1
|
Tasso B, Mattioli LB, Tonelli M, Boido V, Chiarini A, Sparatore F, Budriesi R. Further Quinolizidine Derivatives as Antiarrhythmic Agents- 3. Molecules 2023; 28:6916. [PMID: 37836759 PMCID: PMC10574513 DOI: 10.3390/molecules28196916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Fourteen quinolizidine derivatives, structurally related to the alkaloids lupinine and cytisine and previously studied for other pharmacological purposes, were presently tested for antiarrhythmic, and other cardiovascular effects on isolated guinea pig heart tissues in comparison to well-established reference drugs. According to their structures, the tested compounds are assembled into three subsets: (a) N-(quinolizidinyl-alkyl)-benzamides; (b) 2-(benzotriazol-2-yl)methyl-1-(quinolizidinyl)alkyl-benzimidazoles; (c) N-substituted cytisines. All compounds but two displayed antiarrhythmic activity that was potent for compounds 4, 1, 6, and 5 (in ascending order). The last compound (N-(3,4,5-trimethoxybenzoyl)aminohomolupinane) was outstanding, exhibiting a nanomolar potency (EC50 = 0.017 µM) for the increase in the threshold of ac-arrhythmia. The tested compounds shared strong negative inotropic activity; however, this does not compromise the value of their antiarrhythmic action. On the other hand, only moderate or modest negative chronotropic and vasorelaxant activities were commonly observed. Compound 5, which has high antiarrhythmic potency, a favorable cardiovascular profile, and is devoid of antihypertensive activity in spontaneously hypertensive rats, represents a lead worthy of further investigation.
Collapse
Affiliation(s)
- Bruno Tasso
- Department of Pharmacy, University of Genova, 16132 Genova, Italy; (B.T.); (M.T.); (V.B.)
| | - Laura Beatrice Mattioli
- Food Chemistry and Nutraceutical Research Unit, Department of Pharmacy & Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (L.B.M.); (A.C.); (R.B.)
| | - Michele Tonelli
- Department of Pharmacy, University of Genova, 16132 Genova, Italy; (B.T.); (M.T.); (V.B.)
| | - Vito Boido
- Department of Pharmacy, University of Genova, 16132 Genova, Italy; (B.T.); (M.T.); (V.B.)
| | - Alberto Chiarini
- Food Chemistry and Nutraceutical Research Unit, Department of Pharmacy & Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (L.B.M.); (A.C.); (R.B.)
| | - Fabio Sparatore
- Department of Pharmacy, University of Genova, 16132 Genova, Italy; (B.T.); (M.T.); (V.B.)
| | - Roberta Budriesi
- Food Chemistry and Nutraceutical Research Unit, Department of Pharmacy & Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (L.B.M.); (A.C.); (R.B.)
| |
Collapse
|
2
|
Milani G, Budriesi R, Tavazzani E, Cavalluzzi MM, Mattioli LB, Miniero DV, Delre P, Belviso BD, Denegri M, Cuocci C, Rotondo NP, De Palma A, Gualdani R, Caliandro R, Mangiatordi GF, Kumawat A, Camilloni C, Priori S, Lentini G. hERG stereoselective modulation by mexiletine-derived ureas: Molecular docking study, synthesis, and biological evaluation. Arch Pharm (Weinheim) 2023; 356:e2300116. [PMID: 37460390 DOI: 10.1002/ardp.202300116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 10/06/2023]
Abstract
Long QT syndrome (LQTS) is a disorder of cardiac electrophysiology resulting in life-threatening arrhythmias; nowadays, only a few drugs are available for the management of LQTS. Focusing our attention on LQT2, one of the most common subtypes of LQTS caused by mutations in the human ether-à-go-go-related gene (hERG), in the present work, the stereoselectivity of the recently discovered mexiletine-derived urea 8 was investigated on the hERG potassium channel. According to preliminary in silico predictions, in vitro studies revealed a stereoselective behavior, with the meso form showing the greatest hERG opening activity. In addition, functional studies on guinea pig isolated left atria, aorta, and ileum demonstrated that 8 does not present any cardiac or intestinal liability in our ex vivo studies. Due to its overall profile, (R,S)-8 paves the way for the design and development of a new series of compounds potentially useful in the treatment of both congenital and drug-induced forms of LQTS.
