AChE and BChE inhibitory activity. The kinetic studies, neuroprotective and β-secretase inhibitory activities, evaluation of inhibitory potency on β-amyloid (Aβ) aggregations induced by AChE, and docking study were performed for prediction of the mechanism of action. RESULT AND DISCUSSION A new series of cinnamic acids-tryptamine hybrid was designed, synthesized, and evaluated as dual cholinesterase inhibitors. These compounds demonstrated in-vitro inhibitory activities against acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE). Among of these synthesized compounds, (E)-N-(2-(1H-indol-3-yl)ethyl)-3-(3,4-dimethoxyphenyl)acrylamide (5q) demonstrated the most potent AChE inhibitory activity (IC50 = 11.51 μM) and (E)-N-(2-(1H-indol-3-yl)ethyl)-3-(2-chlorophenyl)acrylamide (5b) were the best anti-BChE (IC50 = 1.95 μM) compounds. In addition, the molecular modeling and kinetic studies depicted 5q and 5b were mixed type inhibitor and bound with both the peripheral anionic site (PAS) and catalytic sites (CAS) of AChE and BChE. Moreover, compound 5q showed mild neuroprotective in PC12 cell line and weak β-secretase inhibitory activities. This compound also inhibited aggregation of β-amyloid (Aβ) in self-induced peptide aggregation test at concentration of 10 μM. CONCLUSION It is worth noting that both the kinetic study and the molecular modeling of 5q and 5b depicted that these compounds simultaneously interacted with both the catalytic active site and the peripheral anionic site of AChE and BChE. These findings match with those resulted data from the enzyme inhibition assay. Graphical abstract A new series of cinnamic-derived acids-tryptamine hybrid derivatives were designed, synthesized and evaluated as butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) inhibitors and neuroprotective agents. Compound 5b and 5q, as the more potent compounds, interacted with both the peripheral site and the choline binding site having mixed type inhibition. Results suggested that derivatives have a therapeutic potential for the treatment of AD.
Collapse
Affiliation(s)
- Shahrzad Ghafary
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Ghobadian
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Farshad Homayouni Moghadam
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Gupta PSS, Bhat HR, Biswal S, Rana MK. Computer-aided discovery of bis-indole derivatives as multi-target drugs against cancer and bacterial infections: DFT, docking, virtual screening, and molecular dynamics studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Med Res Rev 2020; 41:858-901. [PMID: 33103262 DOI: 10.1002/med.21745] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Structural information of butyrylcholinesterase (BChE) and its variants associated with several diseases are discussed here. Pure human BChE has been proved safe and effective in treating organophosphorus (OPs) poisoning and has completed Phase 1 and 2 pharmacokinetic (PK) and safety studies. The introduction of specific mutations into native BChE to endow it a self-reactivating property has gained much progress in producing effective OPs hydrolases. The hydrolysis ability of native BChE on cocaine has been confirmed but was blocked to clinical application due to poor PK properties. Several BChE mutants with elevated cocaine hydrolysis activity were published, some of which have shown safety and efficiency in treating cocaine addiction of human. The increased level of BChE in progressed Alzheimer's disease patients made it a promising target to elevate acetylcholine level and attenuate cognitive status. A variety of selective BChE inhibitors with high inhibitory activity published in recent years are reviewed here. BChE could influence the weight and insulin secretion and resistance of BChE knockout (KO) mice through hydrolyzing ghrelin. The BChE-ghrelin pathway could also regulate aggressive behaviors of BChE-KO mice.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China.,Institute of Food and Pharmaceuticals Research, Jiangsu Food and Pharmaceuticals Science College, Nanjing, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
39
|
Shaikh S, Pavale G, Ramana MMV. Synthesis and biological evaluation of novel N-substituted (3-(1-aminoethylidene)-2-oxochroman-4-yl)phosphonic acid diethyl ester derivatives as anti-Alzheimer agent. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01099-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Ghafary S, Nadri H, Mahdavi M, Moradi A, Akbarzadeh T, Sharifzadeh M, Edraki N, Moghadam FH, Amini M. Anticholinesterase Activity of Cinnamic Acids Derivatives: In Vitro, In Vivo Biological Evaluation, and Docking Study. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666191224094049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Acetylcholine deficiency in the hippocampus and cortex, aggregation of
amyloid-beta, and beta-secretase overactivity have been introduced as the main reasons in the
formation of Alzheimer’s disease.
