1
|
Jhetam Z, Martins-Furness C, Slabber C, Munro OQ, Nel M, Harmse L. Copper complexes induce haem oxygenase-1 (HMOX1) and cause apoptotic cell death in pancreatic cancer cells. J Inorg Biochem 2025; 264:112815. [PMID: 39740375 DOI: 10.1016/j.jinorgbio.2024.112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, has a dismal 5-year survival rate, making palliative chemotherapy the only treatment option. Targeted therapy has limited efficacy in PDAC, underscoring the need for novel therapeutic approaches. The inducible stress-response protein, haem oxygenase-1 (HMOX1), has been implicated in treatment failure in PDAC. Copper coordination complexes have shown promise as anticancer agents against various cancers, and are associated with apoptotic cell death. The different ligands to which copper is complexed, determine the specificity and efficacy of each complex. Three different classes of copper complexes were evaluated for anti-cancer activity against AsPC-1 and MIA PaCa-2 pancreatic cancer cell lines. A copper-phenanthroline-theophylline complex (CuPhTh2), a copper-8-aminoquinoline-naphthyl complex (Cu8AqN), and two copper-aromatic-isoindoline complexes (CuAIsI) were effective inhibitors of cell proliferation with clinically relevant IC50 values below 5 μM. The copper complexes caused reactive oxygen species (ROS) formation, promoted annexin-V binding, disrupted the mitochondrial membrane potential (MMP) and activated caspase-9 and caspase-3/7, confirming apoptotic cell death. Expression of nuclear HMOX1 was increased in both cell lines, with the CuPhTh2 complex being the most active. Inhibition of HMOX1 activity significantly decreased the IC50 values of these copper complexes suggesting that HMOX1 inhibition may alter treatment outcomes in PDAC.
Collapse
Affiliation(s)
- Zakeeya Jhetam
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Carla Martins-Furness
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Cathy Slabber
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg 2017, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg 2017, South Africa; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Marietha Nel
- Dept of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Leonie Harmse
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
2
|
Azzouzi M, El Hadad SE, Azougagh O, Ouchaoui AA, Abou-Salama M, Oussaid A, Pannecouque C, Rohand T. Synthesis, Characterization, and antiviral evaluation of New Chalcone-Based Imidazo[1,2-a]pyridine Derivatives: Insights from in vitro and in silico Anti-HIV studies. Bioorg Chem 2025; 154:108102. [PMID: 39740310 DOI: 10.1016/j.bioorg.2024.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Given the ease of synthetic accessibility and the promising biological profile demonstrated by both imidazo[1,2-a]pyridine and Chalcone derivatives, a series of Chalcone-based imidazo[1,2-a]pyridine derivatives were synthesized and characterized using 1H NMR, 13C NMR, Mass Spectrometry and FTIR techniques. Density functional theory (DFT) was employed to investigate the structural and electronic properties, providing insights into potential reactive sites. The synthesized compounds were evaluated in vitro for their antiviral properties against human immunodeficiency virus type-1 (HIV-1) and human immunodeficiency virus type-2 (HIV-2) in MT-4 cells. Furthermore, Molecular docking studies show strong binding affinities with HIV-1 reverse transcriptase and HIV-2 protease. To further understand the dynamic behavior and stability of these interactions, molecular dynamics (MD) simulations were conducted. The MD results indicated stable binding conformations of the ligands within the active sites, with low RMSD and RMSF values throughout the simulation, confirming the robustness of these interactions. ADME predictions suggested acceptable pharmacokinetic profiles, though solubility remains a limitation for these compounds. Although the in vitro antiviral activity was limited, the combination of in vitro and in silico approaches provided valuable insights, guiding further structural optimization to improve bioavailability and enhance the therapeutic potential of these derivatives.
Collapse
Affiliation(s)
- Mohamed Azzouzi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Salah Eddine El Hadad
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Abderrahim Ait Ouchaoui
- Mohammed VI university of Sciences and Health (UM6SS), Casablanca, Morocco; Mohammed VI Center for Research and Innovation (CM6), Rabat 10000, Morocco
| | - Mohamed Abou-Salama
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Adyl Oussaid
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Taoufik Rohand
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco.
| |
Collapse
|
3
|
Thunga S, Inapanuri M, Singh N, Kokatla HP. Rongalite as a Methylene Surrogate: Synthesis of Heterodiarylmethanes via C(sp 2)-H Functionalization. J Org Chem 2024; 89:18313-18321. [PMID: 39620955 DOI: 10.1021/acs.joc.4c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
An efficient method for the synthesis of heterodiarylmethanes through the coupling of imidazo[1,2-a]pyridines and heteroarenes using indoles employing rongalite as a methylenating reagent has been developed. This regioselective C-H functionalization provides a wide range of heterodiarylmethanes of imidazo[1,2-a]pyridines and imidazo[2,1-b]thiazole. Here, rongalite plays a crucial role in generating a C1 unit in situ, which triggers the heterodiarylmethylation process. The use of inexpensive rongalite (ca. $0.03/1 g), mild reaction conditions, and gram-scale synthesis are some of the key features of this methodology.
Collapse
Affiliation(s)
- Sanjeeva Thunga
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Madhu Inapanuri
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Neetika Singh
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Hari Prasad Kokatla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India
| |
Collapse
|
4
|
Azzouzi M, Ouchaoui AA, Azougagh O, El Hadad SE, Abou-Salama M, Oussaid A, Pannecouque C, Rohand T. Synthesis, crystal structure, and antiviral evaluation of new imidazopyridine-schiff base derivatives: in vitro and in silico anti-HIV studies. RSC Adv 2024; 14:36902-36918. [PMID: 39569129 PMCID: PMC11574953 DOI: 10.1039/d4ra07561g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
A series of Imidazo[1,2-a]pyridine-Schiff base derivatives were synthesized and characterized using 1H NMR, 13C NMR, Mass Spectrometry and FTIR techniques, and the structure of 4a was further confirmed through single-crystal X-ray diffraction analysis. Density Functional Theory (DFT) has been used to investigate the structural and electronic properties. The synthesized compounds were evaluated in vitro for their antiviral activity against human immunodeficiency virus type-1 (HIV-1) and human immunodeficiency virus type-2 (HIV-2) in MT-4 cells. Compound 4a displayed EC50 values of 82,02 and 47,72 μg ml-1 against HIV-1 and HIV-2, respectively. Molecular docking studies were conducted to gain insights into the interaction mechanism of the synthesized compounds with HIV-1 reverse transcriptase. ADME analysis suggested acceptable pharmacokinetic profiles, though solubility remains a limitation for these compounds, highlighting the need for further structural modifications to enhance bioavailability and therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Azzouzi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I Nador 60700 Morocco
| | - Abderrahim Ait Ouchaoui
- Mohammed VI University of Sciences and Health (UM6SS) Casablanca Morocco
- Mohammed VI Center for Research and Innovation (CM6) Rabat 10000 Morocco
| | - Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I Nador 60700 Morocco
| | - Salah Eddine El Hadad
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic Ben Guerir Morocco
| | - Mohamed Abou-Salama
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I Nador 60700 Morocco
| | - Adyl Oussaid
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I Nador 60700 Morocco
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven Leuven B-3000 Belgium
| | - Taoufik Rohand
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I Nador 60700 Morocco
| |
Collapse
|
5
|
Myeza N, Slabber C, Munro OQ, Sookai S, Zacharias SC, Martins-Furness C, Harmse L. An 8-aminoquinoline-naphthyl copper complex causes apoptotic cell death by modulating the expression of apoptotic regulatory proteins in breast cancer cells. Eur J Pharmacol 2024; 978:176764. [PMID: 38908670 DOI: 10.1016/j.ejphar.2024.176764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Breast cancer is one of the most common cancers globally and a leading cause of cancer-related deaths among women. Despite the combination of chemotherapy with targeted therapy, including monoclonal antibodies and kinase inhibitors, drug resistance and treatment failure remain a common occurrence. Copper, complexed to various organic ligands, has gained attention as potential chemotherapeutic agents due to its perceived decreased toxicity to normal cells. The cytotoxic efficacy and the mechanism of cell death of an 8-aminoquinoline-naphthyl copper complex (Cu8AqN) in MCF-7 and MDA-MB-231 breast cancer cell lines was investigated. The complex inhibited the growth of MCF-7 and MDA-MB-231 cells with IC50 values of 2.54 ± 0.69 μM and 3.31 ± 0.06 μM, respectively. Nuclear fragmentation, annexin V binding, and increased caspase-3/7 activity indicated apoptotic cell death. The loss of mitochondrial membrane potential, an increase in caspase-9 activity, the absence of active caspase-8 and a decrease of tumour necrosis factor receptor 1(TNFR1) expression supported activation of the intrinsic apoptotic pathway. Increased ROS formation and increased expression of haem oxygenase-1 (HMOX-1) indicated activation of cellular stress pathways. Expression of p21 protein in the nuclei was increased indicating cell cycle arrest, whilst the expression of inhibitor of apoptosis proteins (IAPs); cIAP1, XIAP and survivin were decreased, creating a pro-apoptotic environment. Phosphorylated p53 species; phospho-p53(S15), phospho-p53(S46), and phospho-p53(S392) accumulated in MCF-7 cells indicating the potential of Cu8AqN to restore p53 function in the cells. In combination, the data indicates that Cu8AqN is a useful lead molecule worthy of further exploration as a potential anti-cancer drug.