Collapse
Affiliation(s)
- Gualtiero Milani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | | | - Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies, and Environment, University Aldo Moro of Bari, Bari, Italy
| | - Pietro Delre
- Chemistry Department, University of Bari Aldo Moro, Bari, Italy
- CNR-Institute of Crystallography, Bari, Italy
| | | | | | | | - Natalie Paola Rotondo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies, and Environment, University Aldo Moro of Bari, Bari, Italy
| | - Roberta Gualdani
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Amit Kumawat
- Department of Biosciences, University of Milan, Milano, Italy
| | - Carlo Camilloni
- Department of Biosciences, University of Milan, Milano, Italy
| | - Silvia Priori
- ICS-Maugeri IRCCS, Pavia, Italy
- Molecular Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Giovanni Lentini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Caruso L, Nadur NF, Brandão M, Peixoto Ferreira LDA, Lacerda RB, Graebin CS, Kümmerle AE. The Design of Multi-target Drugs to Treat Cardiovascular Diseases: Two (or more) Birds on one Stone. Curr Top Med Chem 2022; 22:366-394. [PMID: 35105288 DOI: 10.2174/1568026622666220201151248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases (CVDs) comprise a group of diseases and disorders of the heart and blood vessels, which together are the number one cause of death worldwide, being associated with multiple genetic and modifiable risk factors, and that may directly arise from different etiologies. For a long time, the search for cardiovascular drugs was based on the old paradigm "one compound - one target", which aims to obtain a highly potent and selective molecule with only one desired molecular target. Although historically successful in the last decades, this approach ignores the multiple causes and the multifactorial nature of CVD's. Thus, over time, treatment strategies for cardiovascular diseases have changed and, currently, pharmacological therapies for CVD are mainly based on the association of two or more drugs to control symptoms and reduce cardiovascular death. In this context, the development of multitarget drugs, i.e, compounds having the ability to act simultaneously at multiple sites, is an attractive and relevant strategy that can be even more advantageous to achieve predictable pharmacokinetic and pharmacodynamics correlations as well as better patient compliance. In this review, we aim to highlight the efforts and rational pharmacological bases for the design of some promising multitargeted compounds to treat important cardiovascular diseases like heart failure, atherosclerosis, acute myocardial infarction, pulmonary arterial hypertension and arrhythmia.
Collapse
Affiliation(s)
- Lucas Caruso
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Nathalia Fonseca Nadur
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Marina Brandão
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Larissa de Almeida Peixoto Ferreira
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Renata Barbosa Lacerda
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| |
Collapse
|
4
|
Mousele C, Matthews E, Pitceathly RDS, Hanna MG, MacDonald S, Savvatis K, Carr A, Turner C. Long-term Safety and Efficacy of Mexiletine in Myotonic Dystrophy Types 1 and 2. Neurol Clin Pract 2021; 11:e682-e685. [PMID: 34840883 PMCID: PMC8610501 DOI: 10.1212/cpj.0000000000001073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/10/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Myotonic dystrophy types 1 and 2 are progressive multisystem genetic disorders whose core clinical feature is myotonia. Mexiletine, an antagonist of voltage-gated sodium channels, is a recommended antimyotonic agent in the nondystrophic myotonias, but its use in myotonic dystrophy is limited because of lack of data regarding its long-term efficacy and safety profile. METHODS To address this issue, this study retrospectively evaluated patients with myotonic dystrophy receiving mexiletine over a mean time period of 32.9 months (range 0.1-216 months). RESULTS This study demonstrated that 96% of patients reported some improvement in myotonia symptoms with mexiletine treatment. No clinically relevant cardiac adverse events were associated with the long-term use of mexiletine. CONCLUSIONS These findings support that mexiletine is both safe and effective when used long-term in myotonic dystrophy. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that mexiletine is a well-tolerated and effective treatment for myotonic dystrophy types 1 and 2.