Objective:
A new series of cinnamic derived acids linked to 1-benzyl-1,2,3-triazole moiety were
designed, synthesized, and evaluated for their acetylcholinesterase (AChE) and
butyrylcholinesterase (BuChE) inhibitory activities.
Methods:
Colorimetric Ellman’s method was used for the determination of IC50% of AchE and
BuChE inhibitory activity. The kinetic studies, neuroprotective activity, BACE1 inhibitory activity,
evaluation of inhibitory potency on Aβ1-42 self-aggregation induced by AchE, and docking study
were performed for studying the mechanism of action.
Results:
Some of the synthesized compounds, compound 7b-4 ((E)-3-(3,4-dimethoxyphenyl)-N-((1-
(4-fluorobenzyl)-1H-1,2,3-triazole-4-yl) methyl) acrylamide) depicted the most potent
acetylcholinesterase inhibitory activities ( IC50 = 5.27 μM ) and compound 7a-1 (N- ( (1- benzyl-
1H- 1, 2, 3- triazole - 4-yl) methyl) cinnamamide) demonstrated the most potent
butyrylcholinesterase inhibitory activities (IC50 = 1.75 μM). Compound 7b-4 showed
neuroprotective and β-secretase (BACE1) inhibitory activitiy. In vivo studies of compound 7b-4 in
Scopolamine-induced dysfunction confirmed memory improvement.
Conculusion:
It should be noted that molecular modeling (compounds 7b-4 and 7a-1) and kinetic
studies (compounds 7a-1 and 7b-4) showed that these synthesis compounds interacted
simultaneously with both the catalytic site (CS) and peripheral anionic site (PAS) of AChE and
BuChE.
Collapse
Affiliation(s)
- Shahrzad Ghafary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, ShahidSadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, ShahidSadoughi University of Medical Sciences, Yazd, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Farshad Homayouni Moghadam
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Overview on developed synthesis procedures of coumarin heterocycles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01984-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractConsidering highly valuable biological and pharmaceutical properties of coumarins, the synthesis of these heterocycles has been considered for many organic and pharmaceutical chemists. This review includes the recent research in synthesis methods of coumarin systems, investigating their biological properties and describing the literature reports for the period of 2016 to the middle of 2020. In this review, we have classified the contents based on co-groups of coumarin ring. These reported methods are carried out in the classical and non-classical conditions particularly under green condition such as using green solvent, catalyst and other procedures.
Collapse
|
42
|
Rodríguez-Lavado J, Gallardo-Garrido C, Mallea M, Bustos V, Osorio R, Hödar-Salazar M, Chung H, Araya-Maturana R, Lorca M, Pessoa-Mahana CD, Mella-Raipán J, Saitz C, Jaque P, Reyes-Parada M, Iturriaga-Vásquez P, Pessoa-Mahana H. Synthesis, in vitro evaluation and molecular docking of a new class of indolylpropyl benzamidopiperazines as dual AChE and SERT ligands for Alzheimer's disease. Eur J Med Chem 2020; 198:112368. [PMID: 32388114 DOI: 10.1016/j.ejmech.2020.112368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
During the last decade, the one drug-one target strategy has resulted to be inefficient in facing diseases with complex ethiology like Alzheimer's disease and many others. In this context, the multitarget paradigm has emerged as a promising strategy. Based on this consideration, we aim to develop novel molecules as promiscuous ligands acting in two or more targets at the same time. For such purpose, a new series of indolylpropyl-piperazinyl oxoethyl-benzamido piperazines were synthesized and evaluated as multitarget-directed drugs for the serotonin transporter (SERT) and acetylcholinesterase (AChE). The ability to decrease β-amyloid levels as well as cell toxicity of all compounds were also measured. In vitro results showed that at least four compounds displayed promising activity against SERT and AChE. Compounds 18 and 19 (IC50 = 3.4 and 3.6 μM respectively) exhibited AChE inhibition profile in the same order of magnitude as donepezil (DPZ, IC50 = 2.17 μM), also displaying nanomolar affinity in SERT. Moreover, compounds 17 and 24 displayed high SERT affinities (IC50 = 9.2 and 1.9 nM respectively) similar to the antidepressant citalopram, and significant micromolar AChE activity at the same time. All the bioactive compounds showed a low toxicity profile in the range of concentrations studied. Molecular docking allowed us to rationalize the binding mode of the synthesized compounds in both targets. In addition, we also show that compounds 11 and 25 exhibit significant β-amyloid lowering activity in a cell-based assay, 11 (50% inhibition, 10 μM) and 25 (35% inhibition, 10 μM). These results suggest that indolylpropyl benzamidopiperazines based compounds constitute promising leads for a multitargeted approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Julio Rodríguez-Lavado
