1
|
de Oliveira Viana J, Sena Mendes M, Santos Castilho M, Olímpio de Moura R, Guimarães Barbosa E. Spiro-Acridine Compound as a Pteridine Reductase 1 Inhibitor: in silico Target Fishing and in vitro Studies. ChemMedChem 2024; 19:e202300545. [PMID: 38445815 DOI: 10.1002/cmdc.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Among the many neglected tropical diseases, leishmaniasis ranks second in mortality rate and prevalence. In a previous study, acridine derivatives were synthesized and tested for their antileishmanial activity against L. chagasi. The most active compound identified in that study (1) showed a single digit IC50 value against the parasite (1.10 μg/mL), but its macromolecular target remained unknown. Aiming to overcome this limitation, this work exploited inverse virtual screening to identify compound 1's putative molecular mechanism of action. In vitro assays confirmed that compound 1 binds to Leishmania chagasi pteridine reductase 1 (LcPTR1), with moderate affinity (Kd=33,1 μM), according to differential scanning fluorimetry assay. Molecular dynamics simulations confirm the stability of LcPTR1-compound 1 complex, supporting a competitive mechanism of action. Therefore, the workflow presented in this work successfully identified PTR1 as a macromolecular target for compound 1, allowing the designing of novel potent antileishmanial compounds.
Collapse
Affiliation(s)
- Jéssika de Oliveira Viana
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, University Campus I-Lagoa Nova, Natal, RN, 59078-970
| | - Marina Sena Mendes
- Department of Pharmacy, Federal University of Bahia, University Campus Ondina - Ondina, Salvador, BA, 40170-110
| | - Marcelo Santos Castilho
- Department of Pharmacy, Federal University of Bahia, University Campus Ondina - Ondina, Salvador, BA, 40170-110
| | - Ricardo Olímpio de Moura
- Department of Pharmacy, State University of Paraíba, University Campus I - Universitário, Campina, Grande - PB, 58429-500
| | - Euzébio Guimarães Barbosa
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, University Campus I-Lagoa Nova, Natal, RN, 59078-970
- Department of Pharmacy, Federal University of Rio Grande do Norte, University Campus I - Petrópolis, Natal, RN, 59012-570
| |
Collapse
|
2
|
Ciccone V, Diotallevi A, Gómez-Benmansour M, Maestrini S, Mantellini F, Mari G, Galluzzi L, Lucarini S, Favi G. Easy one-pot synthesis of multifunctionalized indole-pyrrole hybrids as a new class of antileishmanial agents. RSC Adv 2024; 14:15713-15720. [PMID: 38746834 PMCID: PMC11092366 DOI: 10.1039/d4ra02790f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 01/06/2025] Open
Abstract
A chemoselective one-pot synthesis of pharmaceutically prospective indole-pyrrole hybrids by the formal [3 + 2] cycloaddition of 3-cyanoacetyl indoles (CAIs) with 1,2-diaza-1,3-dienes (DDs) has been developed. The new indole-pyrrole hybrids were phenotypically screened for efficacy against Leishmania infantum promastigotes. The most active compounds 3c, 3d, and 3j showed IC50 < 20 μM and moderate cytotoxicity, lower than miltefosine. Compound 3d was the most active with IC50 = 9.6 μM and a selectivity index of 5. Consequently, 3d could be a new lead compound for the generation of a new class of antileishmanial hybrids.
Collapse
Affiliation(s)
- Vittorio Ciccone
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Miriam Gómez-Benmansour
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Sara Maestrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Fabio Mantellini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Giacomo Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Gianfranco Favi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| |
Collapse
|
3
|
Juszczak K, Szczepankiewicz W, Walczak K. Synthesis and Primary Activity Assay of Novel Benitrobenrazide and Benserazide Derivatives. Molecules 2024; 29:629. [PMID: 38338374 PMCID: PMC10856005 DOI: 10.3390/molecules29030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Schiff bases attract research interest due to their applications in chemical synthesis and medicinal chemistry. In recent years, benitrobenrazide and benserazide containing imine moiety have been synthesized and characterized as promising inhibitors of hexokinase 2 (HK2), an enzyme overexpressed in most cancer cells. Benserazide and benitrobenrazide possess a common structural fragment, a 2,3,4-trihydroxybenzaldehyde moiety connected through a hydrazone or hydrazine linker acylated on an N' nitrogen atom by serine or a 4-nitrobenzoic acid fragment. To avoid the presence of a toxicophoric nitro group in the benitrobenrazide molecule, we introduced common pharmacophores such as 4-fluorophenyl or 4-aminophenyl substituents. Modification of benserazide requires the introduction of other endogenous amino acids instead of serine. Herein, we report the synthesis of benitrobenrazide and benserazide analogues and preliminary results of inhibitory activity against HK2 evoked by these structural changes. The derivatives contain a fluorine atom or amino group instead of a nitro group in BNB and exhibit the most potent inhibitory effects against HK2 at a concentration of 1 µM, with HK2 inhibition rates of 60% and 54%, respectively.
