1
|
Piškor M, Ćorić I, Perić B, Špoljarić KM, Kirin SI, Glavaš-Obrovac L, Raić-Malić S. Quinoline- and coumarin-based ligands and their rhenium(I) tricarbonyl complexes: synthesis, spectral characterization and antiproliferative activity on T-cell lymphoma. J Inorg Biochem 2025; 262:112770. [PMID: 39541780 DOI: 10.1016/j.jinorgbio.2024.112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Novel 6-substituted 2-(trifluoromethyl)quinoline 5a-5e and coumarin 6a-6d ligands with aldoxime ether linked pyridine moiety were synthesized by O-alkylation of quinoline and coumarin with (E)-picolinaldehyde oxime and subsequently with [Re(CO)5Cl] gave rhenium(I) tricarbonyl complexes 5aRe-5eRe and 6aRe-6dRe that were fully characterized by NMR, single-crystal X-ray diffraction, IR and UV-Vis spectroscopy. The results of antiproliferative evaluation of quinoline and coumarin ligands and their rhenium(I) tricarbonyl complexes on various human tumor cell lines, including acute lymphoblastic leukemia (CCRF-CEM), acute monocytic leukemia (THP1), cervical adenocarcinoma (HeLa), colon adenocarcinoma (CaCo-2), T-cell lymphoma (HuT78), and non-tumor human fibroblasts (BJ) showed that the quinoline complexes 5aRe-5eRe had higher inhibitory activity than coumarin complexes 6aRe-6dRe, particularly against T-cell lymphoma (HuT78) cells. 6-Methoxy-2-(trifluoromethyl)quinoline 5e and 6-methylcoumarin 6d, and their rhenium(I) tricarbonyl complexes 5eRe and 6dRe were found to arrest the cell cycle of HuT78 cells by causing a significant accumulation of cells in the G0/G1 phase and a marked decrease in the number of cells in the G2/M phase. These rhenium(I) tricarbonyl complexes also slightly increased ROS production and significantly decreased the mitochondrial membrane potential by 50 % (5eRe) and 45 % (6dRe) compared to untreated cells and cells treated with 5e and 6d. These results suggest that the cytotoxic effects of these compounds are mediated by their effects on mitochondrial membrane potential and the subsequent increase in ROS production.
Collapse
Affiliation(s)
- Martina Piškor
- Department of Organic Chemistry, University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Ivan Ćorić
- Department of Medicinal Chemistry, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Biochemistry and Clinical Chemistry, J. Huttlera 4, 31000 Osijek, Croatia
| | - Berislav Perić
- Laboratory for Solid State and Complex Compounds Chemistry, Ruđer Bošković Institute, Division of Materials Chemistry, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Katarina Mišković Špoljarić
- Department of Medicinal Chemistry, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Biochemistry and Clinical Chemistry, J. Huttlera 4, 31000 Osijek, Croatia
| | - Srećko I Kirin
- Laboratory for Solid State and Complex Compounds Chemistry, Ruđer Bošković Institute, Division of Materials Chemistry, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Biochemistry and Clinical Chemistry, J. Huttlera 4, 31000 Osijek, Croatia.