Collapse
Affiliation(s)
- Nonzuzo Myeza
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Cathy Slabber
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg, 2017, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg, 2017, South Africa; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Sheldon Sookai
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg, 2017, South Africa
| | - Savannah C Zacharias
- School of Chemistry and Physics, University of KwaZulu-Natal, King Edward Drive, Pietermaritzburg, Scottsville, 3209, South Africa
| | - Carla Martins-Furness
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Leonie Harmse
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
6
|
Wang Y, Pei P, Yang K, Guo L, Li Y. Copper in colorectal cancer: From copper-related mechanisms to clinical cancer therapies. Clin Transl Med 2024; 14:e1724. [PMID: 38804588 PMCID: PMC11131360 DOI: 10.1002/ctm2.1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Copper, a trace element and vital cofactor, plays a crucial role in the maintenance of biological functions. Recent evidence has established significant correlations between copper levels, cancer development and metastasis. The strong redox-active properties of copper offer both benefits and disadvantages to cancer cells. The intestinal tract, which is primarily responsible for copper uptake and regulation, may suffer from an imbalance in copper homeostasis. Colorectal cancer (CRC) is the most prevalent primary cancer of the intestinal tract and is an aggressive malignant disease with limited therapeutic options. Current research is primarily focused on the relationship between copper and CRC. Innovative concepts, such as cuproplasia and cuproptosis, are being explored to understand copper-related cellular proliferation and death. Cuproplasia is the regulation of cell proliferation that is mediated by both enzymatic and nonenzymatic copper-modulated activities. Whereas, cuproptosis refers to cell death induced by excess copper via promoting the abnormal oligomerisation of lipoylated proteins within the tricarboxylic acid cycle, as well as by diminishing the levels of iron-sulphur cluster proteins. A comprehensive understanding of copper-related cellular proliferation and death mechanisms offers new avenues for CRC treatment. In this review, we summarise the evolving molecular mechanisms, ranging from abnormal intracellular copper concentrations to the copper-related proteins that are being discovered, and discuss the role of copper in the pathogenesis, progression and potential therapies for CRC. Understanding the relationship between copper and CRC will help provide a comprehensive theoretical foundation for innovative treatment strategies in CRC management.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of PathologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Kai Yang
- Department of PathologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Lingchuan Guo
- Department of PathologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yuan Li
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Podolski-Renić A, Čipak Gašparović A, Valente A, López Ó, Bormio Nunes JH, Kowol CR, Heffeter P, Filipović NR. Schiff bases and their metal complexes to target and overcome (multidrug) resistance in cancer. Eur J Med Chem 2024; 270:116363. [PMID: 38593587 DOI: 10.1016/j.ejmech.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Óscar López
- Departamento de Química Organica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Julia H Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
8
|
Du LQ, Zeng CJ, Mo DY, Qin QP, Tan MX, Liang H. 8-hydroxyquinoline-N-oxide copper(II)- and zinc(II)-phenanthroline and bipyridine coordination compounds: Design, synthesis, structures, and antitumor evaluation. J Inorg Biochem 2024; 251:112443. [PMID: 38100902 DOI: 10.1016/j.jinorgbio.2023.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Fourteen novel tumor-targeting copper(II) and zinc(II) complexes, [Cu(ONQ)(QD1)(NO3)]·CH3OH (NQ3), [Cu(ONQ)(QD2)(NO3)] (NQ2), [Cu(NQ)(QD2)Cl] (NQ3), [Cu(ONQ)(QD1)Cl] (NQ4), [Cu(ONQ)(QD3)](NO3) (NQ5), [Cu(ONQ)(QD3)Cl] (NQ6), [Zn(ONQ)(QD4)Cl] (NQ7), [Zn(ONQ)(QD1)Cl] (NQ8), [Zn(ONQ)(QD5)Cl] (NQ9), [Zn(ONQ)(QD2)Cl] (NQ10), [Zn(ONQ)(QD6)Cl] (NQ11), [Zn(ONQ)(QD7)Cl] (NQ12), and [Zn(ONQ)(QD3)Cl] (NQ13) supported on 8-hydroxyquinoline-N-oxide (H-ONQ), 2,2'-dipyridyl (QD1), 5,5'-dimethyl-2,2'-bipyridyl (QD2), 1,10-phenanthroline (QD3), 4,4'-dimethoxy-2,2'-bipyridyl (QD4), 4,4'-dimethyl-2,2'-bipyridyl (QD5), 5-chloro-1,10-phenanthroline (QD6), and bathophenanthroline (QD7), were first synthesized and characterized using various spectroscopic techniques. Furthermore, NQ1-NQ13 exhibited higher antiproliferative activity and selectivity for cisplatin-resistant SK-OV-3/DDP tumor cells (CiSK3) compared to normal HL-7702 cells based on results obtained from the cell counting Kit-8 (CCK-8) assay. The complexation of copper(II) ion with QD2 and ONQ ligands resulted in an evident increase in the antiproliferation of NQ1-NQ6, with NQ6 exhibiting the highest antitumor potency against CiSK3 cells compared to NQ1-NQ5, H-ONQ, QD1-QD7, and NQ7-NQ13 as well as the reference cisplatin drug with an IC50 value of 0.17 ± 0.05 μM. Mechanistic studies revealed that NQ4 and NQ6 induced apoptosis of CiSK3 cells via mitophagy pathway regulation and adenosine triphosphate (ATP) depletion. Further, the differential induction of mitophagy decreased in the order of NQ6 > NQ4, which can be attributed to the major impact of the QD3 ligand with a large planar geometry and the Cl leaving group within the NQ6 complex. In summary, these results confirmed that the newly synthesized H-ONQ copper(II) and zinc(II) coordination metal compounds NQ1-NQ13 exhibit potential as anticancer drugs for cisplatin-resistant ovarian CiSK3 cancer treatment.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Chu-Jie Zeng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Dong-Yin Mo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
9
|
Afshari H, Noori S, Nourbakhsh M, Daraei A, Azami Movahed M, Zarghi A. A novel imidazo[1,2-a]pyridine derivative and its co-administration with curcumin exert anti-inflammatory effects by modulating the STAT3/NF-κB/iNOS/COX-2 signaling pathway in breast and ovarian cancer cell lines. BIOIMPACTS : BI 2023; 14:27618. [PMID: 38505673 PMCID: PMC10945297 DOI: 10.34172/bi.2023.27618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/15/2023] [Accepted: 04/26/2023] [Indexed: 03/21/2024]
Abstract
Introduction Imidazo[1,2-a]pyridine derivatives with diverse pharmacological properties and curcumin, as a potential natural anti-inflammatory compound, are promising compounds for cancer treatment. This study aimed to synthesize a novel imidazo[1,2-a]pyridine derivative, (MIA), and evaluate its anti-inflammatory activity and effects on nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways, and their target genes, alone and in combination with curcumin, in MDA-MB-231 and SKOV3 cell lines. Methods We evaluated the interaction between imidazo[1,2-a]pyridine ligand, curcumin, and NF-κB p50 protein, using molecular docking studies. MTT assay was used to investigate the impacts of compounds on cell viability. To evaluate the NF-κB DNA binding activity and the level of inflammatory cytokines in response to the compounds, ELISA-based methods were performed. In addition, quantitative polymerase chain reaction (qPCR) and western blotting were carried out to analyze the expression of genes and investigate NF-κB and STAT3 signaling pathways. Results Molecular docking studies showed that MIA docked into the NF-κB p50 subunit, and curcumin augmented its binding. The MTT assay results indicated that MIA and its combination with curcumin reduced cell viability. According to the results of the ELISA-based methods, MIA lowered the levels of inflammatory cytokines and suppressed NF-κB activity. In addition, real-time PCR and Griess test results showed that the expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) genes, and nitrite production were reduced by MIA. Furthermore, the western blotting analysis demonstrated that MIA increased the expression of inhibitory κB (IκBα) and B-cell lymphoma 2 (Bcl-2)-associated X proteins (BAX), and suppressed the STAT3 phosphorylation, and Bcl-2 expression. Our findings revealed that curcumin had a potentiating role and enhanced all the anti-inflammatory effects of MIA. Conclusion This study indicated that the anti-inflammatory activity of MIA is exerted by suppressing the NF-κB and STAT3 signaling pathways in MDA-MB-231 and SKOV3 cancer cell lines.