Collapse
Affiliation(s)
| | | | - Krzysztof Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (K.J.); (W.S.)
| |
Collapse
|
4
|
Lachhab S, El Mansouri AE, Mehdi A, Dennemont I, Neyts J, Jochmans D, Andrei G, Snoeck R, Sanghvi YS, Ait Ali M, Loiseau PM, Lazrek HB. Synthesis of new 3-acetyl-1,3,4-oxadiazolines combined with pyrimidines as antileishmanial and antiviral agents. Mol Divers 2023; 27:2147-2159. [PMID: 36251201 PMCID: PMC9573813 DOI: 10.1007/s11030-022-10548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022]
Abstract
A new series of 3-acetyl-1,3,4-oxadiazoline hybrid molecules was designed and synthesized using a condensation between acyclonucleosides and substituted phenylhydrazone. All intermediates and final products were screened against Leishmania donovani, a Protozoan parasite and against three viruses SARS-CoV-2, HCMV and VZV. While no significant activity was observed against the viruses, the intermediate with 6-azatymine as thymine and 5-azathymine-3-acetyl-1,3,4-oxadiazoline hybrid exhibited a significant antileishmanial activity. The later compound was the most promising, exhibiting an IC50 value at 8.98 µM on L. donovani intramacrophage amastigotes and a moderate selectivity index value at 2.4.
Collapse
Affiliation(s)
- Saida Lachhab
- Laboratory of Biomolecular and Medicinal Chemistry, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco
| | - Az-Eddine El Mansouri
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Ahmad Mehdi
- ICGM, Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Indira Dennemont
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, Chatenay-Malabry, 92290, Paris, France
| | - Johan Neyts
- Rega Institute for Medical Research, KULeuven, Louvain, Belgium
| | - Dirk Jochmans
- Rega Institute for Medical Research, KULeuven, Louvain, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KULeuven, Louvain, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KULeuven, Louvain, Belgium
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, CA, 92024-6615, USA
| | - Mustapha Ait Ali
- Laboratory of Biomolecular and Medicinal Chemistry, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco
| | - Philippe M Loiseau
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, Chatenay-Malabry, 92290, Paris, France
| | - Hassan B Lazrek
- Laboratory of Biomolecular and Medicinal Chemistry, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco.
| |
Collapse
|
5
|
Wang M, Li L, Yang S, Guo F, Zhu G, Zhu B, Chang J. Synthesis of novel oxazol-5-one derivatives containing chiral trifluoromethyl and isoxazole moieties as potent antitumor agents and the mechanism investigation. Bioorg Chem 2023; 135:106505. [PMID: 37027950 DOI: 10.1016/j.bioorg.2023.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
In this study, a series of novel oxazol-5-one derivatives containing a chiral trifluoromethyl and isoxazole moiety were synthesized and evaluated for cytotoxic activities. Among them, 5t was the most effective compound against HepG2 liver cancer cells with an IC50 of 1.8 μM. 5t inhibited cell proliferation, migration, invasion, and induced cell cycle arrest and apoptosis in vitro. Nevertheless, the potential anti-hepatocellular carcinoma (HCC) target and mechanism of 5t were unclear. This work aimed to seek the molecular target of 5t against HCC and investigate its mechanism. Liquid chromatography tandem-mass spectrometry was used to identify peroxiredoxin 1(PRDX1) as a possible target of 5t. Cellular thermal shift assay, drug affinity responsive target stability, and molecular docking provided conclusive evidence that 5t targeted PRDX1 and inhibited its enzymatic activity. 5t augmented the level of reactive oxygen species (ROS) and led to ROS-dependent DNA damage, endoplasmic reticulum stress, mitochondrial dysfunction, and apoptosis in HepG2 cells. Silencing PRDX1 also resulted in ROS-mediated apoptosis in HepG2 cells. In vivo, 5t inhibited mouse tumor growth by increasing oxidative stress. Briefly, our studies revealed that compound 5t targeted PRDX1 through a ROS-dependent mechanism, highlighting the future development of compound 5t as a novel therapeutic drug for HCC.
