1
|
Ubaid A, Shakir M, Ali A, Khan S, Alrehaili J, Anwer R, Abid M. Synthesis and Structure-Activity Relationship (SAR) Studies on New 4-Aminoquinoline-Hydrazones and Isatin Hybrids as Promising Antibacterial Agents. Molecules 2024; 29:5777. [PMID: 39683935 DOI: 10.3390/molecules29235777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
In response to the escalating crisis of antimicrobial resistance (AMR), there is an urgent need to research and develop novel antibiotics. This study presents the synthesis and assessment of innovative 4-aminoquinoline-benzohydrazide-based molecular hybrids bearing aryl aldehydes (HD1-23) and substituted isatin warheads (HS1-12), characterized using multispectroscopic techniques with high purity confirmed by HRMS. The compounds were evaluated against a panel of clinically relevant antibacterial strains including the Gram-positive Enterococcus faecium, Bacillus subtilis, and Staphylococcus aureus and a Gram-negative Pseudomonas aeruginosa bacterial strain. Preliminary screenings revealed that several test compounds had significant antimicrobial effects, with HD6 standing out as a promising compound. Additionally, HD6 demonstrated impressively low minimum inhibitory concentrations (MICs) in the range of (8-128 μg/mL) against the strains B. subtilis, S. aureus and P. aeruginosa. Upon further confirmation, HD6 not only showed bactericidal properties with low minimum bactericidal concentrations (MBCs) such as (8 μg/mL against B. subtilis) but also displayed a synergistic effect when combined with the standard drug ciprofloxacin (CIP), highlighted by its FICI value of (0.375) against P. aeruginosa, while posing low toxicity risk. Remarkably, HD6 also inhibited a multidrug-resistant (MDR) bacterial strain, marking it as a critical addition to our antimicrobial arsenal. Computation studies were performed to investigate the possible mechanism of action of the most potent hybrid HD6 on biofilm-causing protein (PDB ID: 7C7U). The findings suggested that HD6 exhibits favorable binding free energy, which is supported by the MD simulation studies, presumably responsible for the bacterial growth inhibition. Overall, this study provides a suitable core for further synthetic alterations for their optimization as an antibacterial agent.
Collapse
Affiliation(s)
- Ayesha Ubaid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Shakir
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asghar Ali
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Sobia Khan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Jihad Alrehaili
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
2
|
Zhou B, Fu J, Zhang Y, Bai R, Wang Y, Yang Y, Li Y, Zhou L. Design, Bioactivity, and Action Mechanism of Pyridinecarbaldehyde Phenylhydrazone Derivatives with Broad-Spectrum Antifungal Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20850-20861. [PMID: 39287063 DOI: 10.1021/acs.jafc.4c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Replacing old pesticides with new pesticide varieties has been the main means to solve pesticide resistance. Therefore, it is necessary to research and develop new antifungal agents for plant protection. In this study, a series of pyridinecarbaldehyde phenylhydrazone derivatives were designed and evaluated for their inhibition activity on plant pathogenic fungi to search for novel fungicide candidates. Picolinaldehyde phenylhydrazone (1) and nicotinaldehyde phenylhydrazone (2) were identified as promising antifungal lead scaffolds. The 4-fluorophenylhydrazone derivatives (1a and 2a) of 1 and 2 showed highly effective and broad-spectrum inhibition activity in vitro on 11 phytopathogenic fungi with EC50 values of 0.870-3.26 μg/mL, superior to the positive control carbendazim in most cases. The presence of the 4-fluorine atom on the phenyl showed a remarkable activity enhancement effect. Compound 1a at 300 μg/mL provided almost complete protection against infection of Alternaria solani on tomatoes over the post-treatment 9 days and high safety to germination of plant seeds. Furthermore, 1a showed strong inhibition activity with an IC50 value of 0.506 μg/mL on succinate dehydrogenase in A. solani. Molecular docking showed that both 1a and 2a can well bind to the ubiquinone-binding region of SDH by the conventional hydrogen bond, carbon-hydrogen bond, π-π or π-amide interaction, π-alkyl interaction, X---F (X = N, C, or H) interaction, and van der Waal forces. Meanwhile, scanning and transmission electron analysis displayed that 1a destroyed the morphology of mycelium and the structure of the cell membrane of A. solani. Fluorescent staining analysis revealed that 1a changed the mitochondrial membrane potential and cell membrane permeability. Thus, pyridinecarbaldehyde phenylhydrazone compounds emerged as novel antifungal lead scaffolds, and 1a and 2a can be considered promising candidates for the development of new agricultural fungicides.