| | - Silvana Raić-Malić
- Department of Organic Chemistry, University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Keri RS, Budagumpi S, Adimule V. Quinoline Synthesis: Nanocatalyzed Green Protocols-An Overview. ACS OMEGA 2024; 9:42630-42667. [PMID: 39464456 PMCID: PMC11500387 DOI: 10.1021/acsomega.4c07011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024]
Abstract
Heterocyclic compounds are of great interest in our daily lives. They are widely distributed in nature and are synthesized in laboratories. Heterocycles play an important role in the metabolism of all living cells, including vitamins and coenzyme precursors like thiamine and riboflavin. Furthermore, heterocyclic systems are essential building blocks for creating innovative materials with intriguing electrical, mechanical, and biological properties. Also, more than 85% of all biologically active chemical entities comprise a heterocycle. As a result, heterocycle synthesis piqued researchers' curiosity, and in recent decades, chemists have concentrated more on nitrogen-containing cyclic nuclei in structures. Quinoline and its derivatives exhibit several biological functions, including antimicrobial, anticancer, antimalarial, anti-inflammatory, antihypertensive, and antiasthmatic effects. In addition, over a hundred quinoline-based drugs are available to treat a variety of disorders. Because of its biological importance, researchers developed one-pot synthetic methods employing effective acid/base catalysts (Lewis acids, Brønsted acids, and ionic liquids), reagents, and transition-metal-based catalysts. These methods have some downsides, including longer reaction times, harsher reaction conditions, creation of byproducts, costly catalysts, use of hazardous solvents, an unacceptable economic yield, and catalyst recovery. Researchers' focus has switched to creating environmentally friendly and effective methods for the synthesis of quinoline derivatives as a result of these methodologic shortcomings. Because of its special qualities, the use of nanocatalysts or nanocomposites offers an option for the effective synthesis of quinolines. This review focuses on the published research articles on nanocatalysts to synthesize substituted quinoline derivatives. This review covers all contributions until May 2024, focusing on quinoline ring building and mechanistic issues. With the aid of this review, we anticipate that synthetic chemists will be able to develop more effective methods of synthesizing quinolines.
Collapse
Affiliation(s)
- Rangappa S. Keri
- Centre
for Nano and Material Sciences, Jain (Deemed-to-be
University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Srinivasa Budagumpi
- Centre
for Nano and Material Sciences, Jain (Deemed-to-be
University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Vinayak Adimule
- Angadi
Institute of Technology and Management (AITM), Savagaon Road, Belagavi, Karnataka 5800321, India
| |
Collapse
|
3
|
Krstulović L, Rastija V, Pessanha de Carvalho L, Held J, Rajić Z, Živković Z, Bajić M, Glavaš-Obrovac L. Design, Synthesis, Antitumor, and Antiplasmodial Evaluation of New 7-Chloroquinoline-Benzimidazole Hybrids. Molecules 2024; 29:2997. [PMID: 38998949 PMCID: PMC11243327 DOI: 10.3390/molecules29132997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Newly synthesized 7-chloro-4-aminoquinoline-benzimidazole hybrids were characterized by NMR and elemental analysis. Compounds were tested for their effects on the growth of the non-tumor cell line MRC-5 (human fetal lung fibroblasts) and carcinoma (HeLa and CaCo-2), leukemia, and lymphoma (Hut78, THP-1, and HL-60) cell lines. The obtained results, expressed as the concentration at which 50% inhibition of cell growth is achieved (IC50 value), show that the tested compounds affect cell growth differently depending on the cell line and the applied dose (IC50 ranged from 0.2 to >100 µM). Also, the antiplasmodial activity of these hybrids was evaluated against two P. falciparum strains (Pf3D7 and PfDd2). The tested compounds showed potent antiplasmodial activity, against both strains, at nanomolar concentrations. Quantitative structure-activity relationship (QSAR) analysis resulted in predictive models for antiplasmodial activity against the 3D7 strain (R2 = 0.886; Rext2 = 0.937; F = 41.589) and Dd2 strain (R2 = 0.859; Rext2 = 0.878; F = 32.525) of P. falciparum. QSAR models identified the structural features of these favorable effects on antiplasmodial activities.
Collapse
Affiliation(s)
- Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia;
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia;
| | - Lais Pessanha de Carvalho
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstrasse 27, D-72074 Tuebingen, Germany; (L.P.d.C.); (J.H.)
| | - Jana Held
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstrasse 27, D-72074 Tuebingen, Germany; (L.P.d.C.); (J.H.)