Collapse
Affiliation(s)
- Havva Afshari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Daraei
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Azami Movahed
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Alfadul SM, Matnurov EM, Varakutin AE, Babak MV. Metal-Based Anticancer Complexes and p53: How Much Do We Know? Cancers (Basel) 2023; 15:2834. [PMID: 37345171 DOI: 10.3390/cancers15102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
P53 plays a key role in protecting the human genome from DNA-related mutations; however, it is one of the most frequently mutated genes in cancer. The P53 family members p63 and p73 were also shown to play important roles in cancer development and progression. Currently, there are various organic molecules from different structural classes of compounds that could reactivate the function of wild-type p53, degrade or inhibit mutant p53, etc. It was shown that: (1) the function of the wild-type p53 protein was dependent on the presence of Zn atoms, and (2) Zn supplementation restored the altered conformation of the mutant p53 protein. This prompted us to question whether the dependence of p53 on Zn and other metals might be used as a cancer vulnerability. This review article focuses on the role of different metals in the structure and function of p53, as well as discusses the effects of metal complexes based on Zn, Cu, Fe, Ru, Au, Ag, Pd, Pt, Ir, V, Mo, Bi and Sn on the p53 protein and p53-associated signaling.
Collapse
Affiliation(s)
- Samah Mutasim Alfadul
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Egor M Matnurov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Alexander E Varakutin
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| |
Collapse
|
11
|
Du LQ, Zhang TY, Huang XM, Xu Y, Tan MX, Huang Y, Chen Y, Qin QP. Synthesis and anticancer mechanisms of zinc(II)-8-hydroxyquinoline complexes with 1,10-phenanthroline ancillary ligands. Dalton Trans 2023; 52:4737-4751. [PMID: 36942929 DOI: 10.1039/d3dt00150d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Twenty new zinc(II) complexes with 8-hydroxyquinoline (H-Q1-H-Q6) in the presence of 1,10-phenanthroline derivatives (D1-D10) were synthesized and formulated as [Zn(Q1)2(D1)] (DQ1), [Zn(Q2)2(D2)]·CH3OH (DQ2), [Zn(Q1)2(D3)] (DQ3), [Zn(Q1)2(D4)] (DQ4), [Zn(Q3)2(D5)] (DQ5), [Zn(Q3)2(D4)] (DQ6), [Zn(Q4)2(D5)]·CH3OH (DQ7), [Zn(Q4)2(D6)] (DQ8), [Zn(Q4)2(D3)]·CH3OH (DQ9), [Zn(Q4)2(D1)]·H2O (DQ10), [Zn(Q5)2(D4)] (DQ11), [Zn(Q6)2(D6)]·CH3OH (DQ12), [Zn(Q5)2(D2)]·5CH3OH·H2O (DQ13), [Zn(Q5)2(D7)]·CH3OH (DQ14), [Zn(Q5)2(D8)]·CH2Cl2 (DQ15), [Zn(Q5)2(D9)] (DQ16), [Zn(Q5)2(D1)] (DQ17), [Zn(Q5)2(D5)] (DQ18), [Zn(Q5)2(D10)]·CH2Cl2 (DQ19) and [Zn(Q5)2(D3)] (DQ20). They were characterized using multiple techniques. The cytotoxicity of DQ1-DQ20 was screened using human cisplatin-resistant SK-OV-3/DDP ovarian cancer (SK-OV-3CR) cells and normal hepatocyte (HL-7702) cells. Complex DQ6 showed low IC50 values (2.25 ± 0.13 μM) on SK-OV-3CR cells, more than 3.0-8.0 times more cytotoxic than DQ1-DQ5 and DQ7-DQ20 (≥6.78 μM), and even 22.2 times more cytotoxic than the standard cisplatin, the corresponding free H-Q1-H-Q6 and D1-D10 alone (>50 μM). As a comparison, DQ1-DQ20 displayed nontoxic rates against healthy HL-7702 cells. Furthermore, DQ6 and DQ11 induced significant apoptosis via mitophagy pathways. DQ6 also significantly inhibited tumor growth in an in vivo SK-OV-3-xenograft model (ca. 49.7%). Thus, DQ6 may serve as a lead complex for the discovery of new antitumor agents.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Tian-Yu Zhang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Xiao-Mei Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yue Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yan Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yuan Chen
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| |
Collapse
|
12
|
de Oliveira JAF, Terra GG, Costa TG, Szpoganicz B, Silva-Caldeira PP, de Souza ÍP, Pereira-Maia EC, Bortoluzzi AJ. Synthesis, characterization and cytotoxicity of copper (II) complex containing a 2H-benzo[e][1,3]oxazin derivative. J Inorg Biochem 2023; 239:112087. [PMID: 36508973 DOI: 10.1016/j.jinorgbio.2022.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
A new cis-dihalo copper(II) complex, [CuII(HLbz)(Cl)2].CH3CN (1), where HLbz = (S)-2-(((2-(2-(pyridin-2-yl)-2H-benzo[e][1,3]oxazin-3(4H)-yl)ethyl)amino)methyl)phenol), was isolated by reacting copper(II) chloride dihydrate and the H2L ligand (H2L = 2,2'-((2-(pyridin-2-yl)imidazolidine-1,3-diyl)bis(methylene))diphenol) in a MeOH/CH3CN (1:3 v/v) mixture. The complex formation occurred via the ligand modification during complexation, producing a unique structure containing 2H-benzo[e][1,3]oxazin, as observed from the single crystal X-ray structure determination. The complex was characterized by elemental analysis, potentiometric titration, spectroscopic techniques (UV-Vis, FT-IR) and conductance measurements. Complex 1 inhibits the growth of myelogenous leukemia cells with an IC50 of 17.3 μmol L-1.