Collapse
Affiliation(s)
- Bohang Zhou
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Plant Nematology, Xi'an 710043, Shaanxi, People's Republic of China
| | - Juan Fu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yuhao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Ruofei Bai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yiwei Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yiwei Yang
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Plant Nematology, Xi'an 710043, Shaanxi, People's Republic of China
| | - Yingmei Li
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Plant Nematology, Xi'an 710043, Shaanxi, People's Republic of China
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
3
|
Abdelmoteleb KMA, Wasfy AAF, El-Apasery MA. Novel Disperse Dyes Based on Enaminones: Synthesis, Dyeing Performance on Polyester Fabrics, and Potential Biological Activities. Molecules 2024; 29:2227. [PMID: 38792089 PMCID: PMC11123723 DOI: 10.3390/molecules29102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
1-(3-aryl)-3-(dimethylamino)prop-2-en-1-one (enaminones) derivatives and the diazonium salt of para-chloroaniline were used to synthesize several novel disperse azo dyes with high yield and the use of an environmentally friendly approach. At 100 and 130 °C, we dyed polyester fabrics using the new synthesized disperse dyes. At various temperatures, the dyed fabrics' color intensity was assessed. The results we obtained showed that dyeing utilizing a high temperature method at 130 °C was enhanced than dyeing utilizing a low temperature method at 100 °C. Reusing dye baths once or twice was a way to achieve two goals at the same time. The first was obtaining a dyed product at no cost, and the second was a way to treat the wastewater of dyeing bath effluents and reuse it again. Good results were obtained for the fastness characteristics of polyester dyed with disperse dyes. When the disperse dyes were tested against certain types of microbes and cancer cells, they demonstrated good and encouraging findings for the potential to be used as antioxidants and antimicrobial agents.
Collapse
Affiliation(s)
| | - Ashraf A. F. Wasfy
- Chemistry Department, Faculty of Science, Benha University, Banha 13511, Egypt
| | - Morsy Ahmed El-Apasery
- Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 El Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
4
|
Branković J, Matejić V, Simijonović D, Vukić MD, Kačaniova M, Živanović M, Mirić A, Košarić J, Branković M, Petrović VP. Novel N-pyrocatechoyl and N-pyrogalloyl hydrazone antioxidants endowed with cytotoxic and antibacterial activity. Arch Pharm (Weinheim) 2024; 357:e2300725. [PMID: 38346258 DOI: 10.1002/ardp.202300725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 05/08/2024]
Abstract
Over the years, pharmacological agents bearing antioxidant merits arose as beneficial in the prophylaxis and treatment of various health conditions. Hazardous effects of radical species hyperproduction disrupt normal cell functioning, thus increasing the possibility for the development of various oxidative stress-associated disorders, such as cancer. Contributing to the efforts for efficient antioxidant drug discovery, a thorough in vitro and in silico assessment of antioxidant properties of 14 newly synthesized N-pyrocatechoyl and N-pyrogalloyl hydrazones (N-PYRs) was accomplished. All compounds exhibited excellent antioxidant potency against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. The extensive in silico analysis revealed multiple favorable features of N-PYRs to inactivate harmful radical species, which supported the obtained in vitro results. Also, in silico experiments provided insights into the preferable antioxidant pathways. Prompted by these findings, the cytotoxicity effects and the influence on the redox status of cancer HCT-116 cells and healthy fibroblasts MRC-5 were evaluated. These investigations exposed four analogs exhibiting both cytotoxicity and selectivity toward cancer cells. Furthermore, the frequently uncovered antimicrobial potency of hydrazone-type hybrids encouraged investigations on G+ and G- bacterial strains, which revealed the antibacterial potency of several N-PYRs. These findings highlighted the N-PYRs as excellent antioxidant agents endowed with cytotoxic and antibacterial features.