Collapse
Affiliation(s)
- Christina Mousele
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (CM); Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (EM, RDSP, MGH, AC, CT); The National Hospital for Neurology and Neurosurgery (SM), Atkinson-Morley Neuromuscular Centre (EM); and Inherited Cardiovascular Diseases Unit, Barts Health Centre, Barts Healthcare NHS Trust (KS), London, United Kingdom
| | - Emma Matthews
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (CM); Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (EM, RDSP, MGH, AC, CT); The National Hospital for Neurology and Neurosurgery (SM), Atkinson-Morley Neuromuscular Centre (EM); and Inherited Cardiovascular Diseases Unit, Barts Health Centre, Barts Healthcare NHS Trust (KS), London, United Kingdom
| | - Robert D S Pitceathly
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (CM); Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (EM, RDSP, MGH, AC, CT); The National Hospital for Neurology and Neurosurgery (SM), Atkinson-Morley Neuromuscular Centre (EM); and Inherited Cardiovascular Diseases Unit, Barts Health Centre, Barts Healthcare NHS Trust (KS), London, United Kingdom
| | - Michael G Hanna
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (CM); Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (EM, RDSP, MGH, AC, CT); The National Hospital for Neurology and Neurosurgery (SM), Atkinson-Morley Neuromuscular Centre (EM); and Inherited Cardiovascular Diseases Unit, Barts Health Centre, Barts Healthcare NHS Trust (KS), London, United Kingdom
| | - Susan MacDonald
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (CM); Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (EM, RDSP, MGH, AC, CT); The National Hospital for Neurology and Neurosurgery (SM), Atkinson-Morley Neuromuscular Centre (EM); and Inherited Cardiovascular Diseases Unit, Barts Health Centre, Barts Healthcare NHS Trust (KS), London, United Kingdom
| | - Konstantinos Savvatis
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (CM); Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (EM, RDSP, MGH, AC, CT); The National Hospital for Neurology and Neurosurgery (SM), Atkinson-Morley Neuromuscular Centre (EM); and Inherited Cardiovascular Diseases Unit, Barts Health Centre, Barts Healthcare NHS Trust (KS), London, United Kingdom
| | - Aisling Carr
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (CM); Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (EM, RDSP, MGH, AC, CT); The National Hospital for Neurology and Neurosurgery (SM), Atkinson-Morley Neuromuscular Centre (EM); and Inherited Cardiovascular Diseases Unit, Barts Health Centre, Barts Healthcare NHS Trust (KS), London, United Kingdom
| | - Christopher Turner
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (CM); Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery (EM, RDSP, MGH, AC, CT); The National Hospital for Neurology and Neurosurgery (SM), Atkinson-Morley Neuromuscular Centre (EM); and Inherited Cardiovascular Diseases Unit, Barts Health Centre, Barts Healthcare NHS Trust (KS), London, United Kingdom
| |
Collapse
|
5
|
Milani G, Cavalluzzi MM, Altamura C, Santoro A, Perrone M, Muraglia M, Colabufo NA, Corbo F, Casalino E, Franchini C, Pisano I, Desaphy J, Carrieri A, Carocci A, Lentini G. Bioisosteric Modification of To042: Synthesis and Evaluation of Promising Use-Dependent Inhibitors of Voltage-Gated Sodium Channels. ChemMedChem 2021; 16:3588-3599. [PMID: 34519427 PMCID: PMC9293070 DOI: 10.1002/cmdc.202100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Indexed: 11/07/2022]
Abstract
Three analogues of To042, a tocainide-related lead compound recently reported for the treatment of myotonia, were synthesized and evaluated in vitro as skeletal muscle sodium channel blockers possibly endowed with enhanced use-dependent behavior. Patch-clamp experiments on hNav1.4 expressed in HEK293 cells showed that N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine, the aryloxyalkyl bioisostere of To042, exerted a higher use-dependent block than To042 thus being able to preferentially block the channels in over-excited membranes while preserving healthy tissue function. It also showed the lowest active transport across BBB according to the results of P-glycoprotein (P-gp) interacting activity evaluation and the highest cytoprotective effect on HeLa cells. Quantum mechanical calculations and dockings gave insights on the most probable conformation of the aryloxyalkyl bioisostere of To042 in solution and the target residues involved in the binding, respectively. Both approaches indicated the conformations that might be adopted in both the unbound and bound state of the ligand. Overall, N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine exhibits an interesting toxico-pharmacological profile and deserves further investigation.