Collapse
Affiliation(s)
- José A F de Oliveira
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Geovana G Terra
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Thiago G Costa
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Bruno Szpoganicz
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | | - Ívina P de Souza
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Elene C Pereira-Maia
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
13
|
Alshamrani M. Recent advances and therapeutic journey of pyridine-based Cu(II) complexes as potent anticancer agents: a review (2015–2022). J COORD CHEM 2023. [DOI: 10.1080/00958972.2022.2164190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
14
|
Singh D, Pramanik S, Maity S. Photocatalytic sequential C-H functionalization expediting acetoxymalonylation of imidazo heterocycles. Beilstein J Org Chem 2023; 19:666-673. [PMID: 37205129 PMCID: PMC10186259 DOI: 10.3762/bjoc.19.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
The importance of functionalized imidazo heterocycles has often been featured in several impactful research both from academia and industry. Herein, we report a direct C-3 acetoxymalonylation of imidazo heterocycles using relay C-H functionalization enabled by organophotocatalysis starring zinc acetate in the triple role of an activator, ion scavenger as well as an acetylating reagent. The mechanistic investigation revealed a sequential sp2 and sp3 C-H activation, followed by functionalization driven by zinc acetate coupled with the photocatalyst PTH. A variety of imidazo[1,2-a]pyridines and related heterocycles were explored as substrates along with several active methylene reagents, all generating the products with excellent yields and regioselectivity, thus confirming excellent functional group tolerability.
Collapse
Affiliation(s)
- Deepak Singh
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| | - Shyamal Pramanik
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| |
Collapse
|
15
|
Khatun S, Singh A, Bader GN, Sofi FA. Imidazopyridine, a promising scaffold with potential medicinal applications and structural activity relationship (SAR): recent advances. J Biomol Struct Dyn 2022; 40:14279-14302. [PMID: 34779710 DOI: 10.1080/07391102.2021.1997818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Imidazopyridine scaffold has gained tremendous importance over the past few decades. Imidazopyridines have been expeditiously used for the rationale design and development of novel synthetic analogs for various therapeutic disorders. A wide variety of imidazopyridine derivatives have been developed as potential anti-cancer, anti-diabetic, anti-tubercular, anti-microbial, anti-viral, anti-inflammatory, central nervous system (CNS) agents besides other chemotherapeutic agents. Imidazopyridine heterocyclic system acts as a key pharmacophore motif for the identification and optimization of lead structures to increase medicinal chemistry toolbox. The present review highlights the medicinal significances of imidazopyridines for their rationale development as lead molecules with improved therapeutic efficacies. This review further emphasis on the structure-activity relationships (SARs) of the various designed imidazopyridines to establish a relationship between the key structural features versus the biological activities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samima Khatun
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Abhinav Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Ghulam N Bader
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, J & K, India
| | - Firdoos Ahmad Sofi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, J & K, India
| |
Collapse
|
16
|
Yuan J, Song JY, Yang HH, Lan HR, Xing AP, Li KH, Zeng D, Zhang ZQ, Feng SY. Synthesis, cytotoxicity and DNA binding of novel Ni(II), Co(II) and Zn(II) complexes bearing pyrimidinyl hydrazone ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
17
|
Zhou Z, Du LQ, Huang XM, Zhu LG, Wei QC, Qin QP, Bian H. Novel glycosylation zinc(II)-cryptolepine complexes perturb mitophagy pathways and trigger cancer cell apoptosis and autophagy in SK-OV-3/DDP cells. Eur J Med Chem 2022; 243:114743. [PMID: 36116236 DOI: 10.1016/j.ejmech.2022.114743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/04/2022]
Abstract
With the aim of shedding some light on the mechanism of action of zinc(II) complexes in antiproliferative processes and molecular signaling pathways, three novel glycosylated zinc(II)-cryptolepine complexes, i.e., [Zn(QA1)Cl2] (Zn(QA1)), [Zn(QA2)Cl2] (Zn(QA2)), and [Zn(QA3)Cl2] (Zn(QA3)), were prepared by conjugating a glucose moiety with cryptolepine, followed by complexation of the resulting glycosylated cryptolepine compounds N-((1-(2-morpholinoethyl)-1H-1,2,3-triazol-4-yl)methyl)-benzofuro[3,2-b]quinolin-11-amine (QA1), 2-(4-((benzofuro[3,2-b]quinolin-11-ylamino)methyl)-1H-1,2,3-triazol-1-yl)ethan-1-ol (QA2), and (2S,3S,4R,5R,6S)-2-(4-((benzofuro[3,2-b]quinolin-11-ylamino)-methyl)-1H-1,2,3-triazol-1-yl)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (QA3) with zinc(II), and their anticancer activity was evaluated. In MTT assays, Zn(QA1)-Zn(QA3) were more active against cisplatin-resistant ovarian SK-OV-3/DDP cancer cells (SK-OV-3cis) than ZnCl2 and the QA1-QA3 ligands, with IC50 values of 1.81 ± 0.50, 2.92 ± 0.32, and 1.01 ± 0.11 μM, respectively. Complexation of glycosylated cryptolepine QA3 with zinc(II) increased the antiproliferative activity of the ligand, suggesting that Zn(QA3) could act as a chaperone to deliver the active ligand intracellularly, in contrast with other cryptolepine metal complexes previously reported. In vivo and in vitro investigations suggested that Zn(QA3) exhibited enhanced anticancer activity with treatment effects comparable to those of the clinical drug cisplatin. Furthermore, Zn(QA1)-Zn(QA3) triggered SK-OV-3cis cell apoptosis through mitophagy pathways in the order Zn(QA1) > Zn(QA1) > Zn(QA2). These results demonstrate the potential of glycosylated zinc(II)-cryptolepine complexes for the development of chemotherapy drugs against cisplatin-resistant SK-OV-3cis cells.
Collapse
Affiliation(s)
- Zhen Zhou
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities (Guangxi Minzu University), Nanning, 530006, China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Xiao-Mei Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Li-Gang Zhu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China.
| | - Qiao-Chang Wei
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Hedong Bian
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities (Guangxi Minzu University), Nanning, 530006, China.