- Partner Site Tuebingen, German Center for Infection Research (DZIF),Wilhelmstrasse 27, D-72074 Tuebingen, Germany
| | - Zrinka Rajić
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000 Zagreb, Croatia;
| | - Zorislava Živković
- General County Hospital of Našice, Bana Jelačića 10, HR-31500 Našice, Croatia;
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia;
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry, and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| |
Collapse
|
4
|
Das A, Sangavi R, Gowrishankar S, Kumar R, Sankaralingam M. Deciphering the Mechanism of MRSA Targeting Copper(II) Complexes of NN2 Pincer-Type Ligands. Inorg Chem 2023; 62:18926-18939. [PMID: 37930252 DOI: 10.1021/acs.inorgchem.3c02480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
WHO lists AMR as one of the top ten global public health issues. Therefore, constant effort is needed to develop more efficient antimicrobial drugs. As a result, earth-abundant transition-metal complexes have emerged as an excellent solution. In this regard, new aminoquinoline-based copper(II) pincer complexes 1-3 were designed, synthesized, and characterized by modern spectroscopic techniques. It is worth mentioning that, at the highest concentration (1024 μg/mL) of complexes (1-3), the hemolysis was found to be <15%, implying their less toxicity. Further, the complexes effectively interfered with the growth of Gram positive MRSA and the fungus Candida albicans. Among them, complex 2 was promising (MIC = 16 μg/mL) against MRSA, which was better than the known antibacterial drug kanamycin (64 μg/mL) under identical conditions. The Alamar blue cell viability test and the MBC/MFC identified by spot assay were in accordance with MIC values. Moreover, the insilico studies explained the most probable mechanism of action as inhibition of cell wall biosynthesis and dysfunction of antibiotic sensing proteins. Similarly, the antifungal action might be due to the cell surface adhesion protein dysfunction by the complexes. Furthermore, we are expecting to draw these compounds for clinical applications.
Collapse
Affiliation(s)
- Athulya Das
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Ravichellam Sangavi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India
| | | | - Rajesh Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| |
Collapse
|
5
|
Krstulović L, Mišković Špoljarić K, Rastija V, Filipović N, Bajić M, Glavaš-Obrovac L. Novel 1,2,3-Triazole-Containing Quinoline-Benzimidazole Hybrids: Synthesis, Antiproliferative Activity, In Silico ADME Predictions, and Docking. Molecules 2023; 28:6950. [PMID: 37836794 PMCID: PMC10574761 DOI: 10.3390/molecules28196950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The newly synthesized quinoline-benzimidazole hybrids containing two types of triazole-methyl-phenoxy linkers were characterized via NMR and elemental analysis. Additional derivatization was achieved by introducing bromine at the C-2 position of the phenoxy core. These novel hybrids were tested for their effects on the growth of the non-tumor cell line MRC-5 (human fetal lung fibroblasts), leukemia and lymphoma cell lines: Hut78, THP-1 and HL-60, and carcinoma cell lines: HeLa and CaCo-2. The results obtained, presented as the concentration that achieves 50% inhibition of cell growth (IC50 value), show that the compounds tested affect tumor cell growth differently depending on the cell line and the dose applied (IC50 ranged from 0.2 to >100 µM). The quinoline-benzimidazole hybrids tested, including 7-chloro-4-(4-{[4-(5-methoxy-1H-1,3-benzo[d]imidazol-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)quinoline 9c, 2-(3-bromo-4-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methoxy}phenyl)-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride 10e, 2-{4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride 14e and 2-{3-bromo-4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride 15e, arrested the cell cycle of lymphoma (HuT78) cells. The calculated ADMET properties showed that the synthesized compounds violated at most two of Lipinski's rules, making them potential drug candidates, but mainly for parenteral use due to low gastrointestinal absorption. The quinoline-benzimidazole hybrid 14e, which was shown to be a potent and selective inhibitor of lymphoma cell line growth, obtained the highest binding energy (-140.44 kcal/mol), by docking to the TAO2 kinase domain (PDB: 2GCD).