Collapse
Affiliation(s)
- Gualtiero Milani
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Concetta Altamura
- Department of Biomedical Sciences and Human OncologySchool of MedicineUniversity of Bari Aldo Moro PoliclinicoPiazza Giulio Cesare70124BariItaly
| | - Antonella Santoro
- Department of Bioscience, Biotechnology and BiopharmaceuticsUniversity of Bari Aldo MoroVia Orabona 470125BariItaly
| | - Mariagrazia Perrone
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Marilena Muraglia
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Nicola Antonio Colabufo
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Filomena Corbo
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Elisabetta Casalino
- Department of Veterinary MedicineUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Carlo Franchini
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Isabella Pisano
- Department of Bioscience, Biotechnology and BiopharmaceuticsUniversity of Bari Aldo MoroVia Orabona 470125BariItaly
| | - Jean‐François Desaphy
- Department of Biomedical Sciences and Human OncologySchool of MedicineUniversity of Bari Aldo Moro PoliclinicoPiazza Giulio Cesare70124BariItaly
| | - Antonio Carrieri
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Alessia Carocci
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Giovanni Lentini
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| |
Collapse
|
6
|
Petrillo G, Tavani C, Bianchi L, Benzi A, Cavalluzzi MM, Salvagno L, Quintieri L, De Palma A, Caputo L, Rosato A, Lentini G. Densely Functionalized 2-Methylideneazetidines: Evaluation as Antibacterials. Molecules 2021; 26:3891. [PMID: 34202191 PMCID: PMC8271477 DOI: 10.3390/molecules26133891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/27/2023] Open
Abstract
Twenty-two novel, variously substituted nitroazetidines were designed as both sulfonamide and urethane vinylogs possibly endowed with antimicrobial activity. The compounds under study were obtained following a general procedure recently developed, starting from 4-nitropentadienoates deriving from a common β-nitrothiophenic precursor. While being devoid of any activity against fungi and Gram-negative bacteria, most of the title compounds performed as potent antibacterial agents on Gram-positive bacteria (E. faecalis and three strains of S. aureus), with the most potent congener being the 1-(4-chlorobenzyl)-3-nitro-4-(p-tolyl)azetidine 22, which displayed potency close to that of norfloxacin, the reference antibiotic (minimum inhibitory concentration values 4 and 1-2 μg/mL, respectively). Since 22 combines a relatively efficient activity against Gram-positive bacteria and a cytotoxicity on eucharyotic cells only at 4-times higher concentrations (inhibiting concentration on 50% of the cultured eukaryotic cells: 36 ± 10 μM, MIC: 8.6 μM), it may be considered as a promising hit compound for the development of a new series of antibacterials selectively active on Gram-positive pathogens. The relatively concise synthetic route described herein, based on widely available starting materials, could feed further structure-activity relationship studies, thus allowing for the fine investigation and optimization of the toxico-pharmacological profile.
Collapse
Affiliation(s)
- Giovanni Petrillo
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Cinzia Tavani
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Lara Bianchi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Alice Benzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| | - Lara Salvagno
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| | - Laura Quintieri
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy;
| | - Leonardo Caputo
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Antonio Rosato
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| | - Giovanni Lentini
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| |
Collapse
|
7
|
Johnson M, Gomez-Galeno J, Ryan D, Okolotowicz K, McKeithan WL, Sampson KJ, Kass RS, Mercola M, Cashman JR. Human iPSC-derived cardiomyocytes and pyridyl-phenyl mexiletine analogs. Bioorg Med Chem Lett 2021; 46:128162. [PMID: 34062251 DOI: 10.1016/j.bmcl.2021.128162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022]
Abstract
In the United States, approximately one million individuals are hospitalized every year for arrhythmias, making arrhythmias one of the top causes of healthcare expenditures. Mexiletine is currently used as an antiarrhythmic drug but has limitations. The purpose of this work was to use normal and Long QT syndrome Type 3 (LQTS3) patient-derived human induced pluripotent stem cell (iPSC)-derived cardiomyocytes to identify an analog of mexiletine with superior drug-like properties. Compared to racemic mexiletine, medicinal chemistry optimization of substituted racemic pyridyl phenyl mexiletine analogs resulted in a more potent sodium channel inhibitor with greater selectivity for the sodium over the potassium channel and for late over peak sodium current.