Collapse
Affiliation(s)
- Jovica Branković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Vesna Matejić
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Čačak, Serbia
| | - Dušica Simijonović
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Milena D Vukić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Miroslava Kačaniova
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Marko Živanović
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Ana Mirić
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Košarić
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Marija Branković
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir P Petrović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
5
|
Sharma V, Das R, Mehta DK, Sharma D, Aman S, Khan MU. Quinolone scaffolds as potential drug candidates against infectious microbes: a review. Mol Divers 2024:10.1007/s11030-024-10862-4. [PMID: 38683488 DOI: 10.1007/s11030-024-10862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Prevalence of microbial infections and new rising pathogens are signified as causative agent for variety of serious and lethal health crisis in past years. Despite medical advances, bacterial and fungal infections continue to be a rising problem in the health care system. As more bacteria develop resistance to antibiotics used in therapy, and as more invasive microbial species develop resistance to conventional antimicrobial drugs. Relevant published publications from the last two decades, up to 2024, were systematically retrieved from the MEDLINE/PubMed, SCOPUS, EMBASE, and WOS databases using keywords such as quinolones, anti-infective, antibacterial, antimicrobial resistance and patents on quinolone derivatives. With an approach of considerable interest towards novel heterocyclic derivatives as novel anti-infective agents, researchers have explored these as essential tools in vistas of drug design and development. Among heterocycles, quinolones have been regarded extremely essential for the development of novel derivatives, even able to tackle the associated resistance issues. The quinolone scaffold with its bicyclic structure and specific functional groups such as the carbonyl and acidic groups, is indeed considered a valuable functionalities for further lead generation and optimization in drug discovery. Besides, the substitution at N-1, C-3 and C-7 positions also subjected to be having a significant role in anti-infective potential. In this article, we intend to highlight recent quinolone derivatives based on the SAR approach and anti-infective potential such as antibacterial, antifungal, antimalarial, antitubercular, antitrypanosomal and antiviral activities. Moreover, some recent patents granted on quinolone-containing derivatives as anti-infective agents have also been highlighted in tabular form. Due consideration of this, future research in this scaffold is expected to be useful for aspiring scientists to get pharmacologically significant leads.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Rina Das
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| | - Diksha Sharma
- Swami Devidyal College of Pharmacy, Barwala, 134118, India
| | - Shahbaz Aman
- Department of Microbiology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - M U Khan
- Department of pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah, Al Qassim, Saudi Arabia
| |
Collapse
|
6
|
Başaran E, Tür G, Akkoc S, Taskin-Tok T. Design, Synthesis, and In Silico and In Vitro Cytotoxic Activities of Novel Isoniazid-Hydrazone Analogues Linked to Fluorinated Sulfonate Esters. ACS OMEGA 2024; 9:17551-17562. [PMID: 38645328 PMCID: PMC11025081 DOI: 10.1021/acsomega.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
Cancer is a life-threatening disease, and significant efforts are still being made to treat it. In this study, we synthesized and characterized novel hybrid molecules (10-18) containing hydrazone and sulfonate moieties and tested their cell growth inhibitory effect on human colon cancer cells (DLD-1), human prostate cancer cells (PC3), and human embryonic kidney cells (HEK-293T) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method for 72 h. In cell culture studies, all tested hybrid molecules except for 12 and 13 showed significant cytotoxic activities at a micromolar level with IC50 values in the range of 10.28-214.0 μM for the PC3 cell line and 13.49-144.30 μM for the DLD-1 cell line. Compounds 4 (10.28 μM) and 5 (11.22 μM) demonstrated the highest cytotoxicity against the PC3 cell line. Against the DLD-1 cell line, compounds 1 (22.53 μM), 4 (13.49 μM), 5 (19.33 μM), 6 (17.82 μM), 8 (24.71 μM), 9 (17.56 μM), and 10 (17.90 μM) in the series showed anticancer activity at lower micromolar levels compared to cisplatin (26.70 μM). Moreover, the study was handled computationally, and molecular docking studies were performed for compounds 1, 4, and 5 for PC3-FAK and PC3-Scr and compounds 4, 6, and 9 for the DLD-1-TNKS target. In this study, compound 4 was found to be the most effective and promising molecule for both targets.