| |
Collapse
|
18
|
Agarwal P, Asija S, Deswal Y, Kumar N. Recent advancements in the anticancer potentials of first row transition metal complexes. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Mishra NP, Mohapatra S, Das T, Nayak S. Imidazo[1,2‐a]pyridine as a promising scaffold for the development of antibacterial agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Tapaswini Das
- Department of Chemistry Ravenshaw University Cuttack India
| | - Sabita Nayak
- Department of Chemistry Ravenshaw University Cuttack India
| |
Collapse
|
20
|
Wang ZF, Nong QX, Yu HL, Qin QP, Pan FH, Tan MX, Liang H, Zhang SH. Complexes of Zn(II) with a mixed tryptanthrin derivative and curcumin chelating ligands as new promising anticancer agents. Dalton Trans 2022; 51:5024-5033. [PMID: 35274641 DOI: 10.1039/d1dt04095b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, two novel curcumin (H-Cur)-tryptanthrin metal compounds-[Zn(TA)Cl2], i.e., Zn(TA), and [Zn(TA)(Cur)]Cl, i.e., Zn(TAC)-were synthesized and investigated using 5-(bis-pyridin-2-ylmethyl-amino)-pentanoic acid (6,12-dioxo-6,12-dihydro-indolo[2,1-b]quinazolin-8-yl)-amide (TA) and H-Cur as the targeting and high-activity anticancer chemotherapeutic moieties, respectively. They were then compared with the di-(2-picolyl)amine (PA) Zn(II) complex [Zn(PA)Cl2], i.e., Zn(PA). When compared with Zn(PA) and cisplatin, the IC50 values of Zn(TA) and Zn(TAC) indicated that the compounds had high cytotoxicity against A549/DDP cancer cells, implying that the H-Cur-tryptanthrin Zn(II) compounds have the potential for use as anticancer drugs. We propose the use of synthesized theragnostic H-Cur-tryptanthrin Zn(II) complexes with nuclear-targeting and DNA-damaging capabilities as a simple therapeutic strategy against tumors. The Zn(TA) and Zn(TAC) complexes could be traced via red fluorescence and were found to accumulate in the cell nuclei and induce DNA damage, cell cycle arrest, mitochondrial dysfunction, and cell apoptosis both in vitro and in vivo. In addition, Zn(TAC) exhibited a higher antiproliferative effect on A549/DDP than Zn(TA) and Zn(PA), which was undoubtedly associated with the key roles of the novel tryptanthrin derivative TA and H-Cur in the Zn(TAC) complex.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| | - Qun-Xue Nong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hua-Lian Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China. .,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Feng-Hua Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Ming-Xiong Tan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Shu-Hua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| |
Collapse
|
21
|
Gordon AT, Abosede OO, Ntsimango S, Hosten EC, Myeza N, Eyk AV, Harmse L, Ogunlaja AS. Synthesis and anticancer evaluation of copper(II)- and manganese(II)- theophylline mixed ligand complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Vedeanu NS, Lujerdean C, Zăhan M, Dezmirean DS, Barbu-Tudoran L, Damian G, Ștefan R. Synthesis and Structural Characterization of CaO-P 2O 5-CaF:CuO Glasses with Antitumoral Effect on Skin Cancer Cells. MATERIALS 2022; 15:ma15041526. [PMID: 35208066 PMCID: PMC8874574 DOI: 10.3390/ma15041526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
Copper is one of the most used therapeutic metallic elements in biomedicine, ranging from antibacterial approaches to developing new complexes in cancer therapy. In the present investigation, we developed a novel xCuO∙(100 − x) [CaF2∙3P2O5∙CaO] glass system with 0 ≤ x ≤ 16 mol% in order to determine the influence of doping on the composition structure of glasses. The samples were characterized by dissolution tests, pH measurements, Fourier-transform infrared spectroscopy (FT-IR), electron paramagnetic resonance (EPR), Scanning Electron Microscopy with energy dispersive spectroscopy (SEM-EDX) and afterward, their antitumor character was assessed. The glasses were mostly soluble in the aqueous medium, their dissolution rate being directly proportional to the increase in pH and the level of doping up to x = 8 mol%. FT-IR spectra of glass samples show the presence of all structural units characteristic to P2O5 in different rates and directly depending on the depolymerization process. SEM-EDX results revealed the presence of an amorphous glass structure composed of P, O, Ca, and Cu elements. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay showed strong cytotoxicity for tumoral cells A375 even in low concentrations for Cu-treatment. In contrast, the copper-free matrix (without Cu) determined a proliferative effect of over 70% viability for all concentrations used.
Collapse
Affiliation(s)
- Nicoleta Simona Vedeanu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Cristian Lujerdean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.Z.); (D.S.D.)
- Correspondence: (C.L.); (R.Ș.)
| | - Marius Zăhan
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.Z.); (D.S.D.)
| | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.Z.); (D.S.D.)
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania;
- National Institute for Research and Development of Isotopic and Molecular Technologies of Cluj-Napoca, 400293 Cluj-Napoca, Romania
| | - Grigore Damian
- Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Răzvan Ștefan
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.Z.); (D.S.D.)
- Correspondence: (C.L.); (R.Ș.)
| |
Collapse
|
23
|
Esmaeilzadeh J, Mardani Z, Moeini K, Carpenter-Warren C, Slawin AMZ, Woollins JD. COORDINATION OF AN AMINO ALCOHOLIC SCHIFF BASE LIGAND TOWARD THE ZINC(II) ION: SPECTRAL, STRUCTURAL, THEORETICAL, AND DOCKING STUDIES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476621130023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Nguyen PL, Lee CH, Lee H, Cho J. Induction of Paraptotic Cell Death in Breast Cancer Cells by a Novel Pyrazolo[3,4-h]quinoline Derivative through ROS Production and Endoplasmic Reticulum Stress. Antioxidants (Basel) 2022; 11:antiox11010117. [PMID: 35052621 PMCID: PMC8773266 DOI: 10.3390/antiox11010117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy has been a standard intervention for a variety of cancers to impede tumor growth, mainly by inducing apoptosis. However, development of resistance to this regimen has led to a growing interest and demand for drugs targeting alternative cell death modes, such as paraptosis. Here, we designed and synthesized a novel derivative of a pyrazolo[3,4-h]quinoline scaffold (YRL1091), evaluated its cytotoxic effect, and elucidated the underlying molecular mechanisms of cell death in MDA-MB-231 and MCF-7 breast cancer (BC) cells. We found that YRL1091 induced cytotoxicity in these cells with numerous cytoplasmic vacuoles, one of the distinct characteristics of paraptosis. YRL1091-treated BC cells displayed several other distinguishing features of paraptosis, excluding autophagy or apoptosis. Briefly, YRL1091-induced cell death was associated with upregulation of microtubule-associated protein 1 light chain 3B, downregulation of multifunctional adapter protein Alix, and activation of extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase. Furthermore, the production of reactive oxygen species (ROS) and newly synthesized proteins were also observed, subsequently causing ubiquitinated protein accumulation and endoplasmic reticulum (ER) stress. Collectively, these results indicate that YRL1091 induces paraptosis in BC cells through ROS generation and ER stress. Therefore, YRL1091 can serve as a potential candidate for the development of a novel anticancer drug triggering paraptosis, which may provide benefit for the treatment of cancers resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Phuong Linh Nguyen
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (P.L.N.); (C.H.L.)
| | - Chang Hoon Lee
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (P.L.N.); (C.H.L.)
| | - Heesoon Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Jungsook Cho
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (P.L.N.); (C.H.L.)
- Correspondence:
| |
Collapse
|
25
|
Xi Y, Yan X, Bigdeli F, Zhang Q, Esrafili L, Hanifehpour Y, Zhang W, Hu M, Morsali A. Two new Cu (II) complexes based on 5‐fluorouracil‐1‐yl acetic acid and N‐donor ligands: Investigation of their interaction with DNA and anticancer activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yun‐Hong Xi
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou China
| | - Xin Yan
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou China
| | - Fahime Bigdeli
- Department of Chemistry, Faculty of Sciences Tarbiat Modares University Tehran Iran
| | - Qianwen Zhang
- Department of Dermatology The First Affiliated Hospital of Wenzhou Medical University Wenzhou People's Republic of China
| | - Leili Esrafili
- Department of Chemistry, Faculty of Sciences Tarbiat Modares University Tehran Iran
| | - Younes Hanifehpour
- Faculty of Science, Department of Chemistry Sayyed Jamaleddin Asadabadi University Asadabad Iran
| | - Wei‐Bing Zhang
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou China
| | - Mao‐Lin Hu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou China
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
26
|
Orlova M, Spiridonov V, Orlov A, Zolotova N, Lupatov A, Trofimova T, Kalmykov S, Yaroslavov A. Complexes of сarboxymethylcellulose with Cu2+-ions as a prototype of antitumor agent. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Guk DA, Krasnovskaya OO, Beloglazkina EK. Coordination compounds of biogenic metals as cytotoxic agents in cancer therapy. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review summarizes the data on the structures and methods for the synthesis of compounds with anticancer activity based on biogenic metals, which can replace platinum drugs prevailing in cytotoxic therapy. The main focus is given to the comparison of the mechanisms of the cytotoxic action of these complexes, their efficacy and prospects of their use in clinical practice. This is the first systematic review of cytotoxic zinc, iron, cobalt and copper compounds. The structure – activity relationships and the mechanisms of antitumour action are formulated for each type of metal complexes.
The bibliography includes 181 references.