Collapse
Affiliation(s)
- Mark Johnson
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Jorge Gomez-Galeno
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Daniel Ryan
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Karl Okolotowicz
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Wesley L McKeithan
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Robert S Kass
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mark Mercola
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - John R Cashman
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA.
| |
Collapse
|
8
|
Catalano A, Franchini C, Carocci A. Voltage-Gated Sodium Channel Blockers: Synthesis of Mexiletine Analogues and Homologues. Curr Med Chem 2021; 28:1535-1548. [PMID: 32364065 DOI: 10.2174/0929867327666200504080530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/22/2022]
Abstract
Mexiletine is an antiarrhythmic drug belonging to IB class, acting as sodium channel blocker. Besides its well-known activity on arrhythmias, its usefulness in the treatment of myotonia, myotonic dystrophy and amyotrophic lateral sclerosis is now widely recognized. Nevertheless, it has been retired from the market in several countries because of its undesired effects. Thus, several papers were reported in the last years about analogues and homologues of mexiletine being endowed with a wider therapeutic ratio and a more selectivity of action. Some of them showed sodium channel blocking activity higher than the parent compound. It is noteworthy that mexiletine is used in therapy as a racemate even though a difference in the activities of the two enantiomers was widely demonstrated, with (-)-(R)-enantiomer being more active: this finding led several research groups to study mexiletine and its analogues and homologues in their optically active forms. This review summarizes the different synthetic routes used to obtain these compounds. They could represent an interesting starting point to new mexiletine-like compounds without common side effects related to the use of mexiletine.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", via Orabona 4, 70126 Bari, Italy
| | - Carlo Franchini
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", via Orabona 4, 70126 Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
9
|
St Denis JD, Hall RJ, Murray CW, Heightman TD, Rees DC. Fragment-based drug discovery: opportunities for organic synthesis. RSC Med Chem 2020; 12:321-329. [PMID: 34041484 PMCID: PMC8130625 DOI: 10.1039/d0md00375a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
This Review describes the increasing demand for organic synthesis to facilitate fragment-based drug discovery (FBDD), focusing on polar, unprotected fragments. In FBDD, X-ray crystal structures are used to design target molecules for synthesis with new groups added onto a fragment via specific growth vectors. This requires challenging synthesis which slows down drug discovery, and some fragments are not progressed into optimisation due to synthetic intractability. We have evaluated the output from Astex's fragment screenings for a number of programs, including urokinase-type plasminogen activator, hematopoietic prostaglandin D2 synthase, and hepatitis C virus NS3 protease-helicase, and identified fragments that were not elaborated due, in part, to a lack of commercially available analogues and/or suitable synthetic methodology. This represents an opportunity for the development of new synthetic research to enable rapid access to novel chemical space and fragment optimisation.
Collapse
Affiliation(s)
| | - Richard J Hall
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | | | - Tom D Heightman
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - David C Rees
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| |
Collapse
|
10
|
Carocci A, Roselli M, Budriesi R, Micucci M, Desaphy JF, Altamura C, Cavalluzzi MM, Toma M, Passeri GI, Milani G, Lovece A, Catalano A, Bruno C, De Palma A, Corbo F, Franchini C, Habtemariam S, Lentini G. Synthesis and Evaluation of Voltage-Gated Sodium Channel Blocking Pyrroline Derivatives Endowed with Both Antiarrhythmic and Antioxidant Activities. ChemMedChem 2020; 16:578-588. [PMID: 33015979 DOI: 10.1002/cmdc.202000692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 01/17/2023]
Abstract
Under the hypothesis that cardioprotective agents might benefit from synergism between antiarrhythmic activity and antioxidant properties, a small series of mexiletine analogues were coupled with the 2,2,5,5-tetramethylpyrroline moiety, known for its antioxidant effect, in order to obtain dual-acting drugs potentially useful in the protection of the heart against post-ischemic reperfusion injury. The pyrroline derivatives reported herein were found to be more potent as antiarrhythmic agents than mexiletine and displayed antioxidant activity. The most interesting tetramethylpyrroline congener, a tert-butyl-substituted analogue, was at least 100 times more active as an antiarrhythmic than mexiletine.