Collapse
Affiliation(s)
- Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Katarina Mišković Špoljarić
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia;
| | - Nikolina Filipović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8a, 31000 Osijek, Croatia;
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| |
Collapse
|
6
|
Louiz S, Lahbib K, Abderrahim R. Synthesis and Characterization of New
N
‐Pyrazol‐5‐yl) amidine Derivatives: X‐Ray Structure Hirshfeld Surface, and DFT Analyses together with Antibacterial and Antifungal Activity Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202300315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Sonia Louiz
- Laboratory Resources materials and ecosystems of Physics Lamellaires Materials and Hybrids Nanomaterials Department of Chemistry Faculty of Sciences of Bizerte University of Carthage 7021 Zarzouna Bizerte Tunisia
| | - Karima Lahbib
- Department of Biology University of Carthage Faculty of Sciences of Bizerte 7021 Zarzouna Bizerte Tunisia
| | - Raoudha Abderrahim
- Laboratory Resources materials and ecosystems of Physics Lamellaires Materials and Hybrids Nanomaterials Department of Chemistry Faculty of Sciences of Bizerte University of Carthage 7021 Zarzouna Bizerte Tunisia
| |
Collapse
|
7
|
Krstulović L, Leventić M, Rastija V, Starčević K, Jirouš M, Janić I, Karnaš M, Lasić K, Bajić M, Glavaš-Obrovac L. Novel 7-Chloro-4-aminoquinoline-benzimidazole Hybrids as Inhibitors of Cancer Cells Growth: Synthesis, Antiproliferative Activity, in Silico ADME Predictions, and Docking. Molecules 2023; 28:540. [PMID: 36677600 PMCID: PMC9866588 DOI: 10.3390/molecules28020540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
In this study, new 7-chloro-4-aminoquinoline-benzimidazole compounds were synthesized and characterized by NMR, MS, and elemental analysis. These novel hybrids differ in the type of linker and in the substituent on the benzimidazole moiety. Their antiproliferative activities were evaluated on one non-tumor (MDCK1) and seven selected tumor (CaCo-2, MCF-7, CCRF-CEM, Hut78, THP-1, and Raji) cell lines by MTT test and flow cytometry analysis. The compounds with different types of linkers and an unsubstituted benzimidazole ring, 5d, 8d, and 12d, showed strong cytotoxic activity (the GI50 ranged from 0.4 to 8 µM) and effectively suppressed the cell cycle progression in the leukemia and lymphoma cells. After 24 h of treatment, compounds 5d and 12d induced the disruption of the mitochondrial membrane potential as well as apoptosis in HuT78 cells. The drug-like properties and bioavailability of the compounds were calculated using the Swiss ADME web tool, and a molecular docking study was performed on tyrosine-protein kinase c-Src (PDB: 3G6H). Compound 12d showed good solubility and permeability and bound to c-Src with an energy of -119.99 kcal/mol, forming hydrogen bonds with Glu310 and Asp404 in the active site and other residues with van der Waals interactions. The results suggest that compound 12d could be a leading compound in the further design of effective antitumor drugs.
Collapse
Affiliation(s)
- Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Marijana Leventić
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Maja Jirouš
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Ivana Janić
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Maja Karnaš
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Kornelija Lasić
- R&D, Pliva Croatia Ltd., TEVA Group Member, HR-10000 Zagreb, Croatia
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| |
Collapse
|
8
|
Liu J, Zhu X, Yu L, Mao M. Discovery of novel sulphonamide hybrids that inhibit LSD1 against bladder cancer cells. J Enzyme Inhib Med Chem 2022; 37:866-875. [PMID: 35350943 PMCID: PMC8973347 DOI: 10.1080/14756366.2021.2014830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aim:A series of sulphonamide hybrids were designed, synthesised, and identified as potential lysine-specific demethylase 1 (LSD1) inhibitors. Materials and methods: Bladder cancer cell lines were cultured to evaluate the antiproliferative activity. Inhibitory evaluation of sulphonamide hybrids against LSD1 were performed. Conclusion: sulphonamide derivative L8 exhibited the antiproliferative activity against HTB5, HTB3, HT1376, and HTB1 cells with IC50 values of 1.87, 0.18, 0.09, and 0.93 μM, respectively. Compound L8 as a selective and reversible LSD1 inhibitor could inhibit LSD1 with the IC50 value of 60 nM. It effectively inhibited LSD1 by increasing the expression levels of H3K4me1, H3K4me2, and H3K9me2 in HT1376 cells. To the best of our knowledge, this was the first report which showed that sulphonamide–quinoline–dithiocarbamate hybrids potently inhibited LSD1 in bladder cancer cells. Our studies give the potential application of the sulphonamide-based scaffold for developing LSD1 inhibitors to treat bladder cancer.