Collapse
|
28
|
Copper-imidazo[1,2-a]pyridines differentially modulate pro- and anti-apoptotic protein and gene expression in HL-60 and K562 leukaemic cells to cause apoptotic cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119160. [PMID: 34634376 DOI: 10.1016/j.bbamcr.2021.119160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
Despite the availability of a myriad targeted treatments, resistance and treatment failures remains common in cancer treatment. Moreover, the high cost of targeted antibodies excludes a large cohort of patients from their benefits. In this context, copper-imidazo[1,2-a]pyridines were evaluated as alternative drug candidates against two common leukaemias, represented by HL-60 and K562 cells. A previous study identified JD88(21), JD47(29) and JD49(28) to be active against these cell lines with IC50 values between 1.9 and 6 μM and low leukocyte toxicity. To better understand their mechanism of action, their mode of cell death, effects on expression of apoptotic regulatory proteins and their respective genes were investigated. In both cell lines, the copper-imidazo[1,2-a]pyridines, at IC75 concentrations, caused membrane blebbing, raised phosphatidyl-serine levels on cell membranes and increased caspase-3 activity. A loss of mitochondrial membrane potential and activation of caspase-9, combined with poor caspase-8 activity indicated activation of intrinsic apoptosis. Apoptotic proteome analysis showed that the copper-imidazo[1,2-a] pyridines elevated protein levels of pro-apoptotic Bax and Smac/DIABLO in both cell lines, confirming their importance in apoptotic cell death. Conversely, though survivin was increased, this was counteracted by high levels of HTRA2/Omi expression. Effects on apoptotic regulatory proteins Bad, Bcl-2, XIAP and cIAP-1 was inconsistent between the copper-imidazo[1,2-a]pyridines and between the two cell lines, suggesting that the effect of the complexes was modulated by the molecular signature of each cell line. Analysis of mRNA transcripts showed a poor correlation between mRNA levels and associated proteins, implying that copper-imidazo[1,2-a]pyridines compromised protein synthesis and degradation.
Collapse
|
29
|
Sudha D, Vairam S, Sarathbabu S, Senthil Kumar N, Sivasamy R, Jone Kirubavathy S. 2-Methylimidazolium pyridine-2,5-dicarboxylato zinc(II) dihydrate: Synthesis, characterization, DNA interaction, anti-microbial, anti-oxidant and anti-breast cancer studies. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1981302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Sundararajan Vairam
- Department of Chemistry, KPR Institute of Engineering & Technology, Coimbatore, India
| | | | | | - Ramasamy Sivasamy
- Department of Human Genetics & Molecular Biology, Bharathiar University, Coimbatore, India
| | | |
Collapse
|
30
|
Peega T, Magwaza RN, Harmse L, Kotzé IA. Synthesis and evaluation of the anticancer activity of [Pt(diimine)(N,N-dibutyl-N'-acylthiourea)] + complexes. Dalton Trans 2021; 50:11742-11762. [PMID: 34369524 DOI: 10.1039/d1dt01385h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the concerted efforts to develop targeted cancer treatments, these therapies are plagued by the rapid development of resistance and serious adverse drug reactions. Based on the wide clinical use and successes of the platinum drugs like cisplatin and oxaliplatin, we investigated the synthesis and potential anticancer efficacy of alternative platinum complexes. A series of nine cationic square planar platinum(ii) complexes were synthesized and characterized and then evaluated for their anticancer activity. The complexes were of the type [Pt(diimine)(Ln-κO,S)]+ where diimine is either 1,10-phenanthroline (phen), 5,6-dimethyl-1,10-phenanthroline (dmp) or dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) and Ln-κO,S representing various N,N-dibutyl-N'-acylthiourea ligands. The anticancer activity of the synthesised complexes was evaluated against two lung cancer cell lines (A549 and H1975) and a colorectal cancer cell line, HT-29. The 50% inhibitory concentrations (IC50) for the most cytotoxic compounds were determined and the mode of cell death evaluated. The structure-activity relationships indicated that complexes with the 5,6-dimethyl-1,10-phenanthroline variation of the diimine ligand were the most active against the cell lines tested, while the activity of complexes based on the acylthiourea ligand varied between the cell lines. IC50 values for the three active platinum complexes were in the low micromolar range for the three cell lines and ranged between 0.68 μM and 2.28 μM. Changes to cell morphology indicate that the active platinum complexes induce cell death by both apoptosis and paraptosis. The complexes were able to induce the nuclear expression of the cyclin-dependent kinase inhibitor, p21, which is an indicator of DNA damage. The collective data indicate that these platinum complexes are valuable lead compounds for further analysis and cancer drug discovery.
Collapse
Affiliation(s)
- Tebogo Peega
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| | | | | | | |
Collapse
|
31
|
Wu Y, Li L, Wen K, Deng J, Chen J, Shi J, Wu T, Pang J, Tang X. Copper-Catalyzed C-3 Functionalization of Imidazo[1,2- a]pyridines with 3-Indoleacetic Acids. J Org Chem 2021; 86:12394-12402. [PMID: 34387491 DOI: 10.1021/acs.joc.1c01371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper-catalyzed C-3 functionalization of imidazo[1,2-a]pyridines with 3-indoleacetic acids through an aerobic oxidative decarboxylative process has been developed. The protocol provided a series of 3-(1H-indol-3-ylmethyl)-imidazo[1,2-a]pyridines in moderate to good yields under simple reaction conditions. Importantly, some products exhibited potent antiproliferative activity in cancer cell lines.
Collapse
Affiliation(s)
- Yinrong Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Lu Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jie Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jiewen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| |
Collapse
|
32
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Yu Y, Li Y, Yang X, Deng Q, Xu B, Cao H, Mao J. A Novel Imidazo[1,2-a]pyridine Compound Reduces Cell Viability and Induces Apoptosis of HeLa Cells by p53/Bax-Mediated Activation of Mitochondrial Pathway. Anticancer Agents Med Chem 2021; 22:1102-1110. [PMID: 34353269 DOI: 10.2174/1871520621666210805130925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Despite emerging research on new treatment strategies, chemotherapy remains one of the most important therapeutic modalities for cancers. Imidazopyridines are important targets in organic chemistry and are worthy of attention given their numerous applications. OBJECTIVE To design and synthesize a novel series of imidazo[1,2-a]pyridine-derived compounds and investigate their antitumor effects and the underlying mechanisms. METHODS Imidazo[1,2-a]pyridine-derived compounds were synthesized with new strategies and conventional methods. The antitumor activities of the new compounds were evaluated by MTT assay. Flow cytometry and immunofluorescence were performed to examine the effects of the most effective antiproliferative compound on cell apoptosis. Western blot analysis was used to assess the expression of apoptotic proteins. RESULTS Fifty-two new imidazo[1,2-a]pyridine compounds were designed and successfully synthesized. The compound, 1-(imidazo[1,2-a]pyridin-3-yl)-2-(naphthalen-2-yl)ethane-1,2-dione, named La23, showed high potential for suppressing the viability of HeLa cells (IC50 15.32 μM). La23 inhibited cell proliferation by inducing cell apoptosis, and it reduced the mitochondrial membrane potential of HeLa cells. Moreover, treatment with La23 appeared to increase the expression of apoptotic-related protein P53, Bax, cleaved caspase-3, and cytochrome c at a low concentration range. CONCLUSION The novel imidazo[1,2-a]pyridine compound, La23, was synthesized and suppressed cell growth by inducing cell apoptosis via the p53/Bax mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Yang Yu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006. China
| | - Yanwen Li