Collapse
Affiliation(s)
- Mengqi Wang
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Luyao Li
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China; College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Shuping Yang
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fangyuan Guo
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gongming Zhu
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Bo Zhu
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Junbiao Chang
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
6
|
Hussain R, Rehman W, Rahim F, Khan S, Alanazi AS, Alanazi MM, Rasheed L, Khan Y, Adnan. Ali. Shah S, Taha M. Synthesis, In Vitro Thymidine Phosphorylase Inhibitory Activity and Molecular Docking Study of Novel Pyridine-derived Bis-Oxadiazole Bearing Bis-Schiff Base Derivatives. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
7
|
Hierarchical Clustering and Target-Independent QSAR for Antileishmanial Oxazole and Oxadiazole Derivatives. Int J Mol Sci 2022; 23:ijms23168898. [PMID: 36012163 PMCID: PMC9408707 DOI: 10.3390/ijms23168898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease that kills more than 20,000 people each year. The chemotherapy available for the treatment of the disease is limited, and novel approaches to discover novel drugs are urgently needed. Herein, 2D- and 4D-quantitative structure–activity relationship (QSAR) models were developed for a series of oxazole and oxadiazole derivatives that are active against Leishmania infantum, the causative agent of visceral leishmaniasis. A clustering strategy based on structural similarity was applied with molecular fingerprints to divide the complete set of compounds into two groups. Hierarchical clustering was followed by the development of 2D- (R2 = 0.90, R2pred = 0.82) and 4D-QSAR models (R2 = 0.80, R2pred = 0.64), which showed improved statistical robustness and predictive ability.
Collapse
|
8
|
Dashti M, Nikpassand M, Mokhtary M, Zare Fekri L. Fe 3O 4@SP@Chitosan@Fe 3O 4 Nanocomposite: A Catalyst with Double Magnetite Parts for Sustainable Synthesis of Novel Azo-Linked 4-Benzylidene-2-Phenyloxazol-5-Ones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2097714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mohammad Dashti
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Masoud Mokhtary
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Leila Zare Fekri
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
9
|
Dashti M, Nikpassand M, Mokhtary M, Fekri LZ. Sustainable Synthesis of Azo-Linked 4-Arylidene-2-Aryloxazolones Using Fe3O4@SiPr@vanillin@TGA Nanocomposite. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Shah S, Khan M, Ali M, Wadood A, Ur Rehman A, Shah Z, Yousaf M, Salar U, Khan KM. Bis-1,3,4-Oxadiazole Derivatives as Novel and Potential Urease Inhibitors; Synthesis, In Vitro, and In Silico Studies. Med Chem 2022; 18:820-830. [PMID: 35232342 DOI: 10.2174/1573406418666220301161934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
AIMS Synthesis of bis-1,3,4-oxadiazole derivatives as novel and potential urease inhibitors. BACKGROUND Despite many important biological activities associated with oxadiazoles, they are still neglected by medicinal chemists for their possible urease inhibitory activity. Keeping in view the countless importance of urease inhibitors, we have synthesized a new library of substituted bis-oxadiazole derivatives (1-21) to evaluate their urease inhibitory potential. OBJECTIVE Synthesis of substituted bis-oxadiazole derivatives (1-21) to evaluate their urease inhibitory potential. METHOD Bis-1,3,4-oxadiazole derivatives 1-21 were synthesized through sequential reactions using starting material isophthalic acid. Esterification reaction was done by refluxing in methanol for 2 h in the presence of the catalytic amount of concentrated H2SO4 till dissolution. In the second step, dimethyl isophthalate and hydrazine hydrate in excess (1:5) were refluxed in methanol to afford isophthalic dihydrazide. Then, isophthalic dihydrazide was treated with different substituted benzaldehydes in a 1:2 ratio under acidic conditions Result: In vitro urease, the inhibitory activity of the synthesized compounds were evaluated and results demonstrated good activities with IC50 values in the range of 13.46 ± 0.34 to 74.45 ± 3.81 µM as compared to the standard thiourea (IC50 = 21.13 ± 0.415 µM). Most of the compounds were found to be more potent than the standard. The structure-activity relationship (SAR) suggested that the variations in the inhibitory activities of the compounds were due to different substitutions. Furthermore; in silico study was also performed. CONCLUSION Current study identified a new class of urease inhibitors. All synthetic compounds 1-21 showed potent as well as good to moderate urease inhibitory activities except 3. SAR suggested that hydroxy-bearing analogs were identified exceptionally good. Molecular docking revealed many important interactions made by compounds with the active site of the urease enzyme.