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Carlos Gallardo-Garrido
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Michael Mallea
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Victor Bustos
- Laboratory of Cellular and Molecular Neuroscience, The Rockefeller University, New York, USA
| | - Rodrigo Osorio
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Martín Hödar-Salazar
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería Ciencias, Universidad de la Frontera, Temuco, Chile
| | - Hery Chung
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Marcos Lorca
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - C David Pessoa-Mahana
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Mella-Raipán
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Santa Marta, Valparaíso, Chile
| | - Claudio Saitz
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Pablo Jaque
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Patricio Iturriaga-Vásquez
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería Ciencias, Universidad de la Frontera, Temuco, Chile; Center of Excellence in Biotechnology Research Applied to the Environment, Universidad de La Frontera, Temuco, Chile.
| | - Hernán Pessoa-Mahana
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile.
| |
Collapse
|
43
|
Synthesis, computational study and cytotoxicity of 4-hydroxycoumarin-derived imines/enamines. Mol Divers 2020; 25:1011-1024. [PMID: 32323127 DOI: 10.1007/s11030-020-10086-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
In this study, we applied a direct condensation between 3-acetyl-4-hydroxy-2H-chromen-2-one and different amines (anilines and benzyl amines) in order to synthesize some coumarin-based imines/enamines (3a-o) as cytotoxic agents. All the compounds were characterized by means of FT-IR, NMR, mass spectroscopy and elemental analyses. Since the title compounds can exist as different forms including (s-cis)-imine and (s-trans)-imine or (E and Z)-enamines, their conformational and geometrical aspects were investigated computationally by DFT method. The optimized geometry parameters, ΔE, ΔG, ΔH, Mulliken atomic charge, HOMO and LUMO energy, and NBO analysis suggested that these compounds can exist predominantly in (E)-enamine form. All the synthesized compounds (3a-o) were evaluated in vitro for their cytotoxic activities against cancer cell lines (MCF-7 and A549) and normal cell line (BEAS-2B) using the MTT assay. The 4-hydroxybenzyl derivative 3k was found to be the most potent cytotoxic agent with no selectivity, similar to doxorubicin. However, the 4-chlorobenzyl analog 3o could be considered as an equipotent compound respect to doxorubicin with higher selectivity.
Collapse
|
44
|
Francisco CS, Javarini CL, de S Barcelos I, Morais PAB, de Paula H, de S Borges W, Neto ÁC, Lacerda V. Synthesis of Coumarin Derivatives as Versatile Scaffolds for GSK-3β Enzyme Inhibition. Curr Top Med Chem 2020; 20:153-160. [PMID: 31648640 DOI: 10.2174/1568026619666191019105349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glycogen synthase kinase-3 (GSK-3) is involved in the phosphorylation and inactivation of glycogen synthase. GSK-3 inhibitors have been associated with a variety of diseases, including Alzheimer´s disease (AD), diabetes type II, neurologic disorders, and cancer. The inhibition of GSK-3β isoforms is likely to represent an effective strategy against AD. OBJECTIVE The present work aimed to design and synthesize coumarin derivatives to explore their potential as GSK-3β kinase inhibitors. METHODS The through different synthetic methods were used to prepare coumarin derivatives. The GSK-3β activity was measured through the ADP-Glo™ Kinase Assay, which quantifies the kinasedependent enzymatic production of ADP from ATP, using a coupled-luminescence-based reaction. A docking study was performed by using the crystallographic structure of the staurosporine/GSK-3β complex [Protein Data Bank (PDB) code: 1Q3D]. RESULTS The eleven coumarin derivatives were obtained and evaluated as potential GSK-3β inhibitors. Additionally, in silico studies were performed. The results revealed that the compounds 5c, 5d, and 6b inhibited GSK-3β enzymatic activity by 38.97-49.62% at 1 mM. The other coumarin derivatives were tested at 1 mM, 1 µM, and 1 nM concentrations and were shown to be inhibitor candidates, with significant IC50 (1.224-6.875 µM) values, except for compound 7c (IC50 = 10.809 µM). Docking simulations showed polar interactions between compound 5b and Lys85 and Ser203, clarifying the mechanism of the most potent activity. CONCLUSION The coumarin derivatives 3a and 5b, developed in this study, showed remarkable activity as GSK-3β inhibitors.