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006. China
| | - Xinjie Yang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006. China
| | - Qiuyi Deng
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006. China
| | - Bin Xu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458. China
| | - Jianwen Mao
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006. China
| |
Collapse
|
34
|
Saghatforoush L, Hosseinpour S, Moeini K, Mardani Z, Bezpalko MW, Scott Kassel W. INVESTIGATION OF THE BINDING ABILITY
OF A NEW THIOSEMICARBAZONE-BASED LIGAND
AND ITS Zn(II) COMPLEX TOWARD PROTEINS AND DNA: SPECTRAL, STRUCTURAL, THEORETICAL, AND DOCKING STUDIES. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621050115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Samuel M, Raman N. Comprehensive biological evaluation (DNA-binding, cleavage, and antimicrobial activity) of β-diketimine Schiff base ligands and their Cu(II) and Zn(II) complexes. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1931848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- M. Samuel
- Research Department of Chemistry, VHNSN College, Virudhunagar, India
| | - N. Raman
- Research Department of Chemistry, VHNSN College, Virudhunagar, India
| |
Collapse
|
36
|
Copper(II) Complexes with Tetradentate Piperazine-Based Ligands: DNA Cleavage and Cytotoxicity. INORGANICS 2021. [DOI: 10.3390/inorganics9020012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Five-coordinate Cu(II) complexes, [Cu(Ln)X]ClO4/PF6, where Ln = piperazine ligands bearing two pyridyl arms and X = ClO4− for Ln = L1 (1-ClO4), L2 (2-ClO4), L3 (3-ClO4), and L6 (6-ClO4) as well as [Cu(Ln)Cl]PF6 for Ln = L1 (1-Cl), L4 (4-Cl), and L5 (5-Cl) have been synthesized and characterized by spectroscopic techniques. The molecular structures of the last two complexes were determined by X-ray crystallography. In aqueous acetonitrile solutions, molar conductivity measurements and UV-VIS spectrophotometric titrations of the complexes revealed the hydrolysis of the complexes to [Cu(Ln)(H2O)]2+ species. The biological activity of the Cu(II) complexes with respect to DNA cleavage and cytotoxicity was investigated. At micromolar concentration within 2 h and pH 7.4, DNA cleavage rate decreased in the order: 1-Cl ≈ 1-ClO4 > 3-ClO4 ≥ 2-ClO4 with cleavage enhancements of up to 23 million. Complexes 4-Cl, 5-Cl, and 6-ClO4 were inactive. In order to elucidate the cleavage mechanism, the cleavage of bis(4-nitrophenyl)phosphate (BNPP) and reactive oxygen species (ROS) quenching studies were conducted. The mechanistic pathway of DNA cleavage depends on the ligand’s skeleton: while an oxidative pathway was preferable for 1-Cl/1-ClO4, DNA cleavage by 2-ClO4 and 3-ClO4 predominantly proceeds via a hydrolytic mechanism. Complexes 1-ClO4, 3-ClO4, and 5-Cl were found to be cytotoxic against A2780 cells (IC50 30–40 µM). In fibroblasts, the IC50 value was much higher for 3-ClO4 with no toxic effect.
Collapse
|
37
|
Akao Y, Canan S, Cao Y, Condroski K, Engkvist O, Itono S, Kaki R, Kimura C, Kogej T, Nagaoka K, Naito A, Nakai H, Pairaudeau G, Radu C, Roberts I, Shimada M, Shum D, Watanabe NA, Xie H, Yonezawa S, Yoshida O, Yoshida R, Mowbray C, Perry B. Collaborative virtual screening to elaborate an imidazo[1,2- a]pyridine hit series for visceral leishmaniasis. RSC Med Chem 2021; 12:384-393. [PMID: 34041487 PMCID: PMC8130605 DOI: 10.1039/d0md00353k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
An innovative pre-competitive virtual screening collaboration was engaged to validate and subsequently explore an imidazo[1,2-a]pyridine screening hit for visceral leishmaniasis. In silico probing of five proprietary pharmaceutical company libraries enabled rapid expansion of the hit chemotype, alleviating initial concerns about the core chemical structure while simultaneously improving antiparasitic activity and selectivity index relative to the background cell line. Subsequent hit optimization informed by the structure–activity relationship enabled by this virtual screening allowed thorough investigation of the pharmacophore, opening avenues for further improvement and optimization of the chemical series. Ligand-based similarity screening of proprietary pharmaceutical company libraries enables rapid hit to lead investigation of a chemotype with anti-leishmania activity.![]()
Collapse
Affiliation(s)
- Yuichiro Akao
- Takeda Pharmaceutical Company Limited 26-1 Muraoka-Higashi 2-chrome Fujisawa Kanagawa 251-8555 Japan
| | - Stacie Canan
- Celgene Corporation, Celgene Global Health 10300 Campus Point Drive San Diego California 92121 USA
| | - Yafeng Cao
- WuXi AppTec Company Ltd. 666 Gaoxin Road, East Lake High-Tech Development Zone Wuhan 430075 People's Republic of China
| | - Kevin Condroski
- Celgene Corporation, Celgene Global Health 10300 Campus Point Drive San Diego California 92121 USA
| | - Ola Engkvist
- AstraZeneca Discovery Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Sachiko Itono
- Takeda Pharmaceutical Company Limited 26-1 Muraoka-Higashi 2-chrome Fujisawa Kanagawa 251-8555 Japan
| | - Rina Kaki
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Chiaki Kimura
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Thierry Kogej
- AstraZeneca Discovery Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Kazuya Nagaoka
- Eisai Co., Ltd 1-3,Tokodai 5-chome Tsukuba Ibaraki 300-2635 Japan
| | - Akira Naito
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Hiromi Nakai
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | | | - Constantin Radu
- Institut Pasteur Korea 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu Seongnam-si Gyeonggi-do 13488 Republic of Korea
| | - Ieuan Roberts
- AstraZeneca, Discovery Sciences, R&D AstraZeneca Cambridge UK
| | - Mitsuyuki Shimada
- Takeda Pharmaceutical Company Limited 26-1 Muraoka-Higashi 2-chrome Fujisawa Kanagawa 251-8555 Japan
| | - David Shum
- Institut Pasteur Korea 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu Seongnam-si Gyeonggi-do 13488 Republic of Korea
| | - Nao-Aki Watanabe
- Eisai Co., Ltd 1-3,Tokodai 5-chome Tsukuba Ibaraki 300-2635 Japan
| | - Huanxu Xie
- WuXi AppTec Company Ltd. 666 Gaoxin Road, East Lake High-Tech Development Zone Wuhan 430075 People's Republic of China
| | - Shuji Yonezawa
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Osamu Yoshida
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Ryu Yoshida
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Charles Mowbray
- Drugs for Neglected Diseases initiative 15 Chemin Louis Dunant Geneva 1202 Switzerland
| | - Benjamin Perry
- Drugs for Neglected Diseases initiative 15 Chemin Louis Dunant Geneva 1202 Switzerland
| |
Collapse
|
38
|
Porchia M, Pellei M, Del Bello F, Santini C. Zinc Complexes with Nitrogen Donor Ligands as Anticancer Agents. Molecules 2020; 25:E5814. [PMID: 33317158 PMCID: PMC7763991 DOI: 10.3390/molecules25245814] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
The search for anticancer metal-based drugs alternative to platinum derivatives could not exclude zinc derivatives due to the importance of this metal for the correct functioning of the human body. Zinc, the second most abundant trace element in the human body, is one of the most important micro-elements essential for human physiology. Its ubiquity in thousands of proteins and enzymes is related to its chemical features, in particular its lack of redox activity and its ability to support different coordination geometries and to promote fast ligands exchange. Analogously to other trace elements, the impairment of its homeostasis can lead to various diseases and in some cases can be also related to cancer development. However, in addition to its physiological role, zinc can have beneficial therapeutic and preventive effects on infectious diseases and, compared to other metal-based drugs, Zn(II) complexes generally exert lower toxicity and offer few side effects. Zinc derivatives have been proposed as antitumor agents and, among the great number of zinc coordination complexes which have been described so far, this review focuses on the design, synthesis and biological studies of zinc complexes comprising N-donor ligands and that have been reported within the last five years.