Collapse
Affiliation(s)
- Alessia Carocci
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126, Bari, Italy
| | - Mariagrazia Roselli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126, Bari, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy
| | - Matteo Micucci
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, piazza Giulio Cesare, 70126, Bari, Italy
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, piazza Giulio Cesare, 70126, Bari, Italy
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126, Bari, Italy
| | - Maddalena Toma
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126, Bari, Italy
| | - Giovanna Ilaria Passeri
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126, Bari, Italy
| | - Gualtiero Milani
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126, Bari, Italy
| | - Angelo Lovece
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126, Bari, Italy
| | - Alessia Catalano
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126, Bari, Italy
| | - Claudio Bruno
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126, Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70126, Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126, Bari, Italy
| | - Carlo Franchini
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126, Bari, Italy
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis services UK, University of Greenwich, Chatham-Maritime, Kent, ME4 4TB, UK
| | - Giovanni Lentini
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126, Bari, Italy
| |
Collapse
|
11
|
McKeithan WL, Feyen DAM, Bruyneel AAN, Okolotowicz KJ, Ryan DA, Sampson KJ, Potet F, Savchenko A, Gómez-Galeno J, Vu M, Serrano R, George AL, Kass RS, Cashman JR, Mercola M. Reengineering an Antiarrhythmic Drug Using Patient hiPSC Cardiomyocytes to Improve Therapeutic Potential and Reduce Toxicity. Cell Stem Cell 2020; 27:813-821.e6. [PMID: 32931730 DOI: 10.1016/j.stem.2020.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/27/2020] [Accepted: 08/05/2020] [Indexed: 01/05/2023]
Abstract
Modeling cardiac disorders with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes is a new paradigm for preclinical testing of candidate therapeutics. However, disease-relevant physiological assays can be complex, and the use of hiPSC-cardiomyocyte models of congenital disease phenotypes for guiding large-scale screening and medicinal chemistry have not been shown. We report chemical refinement of the antiarrhythmic drug mexiletine via high-throughput screening of hiPSC-CMs derived from patients with the cardiac rhythm disorder long QT syndrome 3 (LQT3) carrying SCN5A sodium channel variants. Using iterative cycles of medicinal chemistry synthesis and testing, we identified drug analogs with increased potency and selectivity for inhibiting late sodium current across a panel of 7 LQT3 sodium channel variants and suppressing arrhythmic activity across multiple genetic and pharmacological hiPSC-CM models of LQT3 with diverse backgrounds. These mexiletine analogs can be exploited as mechanistic probes and for clinical development.
Collapse
Affiliation(s)
- Wesley L McKeithan
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA; Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Dries A M Feyen
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Arne A N Bruyneel
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Daniel A Ryan
- Human BioMolecular Research Institute, San Diego, CA 92121, USA
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Franck Potet
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alex Savchenko
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Michelle Vu
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Serrano
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Robert S Kass
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - John R Cashman
- Human BioMolecular Research Institute, San Diego, CA 92121, USA
| | - Mark Mercola
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA; Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA.
| |
Collapse
|
12
|
Cashman JR. Small Molecule Regulation of Stem Cells that Generate Bone, Chondrocyte, and Cardiac Cells. Curr Top Med Chem 2020; 20:2344-2361. [PMID: 32819246 DOI: 10.2174/1568026620666200820143912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/13/2020] [Indexed: 11/22/2022]
Abstract
Embryonic stem cells (ESCs) are stem cells (SCs) that can self-renew and differentiate into a myriad of cell types. The process of developing stemness is determined by signaling molecules that drive stem cells to a specific lineage. For example, ESCs can differentiate into mature cells (e.g., cardiomyocytes) and mature cardiomyocytes can be characterized for cell beating, action potential, and ion channel function. A goal of this Perspective is to show how small molecules can be used to differentiate ESCs into cardiomyocytes and how this can reveal novel aspects of SC biology. This approach can also lead to the discovery of new molecules of use in cardiovascular disease. Human induced pluripotent stem cells (hiPSCs) afford the ability to produce unlimited numbers of normal human cells. The creation of patient-specific hiPSCs provides an opportunity to study cell models of human disease. The second goal is to show that small molecules can stimulate hiPSC commitment to cardiomyocytes. How iPSCs can be used in an approach to discover new molecules of use in cardiovascular disease will also be shown in this study. Adult SCs, including mesenchymal stem cells (MSCs), can likewise participate in self-renewal and multilineage differentiation. MSCs are capable of differentiating into osteoblasts, adipocytes or chondrocytes. A third goal of this Perspective is to describe differentiation of MSCs into chondrogenic and osteogenic lineages. Small molecules can stimulate MSCs to specific cell fate both in vitro and in vivo. In this Perspective, some recent examples of applying small molecules for osteogenic and chondrogenic cell fate determination are summarized. Underlying molecular mechanisms and signaling pathways involved are described. Small molecule-based modulation of stem cells shows insight into cell regulation and potential approaches to therapeutic strategies for MSC-related diseases.