Collapse
Affiliation(s)
- Carla S Francisco
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| | - Clara L Javarini
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| | | | - Pedro A B Morais
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500-000 Alegre - ES, Brazil
| | - Heberth de Paula
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500-000 Alegre - ES, Brazil
| | - Warley de S Borges
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| | - Álvaro Cunha Neto
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| | - Valdemar Lacerda
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| |
Collapse
|
45
|
Yadav U, Sakla AP, Tokala R, Nyalam ST, Khurana A, Digwal CS, Talla V, Godugu C, Shankaraiah N, Kamal A. Design and Synthesis of 5‐Morpholino‐Thiophene‐Indole/ Oxindole Hybrids as Cytotoxic Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.201904845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Upasana Yadav
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Akash P. Sakla
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Ramya Tokala
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Sai Teja Nyalam
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Amit Khurana
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Chander Singh Digwal
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Venu Talla
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Chandraiah Godugu
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Nagula Shankaraiah
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER), Jamia, Hamdard New Delhi 110062 India
| |
Collapse
|
46
|
Naik MD, Bodke YD, M VK, BC R. An efficient one-pot synthesis of coumarin-amino acid derivatives as potential anti-inflammatory and antioxidant agents. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1735442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mamata Devendra Naik
- Department of P.G. Studies and Research in Industrial Chemistry, Jnanasahyadri, Kuvempu University, Shimoga, India
| | - Yadav D. Bodke
- Department of P.G. Studies and Research in Chemistry, Jnanasahyadri, Kuvempu University, Shimoga, India
| | - Vijay Kumar M
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, NITTE, Mangalore, India
| | - Revanasiddappa BC
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, NITTE, Mangalore, India
| |
Collapse
|
47
|
Comert Onder F, Durdagi S, Sahin K, Ozpolat B, Ay M. Design, Synthesis, and Molecular Modeling Studies of Novel Coumarin Carboxamide Derivatives as eEF-2K Inhibitors. J Chem Inf Model 2020; 60:1766-1778. [PMID: 32027127 DOI: 10.1021/acs.jcim.9b01083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic elongation factor-2 kinase (eEF-2K) is an unusual alpha kinase commonly upregulated in various human cancers, including breast, pancreatic, lung, and brain tumors. We have demonstrated that eEF-2K is relevant to poor prognosis and shorter patient survival in breast and lung cancers and validated it as a molecular target using genetic methods in related in vivo tumor models. Although several eEF-2K inhibitors have been published, none of them have shown to be potent and specific enough for translation into clinical trials. Therefore, development of highly effective novel inhibitors targeting eEF-2K is needed for clinical applications. However, currently, the crystal structure of eEF-2K is not known, limiting the efforts for designing novel inhibitor compounds. Therefore, using homology modeling of eEF-2K, we designed and synthesized novel coumarin-3-carboxamides including compounds A1, A2, and B1-B4 and evaluated their activity by performing in silico analysis and in vitro biological assays in breast cancer cells. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) area results showed that A1 and A2 have interaction energies with eEF-2K better than those of B1-B4 compounds. Our in vitro results indicated that compounds A1 and A2 were highly effective in inhibiting eEF-2K at 1.0 and 2.5 μM concentrations compared to compounds B1-B4, supporting the in silico findings. In conclusion, the results of this study suggest that our homology modeling along with in silico analysis may be effectively used to design inhibitors for eEF-2K. Our newly synthesized compounds A1 and A2 may be used as novel eEF-2K inhibitors with potential therapeutic applications.