Collapse
Affiliation(s)
| | - Maura Pellei
- Chemistry Division, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy;
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy;
| | - Carlo Santini
- Chemistry Division, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy;
| |
Collapse
|
39
|
|
40
|
Caymaz B, Yıldız U, Akkoç S, Gerçek Z, Şengül A, Coban B. Synthesis, Characterization, and Antiproliferative Activity Studies of Novel Benzimidazole‐Imidazopyridine Hybrids as DNA Groove Binders. ChemistrySelect 2020. [DOI: 10.1002/slct.202001580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bahar Caymaz
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Ufuk Yıldız
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Senem Akkoç
- Department of Basic Pharmaceutical SciencesFaculty of PharmacySüleyman Demirel University Isparta 32260 Turkey
| | - Zuhal Gerçek
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Abdurrahman Şengül
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Burak Coban
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| |
Collapse
|
41
|
Copper-imidazo[1,2-a]pyridines induce intrinsic apoptosis and modulate the expression of mutated p53, haem-oxygenase-1 and apoptotic inhibitory proteins in HT-29 colorectal cancer cells. Apoptosis 2020; 24:623-643. [PMID: 31073781 DOI: 10.1007/s10495-019-01547-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metastatic colorectal cancer responds poorly to treatment and is a leading cause of cancer related deaths. Worldwide, chemotherapy of metastatic colorectal cancer remains plagued by poor efficacy, development of resistance and serious adverse effects. Copper-imidazo[1,2-a]pyridines were previously shown by our group to be selectively active against several cancer cell lines, with three complexes, JD46(27), JD47(29), and JD88(21), showing IC50 values between 0.8 and 1.8 μM against HT-29 cells. Here, we report that treatment with the copper complexes resulted in fragmented nuclei suggestive of apoptotic cell death, which was confirmed by increased annexin V binding and caspase-3/7 activity. The copper complexes caused a loss of mitochondrial membrane potential and increased caspase-9 activity. The absence of caspase-8 activity indicated activation of the intrinsic pathway. Proteomic analysis revealed that copper-imidazo[1,2-a]pyridines decreased the expression of phosphorylated forms of p53 [phospho-p53(S15), phospho-p53(S46) and phospho-p53(S392)]. The expression of inhibitor of apoptosis proteins, XIAP, cIAP1, livin, and the antiapoptotic proteins, Bcl-2 and Bcl-x, was decreased. HO/HMOX/HSP32, expression was notably increased, which suggested the accumulation of reactive oxygen species. Increased expression of TRAIL-R2/DR5 death receptor indicated the possible dual activation of both the extrinsic and intrinsic apoptotic pathways; however, caspase-8 activation could not be demonstrated. In conclusion, the copper-imidazo[1,2-a]pyridines were effective inducers of apoptotic cell death at low micromolar concentrations and changed the expression levels of proteins important for cell survival and cell death. These copper complexes may be useful tools to better understand the complexity of signalling networks in cancer cell death in response to cell stress.
Collapse
|
42
|
Ajibade PA, Fatokun AA, Andrew FP. Synthesis, characterization and anti-cancer studies of Mn(II), Cu(II), Zn(II) and Pt(II) dithiocarbamate complexes - crystal structures of the Cu(II) and Pt(II) complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119431] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Boltjes A, Dömling A. The Groebke-Blackburn-Bienaymé Reaction. EUROPEAN JOURNAL OF CHEMISTRY (PRINT) 2019; 2019:7007-7049. [PMID: 34012704 PMCID: PMC8130801 DOI: 10.1002/ejoc.201901124] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Imidazo[1,2-a]pyridine is a well-known scaffold in many marketed drugs, such as Zolpidem, Minodronic acid, Miroprofen and DS-1 and it also serves as a broadly applied pharmacophore in drug discovery. The scaffold revoked a wave of interest when Groebke, Blackburn and Bienaymé reported independently a new three component reaction resulting in compounds with the imidazo[1,2-a]-heterocycles as a core structure. During the course of two decades the Groebke Blackburn Bienaymé (GBB-3CR) reaction has emerged as a very important multicomponent reaction (MCR), resulting in over a hundred patents and a great number of publications in various fields of interest. Now two compounds derived from GBB-3CR chemistry received FDA approval. To celebrate the first 20 years of GBB-chemistry, we present an overview of the chemistry of the GBB-3CR, including an analysis of each of the three starting material classes, solvents and catalysts. Additionally, a list of patents and their applications and a more in-depth summary of the biological targets that were addressed, including structural biology analysis, is given.
Collapse
Affiliation(s)
- André Boltjes
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, The Netherlands
| |
Collapse
|
44
|
Effective anticancer activities of an acyclic symmetrical compartmental Schiff base ligand and its Co(II), Cu(II) and Zn(II) complexes against the human leukemia cell line K562. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Li S, Li G, Zhang T, Li J, Zhao Q, Zhang B, Wang R, Zhou R, Si J, Gan L, Liu Y, Zhang H, Liu B. Co-SLD suppressed the growth of oral squamous cell carcinoma via disrupting mitochondrial function. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1746-1757. [PMID: 31062618 DOI: 10.1080/21691401.2019.1608218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sirui Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Guo Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Taofeng Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Jili Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Quanyi Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Baoping Zhang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Rui Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Bin Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
46
|
He QX, Liang YF, Xu C, Yao XK, Cao H, Yao HG. Highly Regioselective, Acid-Catalyzed, Three-Component Cascade Reaction for the Synthesis of 2-aminopyridine-Decorated Imidazo[1,2- a]pyridine. ACS COMBINATORIAL SCIENCE 2019; 21:149-153. [PMID: 30653293 DOI: 10.1021/acscombsci.8b00149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A highly regioselective acid-catalyzed three-component reaction of 2-aminopyridine and 3-phenylpropiolaldehyde for the construction of imidazo[1,2- a]pyridine has been developed. This strategy provides a broad range of substrates and represents an efficient approach to give various 2-aminopyridine-decorated imidazo[1,2- a]pyridine in good yields.
Collapse
Affiliation(s)
- Qiu-Xing He
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yao-Feng Liang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Chang Xu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Xiao-Kun Yao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Hua-Gang Yao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
47
|
Nandanwar SK, Kim HJ. Anticancer and Antibacterial Activity of Transition Metal Complexes. ChemistrySelect 2019. [DOI: 10.1002/slct.201803073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sondavid K. Nandanwar
- Department of Marine Convergence ProgramPukyong National University Busan 48513 Republic of Korea
| | - Hak Jun Kim
- Department of ChemistryPukyong National University Busan 48513 Republic of Korea
| |
Collapse
|
48
|
One-dimensional coordination polymers based on a new 3-position substituted imidazo[1,2-a]pyridine ligand: Crystal structures, photoluminescent and magnetic properties. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.10.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Liu Y, Lu L, Zhou H, Xu F, Ma C, Huang Z, Xu J, Xu S. Chemodivergent synthesis of N-(pyridin-2-yl)amides and 3-bromoimidazo[1,2-a]pyridines from α-bromoketones and 2-aminopyridines. RSC Adv 2019; 9:34671-34676. [PMID: 35529989 PMCID: PMC9073897 DOI: 10.1039/c9ra06724h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022] Open
Abstract
N-(Pyridin-2-yl)amides and 3-bromoimidazo[1,2-a]pyridines were synthesized respectively from α-bromoketones and 2-aminopyridine under different reaction conditions.
Collapse
Affiliation(s)
- Yanpeng Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Department of Chemistry
| | - Lixue Lu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Haipin Zhou
- College of Materials & Chemical Engineering
- Chuzhou University
- Chuzhou 239000
- China
| | - Feijie Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
50
|
Ribeiro N, Galvão AM, Gomes CSB, Ramos H, Pinheiro R, Saraiva L, Ntungwe E, Isca V, Rijo P, Cavaco I, Ramilo-Gomes F, Guedes RC, Pessoa JC, Correia I. Naphthoylhydrazones: coordination to metal ions and biological screening. NEW J CHEM 2019. [DOI: 10.1039/c9nj01816f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
VIVO, CuII and ZnII complexes from three new naphthoylhydrazones were screened towards their ability to bind albumin and their cytotoxicity.
Collapse
|