Collapse
Affiliation(s)
- Sana Shah
- Department of Chemistry, Abdul Wali Khan University, Mardan-23200, Khyber Pakhtunkhwa, Pakistan
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan-23200, Khyber Pakhtunkhwa, Pakistan
| | - Mahboob Ali
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wadood
- School of Biological Sciences, University of California, Irvine, CA 92697-3900, U.S.A
| | - Ashfaq Ur Rehman
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Pakistan
| | - Zarbad Shah
- Department of Chemistry, Abdul Wali Khan University, Mardan-23200, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Yousaf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| |
Collapse
|
11
|
Pinheiro CVG, da Silva WMB, Rodrigues JPV, Rocha YM, Teixeira MJ, de Oliveira RN, de Souza NV, Nicolete R. Anti-Leishmania infantum in vitro effect of n-cyclohexyl-1,2,4-oxadiazole and its ADME/TOX parameters. J Parasit Dis 2021; 46:317-322. [DOI: 10.1007/s12639-021-01455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022] Open
|
12
|
Mahender T, Pankaj W, Kumar SP, Ankur V, Kumar SS. Some Scaffolds as Anti-leishmanial Agents: An Review. Mini Rev Med Chem 2021; 22:743-757. [PMID: 34517799 DOI: 10.2174/1389557521666210913115116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/03/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Leishmaniasis is a parasitic infectious neglected tropical disease transmitted to humans by the parasites of Leishmania species. Mainly three types of leishmaniasis cases such as visceral (VL), cutaneous (CL) and mucocutaneous leishmaniasis are usually observed. In many western countries, almost 700,000 to 1million peoples are suffering from leishmaniasis and it is estimated that around 26000 to 65000 deaths occurs annually. For its treatment few drugs are available however none of them are ideal to treat leishmaniasis due to long treatment, discomfort mode of administration, risk of high level toxicity, high resistance against etc. Hence so many patients are unable to take complete treatment due to the high drug resistance. The present review will focus on antileishmanial activity of reported derivatives of betacarboline, chalcone, azole, quinoline, quinazoline, benzimidazole, benzadiazapine, thiaazoles, semicarbazone and hydontoin analogues. We believe that this present study will helpful to researcher to design new antileishmanial agents.
Collapse
Affiliation(s)
- Thatikayala Mahender
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401. India
| | - Wadhwa Pankaj
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401. India
| | - Singh Pankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037. India
| | - Vaidya Ankur
- Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences, Saifai, Etawah (U.P.). India
| | - Sahu Sanjeev Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401. India
| |
Collapse
|
13
|
Kourbeli V, Chontzopoulou E, Moschovou K, Pavlos D, Mavromoustakos T, Papanastasiou IP. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021; 26:molecules26154629. [PMID: 34361781 PMCID: PMC8348971 DOI: 10.3390/molecules26154629] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled "Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology".
Collapse
Affiliation(s)
- Violeta Kourbeli
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
| | - Eleni Chontzopoulou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Kalliopi Moschovou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Dimitrios Pavlos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Thomas Mavromoustakos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Ioannis P. Papanastasiou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
- Correspondence:
| |
Collapse
|
14
|
Glomb T, Świątek P. Antimicrobial Activity of 1,3,4-Oxadiazole Derivatives. Int J Mol Sci 2021; 22:6979. [PMID: 34209520 PMCID: PMC8268636 DOI: 10.3390/ijms22136979] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
The worldwide development of antimicrobial resistance forces scientists to search for new compounds to which microbes would be sensitive. Many new structures contain the 1,3,4-oxadiazole ring, which have shown various antimicrobial activity, e.g., antibacterial, antitubercular, antifungal, antiprotozoal and antiviral. In many publications, the activity of new compounds exceeds the activity of already known antibiotics and other antimicrobial agents, so their potential as new drugs is very promising. The review of active antimicrobial 1,3,4-oxadiazole derivatives is based on the literature from 2015 to 2021.