Collapse
Affiliation(s)
- Jia Liu
- Department of Urology, The 4th affiliated hospital of China Medical University, Shenyang, PR China
| | - Xingwang Zhu
- Department of Urology, The 4th affiliated hospital of China Medical University, Shenyang, PR China
| | - Liu Yu
- Department of Urology, The 4th affiliated hospital of China Medical University, Shenyang, PR China
| | - Minghuan Mao
- Department of Urology, The 4th affiliated hospital of China Medical University, Shenyang, PR China
| |
Collapse
|
9
|
Design, synthesis and biological evaluation of 8-aminoquinoline-1,2,3-triazole hybrid derivatives as potential antimicrobial agents. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02866-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Ajani OO, Iyaye KT, Ademosun OT. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs – a review. RSC Adv 2022; 12:18594-18614. [PMID: 35873320 PMCID: PMC9231466 DOI: 10.1039/d2ra02896d] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
Quinoline, which consists of benzene fused with N-heterocyclic pyridine, has received considerable attention as a core template in drug design because of its broad spectrum of bioactivity. This review aims to present the recent advances in chemistry, medicinal potential and pharmacological applications of quinoline motifs to unveil their substantial efficacies for future drug development. Essential information in all the current and available literature used was accessed and retrieved using different search engines and databases, including Scopus, ISI Web of Knowledge, Google and PUBMED. Numerous derivatives of the bioactive quinolines have been harnessed via expeditious synthetic approaches, as highlighted herein. This review reveals that quinoline is an indisputable pharmacophore due to its tremendous benefits in medicinal chemistry research and other valuable areas of human endeavour. The recent in vivo and in vitro screening reported by scientists is highlighted herein, which may pave the way for novel drug development. Owing to the array of information available and highlighted herein on the medicinal potential of quinoline and its functionalized derivatives, a new window of opportunity may be opened to medicinal chemists to access more biomolecular quinolines for future drug development. Quinoline, which consists of benzene fused with N-heterocyclic pyridine, has received considerable attention as a core template in drug design because of its broad spectrum of bioactivity.![]()
Collapse
Affiliation(s)
- Olayinka O. Ajani
- Department of Chemistry, Covenant University, Km 10, Idiroko Road, PMB 1023, Ota, Ogun State, Nigeria
| | - King T. Iyaye
- Department of Chemistry, Covenant University, Km 10, Idiroko Road, PMB 1023, Ota, Ogun State, Nigeria
| | - Olabisi T. Ademosun
- Department of Chemistry, Covenant University, Km 10, Idiroko Road, PMB 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
11
|
Cuevas-Hernández RI, Girard RMBM, Krstulović L, Bajić M, Silber AM. An aromatic imidazoline derived from chloroquinoline triggers cell cycle arrest and inhibits with high selectivity the Trypanosoma cruzi mammalian host-cells infection. PLoS Negl Trop Dis 2021; 15:e0009994. [PMID: 34843481 PMCID: PMC8659321 DOI: 10.1371/journal.pntd.0009994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/09/2021] [Accepted: 11/13/2021] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma cruzi is a hemoflagellated parasite causing Chagas disease, which affects 6-8 million people in the Americas. More than one hundred years after the description of this disease, the available drugs for treating the T. cruzi infection remain largely unsatisfactory. Chloroquinoline and arylamidine moieties are separately found in various compounds reported for their anti-trypanosoma activities. In this work we evaluate the anti-T. cruzi activity of a collection of 26 "chimeric" molecules combining choroquinoline and amidine structures. In a first screening using epimastigote forms of the parasite as a proxy for the clinically relevant stages, we selected the compound 