Collapse
Affiliation(s)
- Ferah Comert Onder
- Department of Chemistry, Faculty of Science and Arts, Natural Products and Drug Research Laboratory, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, Texas 77030, United States
| | - Serdar Durdagi
- Department of Biophysics, School of Medicine, Computational Biology and Molecular Simulations Laboratory, Bahcesehir University, Kadikoy, 34734 Istanbul, Turkey
| | - Kader Sahin
- Department of Biophysics, School of Medicine, Computational Biology and Molecular Simulations Laboratory, Bahcesehir University, Kadikoy, 34734 Istanbul, Turkey
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, Texas 77030, United States.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Mehmet Ay
- Department of Chemistry, Faculty of Science and Arts, Natural Products and Drug Research Laboratory, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey
| |
Collapse
|
48
|
Recent Advances in the Synthesis of Coumarin Derivatives from Different Starting Materials. Biomolecules 2020; 10:biom10010151. [PMID: 31963362 PMCID: PMC7022947 DOI: 10.3390/biom10010151] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
The study of coumarin dates back to 1820 when coumarin was first extracted from tonka bean by Vogel. Compounds containing coumarin backbone are a very important group of compounds due to their usage in pharmacy and medicine. Properties and biological activities of coumarin derivatives have a significant role in the development of new drugs. Therefore, many different methods and techniques are developed in order to synthesize coumarin derivatives. Coumarin derivatives could be obtained from different starting materials with various methods but with big differences in yield. This review summarized various methods, techniques and reaction conditions for synthesis of coumarins from different compounds such as aldehydes, phenols, ketones and carboxylic acids.
Collapse
|
49
|
Francisco CS, Francisco CS, Constantino AF, Neto ÁC, Lacerda V. Synthetic Methods Applied in the Preparation of Coumarin-based Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191121150047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coumarins (2H-chromen-2-ones) are heterocyclic compounds of wide scientific
interest due to their important biological and pharmaceutical properties such as antitumor,
antioxidant, anti-inflammatory and antimicrobial activities as well as enzymatic inhibitors
related to neurodegenerative diseases. Due to their structural variability, this compound
class has been attracting considerable interest in the natural products and synthetic organic
chemistry areas. Coumarins and their derivatives have been prepared by a variety of methods,
including Perkin, Wittig and Reformatsky reactions, Pechmann and Knoevenagel
condensations, and Claisen rearrangement, among others. In the present review we report
the different synthetic methods used in the preparation of coumarin derivatives exploited
in the last ten years (from 2008 to 2018), regarding the research demand for new structural
scaffolds.
Collapse
Affiliation(s)
- Carla S. Francisco
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | - Cristina S. Francisco
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | | | - Álvaro Cunha Neto
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | - Valdemar Lacerda
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| |
Collapse
|
50
|
Hasan AH, Amran SI, Saeed Hussain FH, Jaff BA, Jamalis J. Molecular Docking and Recent Advances in the Design and Development of Cholinesterase Inhibitor Scaffolds: Coumarin Hybrids. ChemistrySelect 2019. [DOI: 10.1002/slct.201903607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Aso Hameed Hasan
- Department of ChemistryFaculty of ScienceUniversiti Teknologi Malaysia 81310 Johor Bahru, Johor Malaysia
- Department of ChemistryCollege of ScienceUniversity of Garmian- Kalar, Kurdistan Region-Iraq Iraq
| | - Syazwani Itri Amran
- Department of BiosciencesFaculty of ScienceUniversiti Teknologi Malaysia 81310 Johor Bahru, Johor Malaysia
| | | | - Baram Ahmed Jaff
- Charmo Research CenterChemistry DepartmentCharmo University 46023 Chamchamal, Kurdistan Region-Iraq Iraq
| | - Joazaizulfazli Jamalis
- Department of ChemistryFaculty of ScienceUniversiti Teknologi Malaysia 81310 Johor Bahru, Johor Malaysia
| |
Collapse
|