Collapse
Affiliation(s)
| | - Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
15
|
Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors. Bioorg Chem 2021; 114:105046. [PMID: 34126575 DOI: 10.1016/j.bioorg.2021.105046] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND A hybrid molecule of different biologically active substances can improve affinity and efficiency compared to a standard drug. Hence based on this fact, we predict that a combination of fluorine, oxadiazole, sulfur, etc., may enhance α-glucosidase inhibition activity compared to a standard drug. METHODS A series of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives (2a-2i) were synthesized and characterized using spectroscopic techniques such as 1HNMR and LC-MS. In order to evaluate its bioactivity, in vitro α-amylase and α-glycosidase inhibitory activity were performed. In vivo study was carried using a genetic model, Drosophila melanogaster, for assessing the antihyperglycemic effects. RESULTS The compounds 2a-2i demonstrated α-amylase inhibitory activity in the range of IC50 = 40.00-80.00 μg/ml as compare to standard acarbose (IC50 = 34.71 μg/ml). Compounds 2a-2i demonstrated α-glucosidase inhibitory activity in the range of IC50 = 46.01-81.65 μg/ml as compared to standard acarbose (IC50 = 34.72 μg/ml). Docking studies on a target protein, N-terminal subunit of human Maltase-glucoamylase (PDB:2QMJ) was carried and the compounds were found to dock into the active site of the enzyme (Fig. 1). The predicted binding energies of the compounds were calculated. The in vitro studies indicate that compounds 2b and 2g had better activity among the synthesized compounds. Whereas in vivo study indicates that 2b, 2g, and 2i could lower glucose levels in the Drosophila, but then 17-30% reduced capacity than acarbose and may be overcome by adjusting their dosage. CONCLUSIONS The in vitro and in vivo studies indicate that compounds 2b and 2g had better activity among the synthesized compounds. This study has recognized that compounds like 2b, 2g, and 2i may be considered potential candidates for further developing a novel class of antidiabetic agents.
Collapse
|
16
|
Boniface PK, Sano CM, Elizabeth FI. Unveiling the Targets Involved in the Quest of Antileishmanial Leads Using In silico Methods. Curr Drug Targets 2021; 21:681-712. [PMID: 32003668 DOI: 10.2174/1389450121666200128112948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease associated with several clinical manifestations, including cutaneous, mucocutaneous, and visceral forms. As currently available drugs have some limitations (toxicity, resistance, among others), the target-based identification has been an important approach to develop new leads against leishmaniasis. The present study aims to identify targets involved in the pharmacological action of potent antileishmanial compounds. METHODS The literature information regarding molecular interactions of antileishmanial compounds studied over the past half-decade is discussed. The information was obtained from databases such as Wiley, SciFinder, Science Direct, National Library of Medicine, American Chemical Society, Scientific Electronic Library Online, Scopus, Springer, Google Scholar, Web of Science, etc. Results: Numerous in vitro antileishmanial compounds showed affinity and selective interactions with enzymes such as arginase, pteridine reductase 1, trypanothione reductase, pyruvate kinase, among others, which are crucial for the survival and virulence of the Leishmania parasite. CONCLUSION The in-silico activity of small molecules (enzymes, proteins, among others) might be used as pharmacological tools to develop candidate compounds for the treatment of leishmaniasis. As some pharmacologically active compounds may act on more than one target, additional studies of the mechanism (s) of action of potent antileishmanial compounds might help to better understand their pharmacological action. Also, the optimization of promising antileishmanial compounds might improve their biological activity.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cinthya M Sano
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
17
|
Fernandes FS, Santos H, Lima SR, Conti C, Rodrigues MT, Zeoly LA, Ferreira LLG, Krogh R, Andricopulo AD, Coelho F. Discovery of highly potent and selective antiparasitic new oxadiazole and hydroxy-oxindole small molecule hybrids. Eur J Med Chem 2020; 201:112418. [PMID: 32590115 DOI: 10.1016/j.ejmech.2020.112418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 11/26/2022]
Abstract
A series of highly active hybrids were discovered as novel antiparasitic agents. Two heterocyclic scaffolds (1,2,4-oxadiazole and 3-hydroxy-2-oxindole) were linked, and the resulting compounds showed in vitro activities against intracellular amastigotes of two protozoan parasites, Trypanosoma cruzi and Leishmania infantum. Their cytotoxicity was assessed using HFF-1 fibroblasts and HepG2 hepatocytes. Compounds 5b, 5d, 8h and 8o showed selectivity against L. infantum (IC50 values of 3.89, 2.38, 2.50 and 2.85 μM, respectively). Compounds 4c, 4q, 8a and 8k were the most potent against T. cruzi, exhibiting IC50 values of 6.20, 2.20, 2.30 and 2.20 μM, respectively. Additionally, the most potent anti-T. cruzi compounds showed in vitro efficacies comparable or superior to that of benznidazole. These easy-to-synthesize molecules represent novel chemotypes for the design of potent and selective lead compounds for Chagas disease and leishmaniasis drug discovery.