7-chloro-4-[4-(4,5-dihydro-1H-imidazol-2-yl)phenoxy]quinoline (named here as A6) that performed better as an anti-T. cruzi compound (IC50 of 2.2 ± 0.3 μM) and showed a low toxicity for the mammalian cell CHO-K1 (CC50 of 137.9 ± 17.3 μM). We initially investigated the mechanism of death associated to the selected compound. The A6 did not trigger phosphatidylserine exposure or plasma membrane permeabilization. Further investigation led us to observe that under short-term incubations (until 6 hours), no alterations of mitochondrial function were observed. However, at longer incubation times (4 days), A6 was able to decrease the intracellular Ca2+, to diminish the intracellular ATP levels, and to collapse mitochondrial inner membrane potential. After analysing the cell cycle, we found as well that A6 produced an arrest in the S phase that impairs the parasite proliferation. Finally, A6 was effective against the infective forms of the parasite during the infection of the mammalian host cells at a nanomolar concentration (IC50(tryps) = 26.7 ± 3.7 nM), exhibiting a selectivity index (SI) of 5,170. Our data suggest that A6 is a promising hit against T. cruzi.
Collapse
Affiliation(s)
- Roberto I. Cuevas-Hernández
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Richard M. B. M. Girard
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
12
|
Bogdanova EV, Stogniy MY, Suponitsky KY, Sivaev IB, Bregadze VI. Synthesis of Boronated Amidines by Addition of Amines to Nitrilium Derivative of Cobalt Bis(Dicarbollide). Molecules 2021; 26:6544. [PMID: 34770953 PMCID: PMC8588172 DOI: 10.3390/molecules26216544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
A series of novel cobalt bis(dicarbollide) based amidines were synthesized by the nucleophilic addition of primary and secondary amines to highly activated B-N+≡C-R triple bond of the propionitrilium derivative [8-EtC≡N-3,3'-Co(1,2-C2B9H10)(1',2'-C2B9H11)]. The reactions with primary amines result in the formation of mixtures of E and Z isomers of amidines, whereas the reactions with secondary amines lead selectively to the E-isomers. The crystal molecular structures of E-[8-EtC(NMe2)=HN-3,3'-Co(1,2-C2B9H10)(1',2'-C2B9H11)], E-[8-EtC(NEt2)=HN-3,3'-Co(1,2- C2B9H10)(1',2'-C2B9H11)] and E-[8-EtC(NC5H10)=HN-3,3'-Co(1,2-C2B9H10)(1',2'-C2B9H11)] were determined by single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Ekaterina V. Bogdanova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991 Moscow, Russia; (E.V.B.); (K.Y.S.); (I.B.S.); (V.I.B.)
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia
| | - Marina Yu. Stogniy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991 Moscow, Russia; (E.V.B.); (K.Y.S.); (I.B.S.); (V.I.B.)
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia
| | - Kyrill Yu. Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991 Moscow, Russia; (E.V.B.); (K.Y.S.); (I.B.S.); (V.I.B.)
- Basic Department of Chemistry of Innovative Materials and Technologies, G.V. Plekhanov Russian University of Economics, 36 Stremyannyi Line, 117997 Moscow, Russia
| | - Igor B. Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991 Moscow, Russia; (E.V.B.); (K.Y.S.); (I.B.S.); (V.I.B.)
| | - Vladimir I. Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991 Moscow, Russia; (E.V.B.); (K.Y.S.); (I.B.S.); (V.I.B.)
| |
Collapse
|
13
|
Mahmud AW, Shallangwa GA, Uzairu A. In silico modeling of tetraoxane-8-aminoquinoline hybrids active against Plasmodium falciparum. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00044-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Quantitative structure-activity relationships (QSAR) is a technique that is used to produce a model that connects biological activities of compounds to their chemical structures, and molecular docking is a technique that reveals the binding mode and interactions between a drug and its target enzyme. These techniques have been successfully applied in the design and development of many drug candidates and herein were employed to build a model that could help in the development of more potent antimalaria drugs.