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, United States
| |
Collapse
|
13
|
Manna A, Chatterjee S, Chakraborty I, Bhaumik T. Enantiodivergent syntheses of (+)- and (-)-1-(2,6-dimethylphenoxy)propan-2-ol: A way to access (+)- and (-)-mexiletine from D-(+)-mannitol. Carbohydr Res 2020; 487:107892. [PMID: 31901892 DOI: 10.1016/j.carres.2019.107892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/30/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Chiron approach was used to acquire optically pure (R)- and (S)-1-(2,6-dimethylphenoxy)propan-2-ol, immediate precursors of (S)- and (R)-mexiletines, respectively. Two different routes were followed from a D-mannitol-derived optically pure common precursor to get the enantiomeric alcohols separately. Comparison of their specific rotation values with the corresponding literature values as well as exact mirror-image relationship between their CD curves proved their high enantiopurity. These alcohols were then transformed to the corresponding amine-drugs in an efficient one-step process instead of two steps described in the literature.
Collapse
Affiliation(s)
- Avrajit Manna
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Sandip Chatterjee
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Ipsita Chakraborty
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Tanurima Bhaumik
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
14
|
De Bellis M, Sanarica F, Carocci A, Lentini G, Pierno S, Rolland JF, Conte Camerino D, De Luca A. Dual Action of Mexiletine and Its Pyrroline Derivatives as Skeletal Muscle Sodium Channel Blockers and Anti-oxidant Compounds: Toward Novel Therapeutic Potential. Front Pharmacol 2018; 8:907. [PMID: 29379434 PMCID: PMC5770958 DOI: 10.3389/fphar.2017.00907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022] Open
Abstract
Mexiletine (Mex) has been recently appointed as an orphan-drug in myotonic-syndromes, being a potent use-dependent blocker of skeletal-muscle sodium channels (NaV1.4). Available evidences about a potential anti-oxidant effect of Mex and its tetramethyl-pyrroline-derivatives in vivo, suggest the possibility to further enlarge the therapeutic potential of Mex-like compounds in myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative stress. In line with this and based on our previous structure-activity-relationship studies, we synthesized new compounds with a tetramethyl-pyrroline-ring on the amino-group of both Mex (VM11) and of its potent use-dependent isopropyl-derivative (CI16). The compounds were tested for their ability to block native NaV1.4 and to exert cyto-protective effects against oxidative-stress injury in myoblasts. Voltage-clamp-recordings on adult myofibers were performed to assess the tonic and use-dependent block of peak sodium-currents (INa) by VM11 and CI16, as well as Mex, VM11 and CI16 were 3 and 6-fold more potent than Mex in producing a tonic-block of peak sodium-currents (INa), respectively. Interestingly, CI16 showed a 40-fold increase of potency with respect to Mex during high-frequency stimulation (10-Hz), resulting the strongest use-dependent Mex-like compound so far. The derivatives also behaved as inactivated channel blockers, however the voltage dependent block was modest. The experimental data fitted with the molecular-modeling simulation based on previously proposed interaction of main pharmacophores with NaV1.4 binding-site. CI16 and VM11 were then compared to Mex and its isopropyl derivative (Me5) for the ability to protect C2C12-cells from H2O2-cytotoxicity in the concentration range effective on Nav1.4. Mex and Me5 showed a moderate cyto-protective effect in the presence of H2O2, Importantly, CI16 and VM11 showed a remarkable cyto-protection at concentrations effective for use-dependent block of NaV1.4. This effect was comparable to that of selected anti-oxidant drugs proved to exert protective effect in preclinical models of progressive myopathies such as muscular dystrophies. Then, the tetramethyl-pyrroline compounds have increased therapeutic profile as sodium channel blockers and an interesting cyto-protective activity. The overall profile enlarges therapeutic potential from channelopathies to myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative-stress, i.e., muscular dystrophies.