Collapse
Affiliation(s)
- Fábio S Fernandes
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Hugo Santos
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Samia R Lima
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Caroline Conti
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Manoel T Rodrigues
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Lucas A Zeoly
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Leonardo L G Ferreira
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of Sao Carlos, University of Sao Paulo, Avenida Joao Dagnone, 1100, 13563-120, Sao Carlos, SP, Brazil
| | - Renata Krogh
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of Sao Carlos, University of Sao Paulo, Avenida Joao Dagnone, 1100, 13563-120, Sao Carlos, SP, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of Sao Carlos, University of Sao Paulo, Avenida Joao Dagnone, 1100, 13563-120, Sao Carlos, SP, Brazil.
| | - Fernando Coelho
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
18
|
Ullah H, Rahim F, Taha M, Hussain R, Tabassum N, Wadood A, Nawaz M, Mosaddik A, Imran S, Wahab Z, Miana GA, Kanwal, Khan KM. Aryl-oxadiazole Schiff bases: Synthesis, α-glucosidase in vitro inhibitory activity and their in silico studies. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Zheng X, Liu W, Zhang D. Recent Advances in the Synthesis of Oxazole-Based Molecules via van Leusen Oxazole Synthesis. Molecules 2020; 25:molecules25071594. [PMID: 32244317 PMCID: PMC7180750 DOI: 10.3390/molecules25071594] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022] Open
Abstract
Oxazole compounds, including one nitrogen atom and one oxygen atom in a five-membered heterocyclic ring, are present in various biological activities. Due to binding with a widespread spectrum of receptors and enzymes easily in biological systems through various non-covalent interactions, oxazole-based molecules are becoming a kind of significant heterocyclic nucleus, which have received attention from researchers globally, leading them to synthesize diverse oxazole derivatives. The van Leusen reaction, based on tosylmethylisocyanides (TosMICs), is one of the most appropriate strategies to prepare oxazole-based medicinal compounds. In this review, we summarize the recent advances of the synthesis of oxazole-containing molecules utilizing the van Leusen oxazole synthesis from 1972, aiming to look for potential oxazole-based medicinal compounds, which are valuable information for drug discovery and synthesis.
Collapse
Affiliation(s)
- Xunan Zheng
- College of Chemistry, Jilin University, Changchun 130012, China;
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wei Liu
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (W.L.); (D.Z.); Tel.: +86-188-1775-2588 (W.L.); +86-431-8783-6471 (D.Z.)
| | - Dawei Zhang
- College of Chemistry, Jilin University, Changchun 130012, China;
- Correspondence: (W.L.); (D.Z.); Tel.: +86-188-1775-2588 (W.L.); +86-431-8783-6471 (D.Z.)