Results
Descriptors of the compounds were calculated using the PaDEL-Descriptor software, and Genetic Function Algorithm (GFA) was used to select descriptors and build the model. A robust and reliable model was generated and validated to have internal and external squared correlation coefficient (R2) of 0.9622 and 0.8191, respectively, adjusted squared correlation coefficient (Radj) of 0.9471, and leave-one-out (LOO) cross-validation coefficient (Q2cv) of 0.9223. The model revealed that the antiplasmodial activities of 1,2,4,5-tetraoxane-8-aminoquinoline hybrids depend on MATS3m, GATS8p, GATS8i, and RDF50s descriptors. MATS3m, GATS8i, and RDF50s influenced the antiplasmodial activities of the compounds positively while GATS8p negatively with the greatest influence. The docking result shows strong interactions between 1,2,4,5-tetraoxane-8-aminoquinoline hybrids and Plasmodium falciparum lactate dehydrogenase (pfLDH) with binding affinities ranging from − 6.3 to − 10.9 kcal/mol which were better than that of chloroquine (− 6.1 kcal/mol), suggesting that these compounds could be better inhibitors of pfLDH than chloroquine.
Conclusion
The results of this study could serve as a model for designing new potent 1,2,4,5-tetraoxane-8-aminoquinolines with better antiplasmodial activities for the development of highly active antimalaria drugs.
Collapse
|
14
|
Shi J, Luo N, Ding M, Bao X. Synthesis, in vitro antibacterial and antifungal evaluation of novel 1,3,4-oxadiazole thioether derivatives bearing the 6-fluoroquinazolinylpiperidinyl moiety. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Ajani OO, Iyaye KT, Aderohunmu DV, Olanrewaju IO, Germann MW, Olorunshola SJ, Bello BL. Microwave-assisted synthesis and antibacterial propensity of N′-s-benzylidene-2-propylquinoline-4-carbohydrazide and N′-((s-1H-pyrrol-2-yl)methylene)-2-propylquinoline-4-carbohydrazide motifs. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
16
|
Popov AB, Stolić I, Krstulović L, Taylor MC, Kelly JM, Tomić S, Tumir L, Bajić M, Raić-Malić S. Novel symmetric bis-benzimidazoles: Synthesis, DNA/RNA binding and antitrypanosomal activity. Eur J Med Chem 2019; 173:63-75. [PMID: 30986572 DOI: 10.1016/j.ejmech.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
The novel benzimidazol-2-yl-fur-5-yl-(1,2,3)-triazolyl dimeric series with aliphatic and aromatic central linkers was successfully prepared with the aim of assessing binding affinity to DNA/RNA and antitrypanosomal activity. UV-Visible spectroscopy, thermal denaturation showed interaction of heterocyclic bis-amidines with ctDNA. Circular dichroism studies indicated uniform orientation of heterocyclic bis-amidines along the chiral double helix axis, revealing minor groove binding as the dominant binding mode. The amidino fragment and 1,4-bis(oxymethylene)phenyl spacer were the main determinants of activity against Trypanosoma brucei. The bis-benzimidazole imidazoline 15c, which had antitrypanosomal potency in the submicromolar range and DNA interacting properties, emerged as a candidate for further structural optimization to obtain more effective agents to combat trypanosome infections.