Collapse
Affiliation(s)
- Eyüp Başaran
- Department
of Chemistry and Chemical Processing Technologies, Vocational School
of Technical Sciences, Batman University, Batman 72060, Turkey
| | - Gulal Tür
- Department
of Chemistry, Graduate Education Institute, Batman University, Batman 72100, Turkey
| | - Senem Akkoc
- Faculty
of Pharmacy, Department of Basic Pharmaceutical Sciences, Suleyman Demirel University, Isparta 32260, Turkey
- Faculty
of Engineering and Natural Sciences, Bahçeşehir
University, Istanbul 34353, Turkey
| | - Tugba Taskin-Tok
- Department
of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep 27310, Turkey
- Department
of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep 27310, Turkey
| |
Collapse
|
7
|
Khetmalis YM, Sangeetha GP, Chandu A, Swati, Murugesan S, Sharma V, Kumar MM, Kondapalli VG. Design, synthesis and biological evaluation of novel oxindole analogs as antitubercular agents. Future Med Chem 2023; 15:1323-1342. [PMID: 37610851 DOI: 10.4155/fmc-2023-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Aim: To design, synthesize and evaluate oxindole derivatives for antitubercular activity. Methodology: We synthesized the derivatives, confirmed their structures by 1H/13C NMR and mass spectrometry, and evaluated them for antitubercular activity against Mycobacterium tuberculosis H37Rv strain using the microplate alamarBlue™ assay. Results: Among all the synthesized derivatives, OXN-1, -3 and -7 exhibited excellent antitubercular activity (minimum inhibitory concentration [MIC]: 0.78 μg/ml). Compounds with a MIC ≤1.56 were tested for cytotoxicity against human embryonic kidney cells and were found to be relatively nontoxic. Molecular docking analysis of OXN-1, -3 and -7 was performed to determine their binding patterns at the active site of DNA topoisomerase II (PDB-5BS8). In drug combination studies, OXN-1, 3 and 7 showed synergism with isoniazid. Conclusion: The obtained results reveal that oxindole derivatives exhibit potent antitubercular activity.
Collapse
Affiliation(s)
- Yogesh M Khetmalis
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500078, India
| | - Guruvelli Pv Sangeetha
- College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Ala Chandu
- Department of Pharmacy, Medicinal Chemistry Research Laboratory, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Swati
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Medicinal Chemistry Research Laboratory, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Muthyala Mk Kumar
- College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Venkata Gcs Kondapalli
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500078, India
| |
Collapse
|
8
|
Kumar N, Khanna A, Kaur K, Kaur H, Sharma A, Bedi PMS. Quinoline derivatives volunteering against antimicrobial resistance: rational approaches, design strategies, structure activity relationship and mechanistic insights. Mol Divers 2023; 27:1905-1934. [PMID: 36197551 PMCID: PMC9533295 DOI: 10.1007/s11030-022-10537-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022]
Abstract
Emergence of antimicrobial resistance has become a great threat to human species as there is shortage of development of new antimicrobial agents. So, its mandatary to combat AMR by initiating research and developing new novel antimicrobial agents. Among phytoconstituents, Quinoline (nitrogen containing heterocyclic) have played a wide role in providing new bioactive molecules. So, this review provides rational approaches, design strategies, structure activity relationship and mechanistic insights of newly developed quinoline derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harmandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | | |
Collapse
|
9
|
Demir Y, Tokalı FS, Kalay E, Türkeş C, Tokalı P, Aslan ON, Şendil K, Beydemir Ş. Synthesis and characterization of novel acyl hydrazones derived from vanillin as potential aldose reductase inhibitors. Mol Divers 2023; 27:1713-1733. [PMID: 36103032 DOI: 10.1007/s11030-022-10526-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
Abstract
In the polyol pathway, aldose reductase (AR) catalyzes the formation of sorbitol from glucose. In order to detoxify some dangerous aldehydes, AR is essential. However, due to the effects of the active polyol pathway, AR overexpression in the hyperglycemic state leads to microvascular and macrovascular diabetic problems. As a result, AR inhibition has been recognized as a potential treatment for issues linked to diabetes and has been studied by numerous researchers worldwide. In the present study, a series of acyl hydrazones were obtained from the reaction of vanillin derivatized with acyl groups and phenolic Mannich bases with hydrazides containing pharmacological groups such as morpholine, piperazine, and tetrahydroisoquinoline. The resulting 21 novel acyl hydrazone compounds were investigated as an inhibitor of the AR enzyme. All the novel acyl hydrazones derived from vanillin demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 94.21 ± 2.33 to 430.00 ± 2.33 nM and 49.22 ± 3.64 to 897.20 ± 43.63 nM, respectively. Compounds 11c and 10b against AR enzyme activity were identified as highly potent inhibitors and showed 17.38 and 10.78-fold more effectiveness than standard drug epalrestat. The synthesized molecules' absorption, distribution, metabolism, and excretion (ADME) effects were also assessed. The probable-binding mechanisms of these inhibitors against AR were investigated using molecular-docking simulations.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Turkey.
| | - Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, 36100, Kars, Turkey
| | - Erbay Kalay
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, 36100, Kars, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Pelin Tokalı
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Turkey
| | - Osman Nuri Aslan
- East Anatolian High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
| | - Kıvılcım Şendil
- Department of Chemistry, Faculty of Arts and Science, Kafkas University, 36100, Kars, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
10
|
Verma S, Lal S, Narang R, Sudhakar K. Quinoline Hydrazide/Hydrazone Derivatives: Recent Insights on Antibacterial Activity and Mechanism of Action. ChemMedChem 2023; 18:e202200571. [PMID: 36617503 DOI: 10.1002/cmdc.202200571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
Antibiotics are becoming gradually ineffective due to drug resistance, leading to greater difficulty in the treatment of infectious diseases. Therefore, the development of new chemical entities with different mechanisms of action is essential in the fight against resistant microorganisms. Various studies have shown that quinoline hydrazide/hydrazone derivatives possess several biological activities, such as antimalarial, antitubercular, anticancer, anti-inflammatory, and antimicrobial. Among these activities, the antibacterial activity of quinoline hydrazide/hydrazone derivatives is noteworthy. The synthetic flexibility of the quinoline ring has led to the development of a wide range of structurally diverse quinoline hydrazide/hydrazone derivatives, which can act at various bacterial targets such as DNA gyrase, glucosamine-6-phosphate synthase, enoyl ACP reductase, and 3-ketoacyl ACP reductase. This review emphasizes the antibacterial potential of various reported quinoline hydrazide/hydrazone derivatives based on substitution in the quinoline ring. The antibacterial activity of various metal-quinoline hydrazide/hydrazone complexes is also discussed. The aim of this review is to assemble and scrutinize the latest reports in this promising area of drug development.
Collapse
Affiliation(s)
- Sangeeta Verma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Sukhbir Lal
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Bengaluru, Phagwara, 144402, India
| |
Collapse
|
11
|
Ammar YA, Micky JA, Aboul-Magd DS, Abd El-Hafez SMA, Hessein SA, Ali AM, Ragab A. Development and radiosterilization of new hydrazono-quinoline hybrids as DNA gyrase and topoisomerase IV inhibitors: Antimicrobial and hemolytic activities against uropathogenic isolates with molecular docking study. Chem Biol Drug Des 2023; 101:245-270. [PMID: 36305722 DOI: 10.1111/cbdd.14154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 01/14/2023]
Abstract
This study aimed to synthesize new potent quinoline derivatives based on hydrazone moieties and evaluate their antimicrobial activity. The newly synthesized hydrazono-quinoline derivatives 2, 5a, 9, and 10b showed the highest antimicrobial activity with MIC values ≤1.0 μg/ml against bacteria and ≤8.0 μg/ml against the fungi. Further, these derivatives exhibited bactericidal and fungicidal effects with MBC/MIC and MFC/MIC ratio ≤4. Surprisingly, the most active compounds displayed good inhibition to biofilm formation with MBEC values ranging between (40.0 ± 10.0 - 230.0 ± 31.0) and (67.0 ± 24.0 - 347.0 ± 15.0) μg/ml against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. The hemolytic assays confirmed that the hydrazono-quinoline derivatives are non-toxic with low % lysis values ranging from 4.62% to 14.4% at a 1.0 mg/ml concentration. Besides, compound 5a exhibited the lowest hemolytic activity value of ~4.62%. Furthermore, the study suggests that the hydrazono-quinoline analogs exert their antibacterial activity as dual inhibitors for DNA gyrase and DNA topoisomerase IV enzymes with IC50 values ranging between (4.56 ± 0.3 - 21.67 ± 0.45) and (6.77 ± 0.4 - 20.41 ± 0.32) μM, respectively. Additionally, the recent work advocated that compound 5a showed the reference SAL at the ɣ-radiation dose of 10.0 kGy in the sterilization process without affecting its chemical structure. Finally, the in silico drug-likeness, toxicity properties, and molecular docking simulation were performed. Besides, the result exhibited good oral-bioavailability, lower toxicity prediction, and lower binding energy with good binding mode rather than the positive control.