Collapse
Affiliation(s)
- Michela De Bellis
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Sanarica
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Carocci
- Unit of Medicinal Chemistry, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Lentini
- Unit of Medicinal Chemistry, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Diana Conte Camerino
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
15
|
Iacopetta D, Mariconda A, Saturnino C, Caruso A, Palma G, Ceramella J, Muià N, Perri M, Sinicropi MS, Caroleo MC, Longo P. Novel Gold and Silver Carbene Complexes Exert Antitumor Effects Triggering the Reactive Oxygen Species Dependent Intrinsic Apoptotic Pathway. ChemMedChem 2017; 12:2054-2065. [PMID: 29120085 DOI: 10.1002/cmdc.201700634] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 12/20/2022]
Abstract
Cisplatin and other platinum-based drugs are well-known valid anticancer drugs. However, during chemotherapy, the presence of numerous side effects and the onset of frequent phenomena of resistance has pushed many research groups to devise new metal-based compounds holding improved anticancer properties and fewer undesired effects. Amongst the variety of synthesized compounds, significant antiproliferative effects have been obtained by employing organometallic compounds, particularly those based on silver and gold. With this in mind, we synthesized four compounds, two silver complexes and two gold complexes, with good inhibitory effects on the in vitro proliferation of breast and ovarian cancer-cell models. The antitumor activity of the most active compound, that is, AuL4, was found to be ninefold higher than that of cisplatin, and this compound induced dramatic morphological changes in HeLa cells. AuL4 induced PARP-1 cleavage, caspases 3/7 and 9 activation, mitochondria disruption, cytochrome c release in cancer-cell cytoplasm, and the intracellular production of reactive oxygen species. Thus, AuL4 treatment caused cancer-cell death by the intrinsic apoptotic pathway, whereas no cytotoxic effects were recorded upon treating non-tumor cell lines. The reported outcomes may be an important contribution to the expanding knowledge of medicinal bio-organometallic chemistry and enlarge the available anticancer toolbox, offering improved features, such as higher activity and/or selectivity, and opening the way to new discoveries and applications.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Annaluisa Mariconda
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza, 85100, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Giuseppe Palma
- SSD Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS, "Fondazione G. Pascale", Via Mariano Semmola, Napoli, 80131, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Noemi Muià
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Mariarita Perri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| |
Collapse
|
16
|
Naumovich YA, Golovanov IS, Sukhorukov AY, Ioffe SL. Addition of HO-Acids to N
,N
-Bis(oxy)enamines: Mechanism, Scope and Application to the Synthesis of Pharmaceuticals. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yana A. Naumovich
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
| | - Ivan S. Golovanov
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
| | - Alexey Yu. Sukhorukov
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
| | - Sema L. Ioffe
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
| |
Collapse
|
17
|
Haase T, Börnigen D, Müller C, Zeller T. Systems Medicine as an Emerging Tool for Cardiovascular Genetics. Front Cardiovasc Med 2016; 3:27. [PMID: 27626034 PMCID: PMC5003874 DOI: 10.3389/fcvm.2016.00027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/16/2016] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease (CVD) is a major contributor to morbidity and mortality worldwide. However, the pathogenesis of CVD is complex and remains elusive. Within the last years, systems medicine has emerged as a novel tool to study the complex genetic, molecular, and physiological interactions leading to diseases. In this review, we provide an overview about the current approaches for systems medicine in CVD. They include bioinformatical and experimental tools such as cell and animal models, omics technologies, network, and pathway analyses. Additionally, we discuss challenges and current literature examples where systems medicine has been successfully applied for the study of CVD.
Collapse
Affiliation(s)
- Tina Haase
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| | - Daniela Börnigen
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| | - Christian Müller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| |
Collapse
|