| |
Collapse
|
20
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
21
|
Taha M, Uddin I, Gollapalli M, Almandil NB, Rahim F, Farooq RK, Nawaz M, Ibrahim M, Alqahtani MA, Bamarouf YA, Selvaraj M. Synthesis, anti-leishmanial and molecular docking study of bis-indole derivatives. BMC Chem 2019; 13:102. [PMID: 31410413 PMCID: PMC6685257 DOI: 10.1186/s13065-019-0617-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/31/2019] [Indexed: 11/10/2022] Open
Abstract
We have synthesized new series of bisindole analogs (1–27), characterized by 1HNMR and HR-EI-MS and evaluated for their anti-leishmanial potential. All compounds showed outstanding inhibitory potential with IC50 values ranging from 0.7 ± 0.01 to 13.30 ± 0.50 µM respectively when compared with standard pentamidine with IC50 value of 7.20 ± 0.20 µM. All analogs showed greater potential than standard except 10, 19 and 23 when compared with standard. Structure activity relationship has been also established for all compounds. Molecular docking studies were carried out to understand the binding interaction of active molecules.![]()
Collapse
Affiliation(s)
- Muhammad Taha
- 1Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Imad Uddin
- 2Department of Chemistry, Hazara University, Mansehra, 21300 Khyber Pakhtunkhwa Pakistan
| | - Mohammed Gollapalli
- 3Department of Computer Information Systems, College of Computer Science & Information Technology, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Noor Barak Almandil
- 1Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Fazal Rahim
- 2Department of Chemistry, Hazara University, Mansehra, 21300 Khyber Pakhtunkhwa Pakistan
| | - Rai Khalid Farooq
- 4Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Muhammad Nawaz
- 5Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Mohamed Ibrahim
- 1Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Mohammed A Alqahtani
- 1Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Yasser A Bamarouf
- 3Department of Computer Information Systems, College of Computer Science & Information Technology, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Manikandan Selvaraj
- 6Monash University School of Chemical Engineering, 47500 Bandar Sunway, Selangor Malaysia
| |
Collapse
|
22
|
Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery. Future Med Chem 2019; 11:2107-2130. [DOI: 10.4155/fmc-2018-0512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Leishmaniasis is one of the major neglected tropical diseases in the world and it is considered endemic in 88 countries. This disease is transmitted by a Leishmania spp. infected sandfly and it may lead to cutaneous or systemic manifestations. The preconized treatment has low efficacy and there are cases of resistance to some drugs. Therefore, the search for new efficient molecular targets that can lead to the preparation of new drugs must be pursued. This review aims to evaluate both Leishmania enzymes PTR1 and DHFR-TS as potential drug targets, highlight their inhibitors and to discuss critically the use of chemoinformatics to elucidate interactions and propose new molecules against these enzymes.
Collapse
|
23
|
Verma G, Khan MF, Mohan Nainwal L, Ishaq M, Akhter M, Bakht A, Anwer T, Afrin F, Islamuddin M, Husain I, Alam MM, Shaquiquzzaman M. Targeting malaria and leishmaniasis: Synthesis and pharmacological evaluation of novel pyrazole-1,3,4-oxadiazole hybrids. Part II. Bioorg Chem 2019; 89:102986. [PMID: 31146198 DOI: 10.1016/j.bioorg.2019.102986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/06/2019] [Accepted: 05/16/2019] [Indexed: 11/24/2022]
Abstract
In continuance with earlier reported work, an extension has been carried out by the same research group. Mulling over the ongoing condition of resistance to existing antimalarial agents, we had reported synthesis and antimalarial activity of certain pyrazole-1,3,4-oxadiazole hybrid compounds. Bearing previous results in mind, our research group ideated to design and synthesize some more derivatives with varied substitutions of acetophenone and hydrazide. Following this, derivatives 5a-r were synthesized and tested for antimalarial efficacy by schizont maturation inhibition assay. Further, depending on the literature support and results of our previous series, certain potent compounds (5f, 5n and 5r) were subjected to Falcipain-2 inhibitory assay. Results obtained for these particular compounds further strengthened our hypothesis. Here, in this series, compound 5f having unsubstituted acetophenone part and a furan moiety linked to oxadiazole ring emerged as the most potent compound and results were found to be comparable to that of the most potent compound (indole bearing) of previous series. Additionally, depending on the available literature, compounds (5a-r) were tested for their antileishmanial potential. Compounds 5a, 5c and 5r demonstrated dose-dependent killing of the promastigotes. Their IC50 values were found to be 33.3 ± 1.68, 40.1 ± 1.0 and 19.0 ± 1.47 μg/mL respectively. These compounds (5a, 5c and 5r) also had effects on amastigote infectivity with IC50 of 44.2 ± 2.72, 66.8 ± 2.05 and 73.1 ± 1.69 μg/mL respectively. Further target validation was done using molecular docking studies. Acute oral toxicity studies for most active compounds were also performed.