Collapse
Affiliation(s)
- A Bistrović Popov
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, HR-10000, Zagreb, Croatia
| | - I Stolić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000, Zagreb, Croatia
| | - L Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000, Zagreb, Croatia
| | - M C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - J M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - S Tomić
- Division of Organic Chemistry and Biochemistry, Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - L Tumir
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - M Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000, Zagreb, Croatia
| | - S Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, HR-10000, Zagreb, Croatia.
| |
Collapse
|
17
|
Rahman A, O'Sullivan P, Rozas I. Recent developments in compounds acting in the DNA minor groove. MEDCHEMCOMM 2018; 10:26-40. [PMID: 30774852 DOI: 10.1039/c8md00425k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
The macromolecule that carries genetic information, DNA, is considered as an exceptional target for diseases depending on cellular division of malignant cells (i.e. cancer), microbes (i.e. bacteria) or parasites (i.e. protozoa). To aim for a comprehensive review to cover all aspects related to DNA targeting would be an impossible task and, hence, the objective of the present review is to present, from a medicinal chemistry point of view, recent developments of compounds targeting the minor groove of DNA. Accordingly, we discuss the medicinal chemistry aspects of heterocyclic small-molecules binding the DNA minor groove, as novel anticancer, antibacterial and antiparasitic agents.
Collapse
Affiliation(s)
- Adeyemi Rahman
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| | - Patrick O'Sullivan
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| | - Isabel Rozas
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| |
Collapse
|
18
|
Bistrović A, Krstulović L, Stolić I, Drenjančević D, Talapko J, Taylor MC, Kelly JM, Bajić M, Raić-Malić S. Synthesis, anti-bacterial and anti-protozoal activities of amidinobenzimidazole derivatives and their interactions with DNA and RNA. J Enzyme Inhib Med Chem 2018; 33:1323-1334. [PMID: 30165753 PMCID: PMC6127852 DOI: 10.1080/14756366.2018.1484733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/18/2018] [Accepted: 05/31/2018] [Indexed: 02/09/2023] Open
Abstract
Amidinobenzimidazole derivatives connected to 1-aryl-substituted 1,2,3-triazole through phenoxymethylene linkers 7a-7e, 8a-8e, and 9a-9e were designed and synthesised with the aim of evaluating their anti-bacterial and anti-trypanosomal activities and DNA/RNA binding affinity. Results from anti-bacterial evaluations of antibiotic-resistant pathogenic bacteria revealed that both o-chlorophenyl-1,2,3-triazole and N-isopropylamidine moieties in 8c led to strong inhibitory activity against resistant Gram-positive bacteria, particularly the MRSA strain. Furthermore, the non-substituted amidine and phenyl ring in 7a induced a marked anti-bacterial effect, with potency against ESBL-producing Gram-negative E. coli better than those of the antibiotics ceftazidime and ciprofloxacin. UV-Vis and CD spectroscopy, as well as thermal denaturation assays, indicated that compounds 7a and 8c showed also binding affinities towards ctDNA. Anti-trypanosomal evaluations showed that the p-methoxyphenyl-1,2,3-triazole moiety in 7b and 9b enhanced inhibitory activity against T. brucei, with 8b being more potent than nifurtimox, and having minimal toxicity towards mammalian cells.
Collapse
Affiliation(s)
- Andrea Bistrović
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Stolić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Drenjančević
- Department of Transfusion Medicine, Osijek University Hospital, Osijek, Croatia
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Jasminka Talapko
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Martin C. Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - John M. Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
19
|
Aminzadeh M, Eslami A, Kia R, Aleeshah R. Synthesis, crystal structure and DNA interaction of a new water-soluble derivative of pyrazino[2,3-f][1,10] phenanthroline; theoretical calculations, experimental and molecular docking studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Bonacorso HG, Rodrigues MB, Iglesias BA, da Silveira CH, Feitosa SC, Rosa WC, Martins MAP, Frizzo CP, Zanatta N. New 2-(aryl/heteroaryl)-6-(morpholin-4-yl/pyrrolidin-1-yl)-(4-trifluoromethyl)quinolines: synthesis via Buchwald–Hartwig amination, photophysics, and biomolecular binding properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj01120f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New 6-(morpholino/pyrrolidino)quinolines displaying interesting photophysical and biomolecular binding properties achieved by Buchwald–Hartwig amination.
Collapse
Affiliation(s)
- Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Melissa B. Rodrigues
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | | | | | - Sarah C. Feitosa
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Wilian C. Rosa
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Clarissa P. Frizzo
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| |
Collapse
|