Collapse
Affiliation(s)
- Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Jehan A Micky
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Sondos M A Abd El-Hafez
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Sadia A Hessein
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abeer M Ali
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
12
|
Design, Synthesis, Antioxidant and Anticholinesterase Activities of Novel Isonicotinic Hydrazide-Hydrazone Derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Kadela-Tomanek M, Jastrzębska M, Chrobak E, Bębenek E. Lipophilicity and ADMET Analysis of Quinoline-1,4-quinone Hybrids. Pharmaceutics 2022; 15:pharmaceutics15010034. [PMID: 36678664 PMCID: PMC9867208 DOI: 10.3390/pharmaceutics15010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Lipophilicity is one of the basic properties of a potential drug determining its solubility in non-polar solvents and, consequently, its ability to passively penetrate the cell membrane, as well as the occurrence of various pharmacokinetic processes, including adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Heterocyclic compounds containing a nitrogen atom play a significant role in the search for new drugs. In this study, lipophilicity as well as other physicochemical, pharmacokinetic and toxicity properties affecting the bioavailability of the quinolone-1,4-quinone hybrids are presented. Lipophilicity was determined experimentally as well as theoretically using various computer programs. The tested compounds showed low values of experimental lipophilicity and its relationship with the type of 1,4-quinone moiety. Introduction of the nitrogen atom reduced the lipophilicity depending on the position at the 5,8-quinolinedione moiety. The bioavailability of the tested compounds was determined in silico using the ADMET parameters. The obtained parameters showed that most of the hybrids can be used orally and do not exhibit neurotoxic effects. Similarity analysis was used to examine the relationship between the ADMET parameters and experimental lipophilicity. The ability of hybrids to interact with biological targets was characterized by global reactivity descriptors. The molecular docking study showed that the hybrids can inhibit the BCL-2 protein.
Collapse
Affiliation(s)
- Monika Kadela-Tomanek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
- Correspondence: ; Tel.: +48-32-3641666
| | - Maria Jastrzębska
- Silesian Center for Education and Interdisciplinary Research, Institute of Physics, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
14
|
Abdelrahman MA, Almahli H, Al-Warhi T, Majrashi TA, Abdel-Aziz MM, Eldehna WM, Said MA. Development of Novel Isatin-Tethered Quinolines as Anti-Tubercular Agents against Multi and Extensively Drug-Resistant Mycobacterium tuberculosis. Molecules 2022; 27:molecules27248807. [PMID: 36557937 PMCID: PMC9781264 DOI: 10.3390/molecules27248807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
We describe the design and synthesis of two isatin-tethered quinolines series (Q6a-h and Q8a-h), in connection with our research interest in developing novel isatin-bearing anti-tubercular candidates. In a previous study, a series of small molecules bearing a quinoline-3-carbohydrazone moiety was developed as anti-tubercular agents, and compound IV disclosed the highest potency with MIC value equal to 6.24 µg/mL. In the current work, we adopted the bioisosteric replacement approach to replace the 3,4,5-trimethoxy-benzylidene moiety in the lead compound IV with the isatin motif, a privileged scaffold in the TB drug discovery, to furnish the first series of target molecules Q6a-h. Thereafter, the isatin motif was N-substituted with either a methyl or benzyl group to furnish the second series Q8a-h. All of the designed quinoilne-isatin conjugates Q6a-h and Q8a-h were synthesized and then biologically assessed for anti-tubercular actions towards drug-susceptible, MDR, and XDR strains. Superiorly, the N-benzyl-bearing compound Q8b possessed the best activities against the examined M. tuberculosis strains with MICs equal 0.06, 0.24, and 1.95 µg/mL, respectively.