Collapse
Affiliation(s)
- Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohemmed Faraz Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Lalit Mohan Nainwal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Ishaq
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afroz Bakht
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box-173, Al-Kharj, Saudi Arabia
| | - Tariq Anwer
- Department of Pharmacology, College of Pharmacy, Jazan University, P.O. Box 114, Gizan, Saudi Arabia
| | - Farhat Afrin
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Mohammad Islamuddin
- Molecular Virology Lab, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Ibraheem Husain
- Molecular Virology Lab, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammad Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
24
|
Abd el hameid MK, Mohammed MR. Design, synthesis, and cytotoxicity screening of 5-aryl-3-(2-(pyrrolyl) thiophenyl)-1, 2, 4-oxadiazoles as potential antitumor molecules on breast cancer MCF-7 cells. Bioorg Chem 2019; 86:609-623. [DOI: 10.1016/j.bioorg.2019.01.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 11/28/2022]
|
25
|
Kashif M, Hira SK, Upadhyaya A, Gupta U, Singh R, Paladhi A, Khan FI, Rub A, Manna PP. In silico studies and evaluation of antiparasitic role of a novel pyruvate phosphate dikinase inhibitor in Leishmania donovani infected macrophages. Int J Antimicrob Agents 2019; 53:508-514. [DOI: 10.1016/j.ijantimicag.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/10/2018] [Accepted: 12/22/2018] [Indexed: 01/08/2023]
|
26
|
Romero AH, Rodríguez N, Oviedo H. 2-Aryl-quinazolin-4(3H)-ones as an inhibitor of leishmania folate pathway: In vitro biological evaluation, mechanism studies and molecular docking. Bioorg Chem 2019; 83:145-153. [DOI: 10.1016/j.bioorg.2018.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
|
27
|
Bajaj S, Roy PP, Singh J. Synthesis, thymidine phosphorylase inhibitory and computational study of novel 1,3,4-oxadiazole-2-thione derivatives as potential anticancer agents. Comput Biol Chem 2018; 76:151-160. [DOI: 10.1016/j.compbiolchem.2018.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 11/25/2022]
|
28
|
Anti-leishmanial click modifiable thiosemicarbazones: Design, synthesis, biological evaluation and in silico studies. Eur J Med Chem 2018; 151:585-600. [DOI: 10.1016/j.ejmech.2018.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/20/2018] [Accepted: 04/02/2018] [Indexed: 01/07/2023]
|
29
|
Recent advance in oxazole-based medicinal chemistry. Eur J Med Chem 2018; 144:444-492. [DOI: 10.1016/j.ejmech.2017.12.044] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023]
|
30
|
Vergara S, Carda M, Agut R, Yepes LM, Vélez ID, Robledo SM, Galeano WC. Synthesis, antiprotozoal activity and cytotoxicity in U-937 macrophages of triclosan–hydrazone hybrids. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2019-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Taha M, Baharudin MS, Ismail NH, Selvaraj M, Salar U, Alkadi KA, Khan KM. Synthesis and in silico studies of novel sulfonamides having oxadiazole ring: As β -glucuronidase inhibitors. Bioorg Chem 2017; 71:86-96. [DOI: 10.1016/j.bioorg.2017.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/27/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
|
32
|
Taha M, Ismail NH, Ali M, Rashid U, Imran S, Uddin N, Khan KM. Molecular hybridization conceded exceptionally potent quinolinyl-oxadiazole hybrids through phenyl linked thiosemicarbazide antileishmanial scaffolds: In silico validation and SAR studies. Bioorg Chem 2017; 71:192-200. [PMID: 28228228 DOI: 10.1016/j.bioorg.2017.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 11/24/2022]
Abstract
The high potential of quinoline containing natural products and their derivatives in medicinal chemistry led us to discover a novel series of compounds 6-23 based on the concept of molecular hybridization. Most of the synthesized analogues exhibited potent leishmanicidal potential. The most potent compound (23, IC50=0.10±0.001μM) among the series was found ∼70 times more lethal than the standard drug. The current series 6-23 conceded in the development of fourteen (14) extraordinarily active compounds against leishmaniasis. In silico analysis were also performed to probe the mode of action while all the compounds structure were established by NMR and Mass spectral analysis.
Collapse
Affiliation(s)
- Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), PuncakAlam Campus, 42300 Bandar PuncakAlam, Selangor, Malaysia; Faculty of Applied Science UiTM, 40450 Shah Alam, Selangor, Malaysia.
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), PuncakAlam Campus, 42300 Bandar PuncakAlam, Selangor, Malaysia; Faculty of Applied Science UiTM, 40450 Shah Alam, Selangor, Malaysia
| | - Muhammad Ali
- Department of Chemistry, COMSATS Institute of Information Technology, University Road, Abbottabad 22060, KPK, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS Institute of Information Technology, University Road, Abbottabad 22060, KPK, Pakistan
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), PuncakAlam Campus, 42300 Bandar PuncakAlam, Selangor, Malaysia; Faculty of Applied Science UiTM, 40450 Shah Alam, Selangor, Malaysia
| | - Nizam Uddin
- Batterje Medical College for Science & Technology, Jeddah 21442, Saudi Arabia
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|