Collapse
Affiliation(s)
- Mohamed A. Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
- Correspondence: (M.A.A.); (W.M.E.)
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Marwa M. Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11651, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt
- Correspondence: (M.A.A.); (W.M.E.)
| | - Mohamed A. Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| |
Collapse
|
15
|
Jiang W, Cheng W, Zhang T, Lu T, Wang J, Yan Y, Tang X, Wang X. Synthesis and antifungal activity evaluation of novel pyridine derivatives as potential succinate dehydrogenase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
dos Santos Filho JM, de Souza Castro MVB. Synthesis, structural characterization, and antimicrobial activity of novel ferrocene-N-acyl hydrazones designed by means of molecular simplification strategy Celebrating the 100th anniversary of the birth of Professor Paulo Freire. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
A Hydrazine-Hydrazone Adamantine Compound Shows Antimycobacterial Activity and Is a Probable Inhibitor of MmpL3. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207130. [PMID: 36296721 PMCID: PMC9610904 DOI: 10.3390/molecules27207130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Tuberculosis remains an important cause of morbidity and mortality throughout the world. Notably, an important number of multi drug resistant cases is an increasing concern. This problem points to an urgent need for novel compounds with antimycobacterial properties and to improve existing therapies. Whole-cell-based screening for compounds with activity against Mycobacterium tuberculosis complex strains in the presence of linezolid was performed in this study. A set of 15 bioactive compounds with antimycobacterial activity in vitro were identified with a minimal inhibitory concentration of less than 2 µg/mL. Among them, compound 1 is a small molecule with a chemical structure consisting of an adamantane moiety and a hydrazide–hydrazone moiety. Whole genome sequencing of spontaneous mutants resistant to the compounds suggested compound 1 to be a new inhibitor of MmpL3. This compound binds to the same pocket as other already published MmpL3 inhibitors, without disturbing the proton motive force of M. bovis BCG and M. smegmatis. Compound 1 showed a strong activity against a panel ofclinical strains of M. tuberculosis in vitro. This compound showed no toxicity against mammalian cells and protected Galleria mellonella larvae against M. bovis BCG infection. These results suggest that compound 1 is a promising anti-TB agent with the potential to improve TB treatment in combination with standard TB therapies.
Collapse
|
18
|
Patel KB, Kumari P. A Review: Structure-activity relationship and antibacterial activities of Quinoline based hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Branković J, Milivojević N, Milovanović V, Simijonović D, Petrović ZD, Marković Z, Šeklić DS, Živanović MN, Vukić MD, Petrović VP. Evaluation of antioxidant and cytotoxic properties of phenolic N-acylhydrazones: structure-activity relationship. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211853. [PMID: 35706666 PMCID: PMC9174720 DOI: 10.1098/rsos.211853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/06/2022] [Indexed: 05/03/2023]
Abstract
Cancer is still a relentless public health issue. Particularly, colorectal cancer is the third most prevalent cancer in men and the second in women. Moreover, cancer development and growth are associated with various cell disorders, such as oxidative stress and inflammation. The quest for efficient therapeutics is a challenging task, especially when it comes to achieving both cytotoxicity and selectivity. Herein, five series of phenolic N-acylhydrazones were synthesized and evaluated for their antioxidant potency, as well as their influence on HCT-116 and MRC-5 cells viability. Among 40 examined analogues, 20 of them expressed antioxidant activity against the DPPH radical. Furthermore, density functional theory was employed to estimate the antioxidant potency of the selected analogues from the thermodynamical aspect, as well as the preferable free-radical scavenging pathway. Cytotoxicity assay exposed enhanced selectivity of a number of analogues toward cancer cells. The structure-activity analysis revealed the impact of the type and position of the functional groups on both cell viability and selectivity toward cancer cells.
Collapse
Affiliation(s)
- Jovica Branković
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Nevena Milivojević
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Vesna Milovanović
- University of Kragujevac, Faculty of Agronomy in Čačak, Ljubićska 30, Čačak, Serbia
| | - Dušica Simijonović
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Zorica D. Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Zoran Marković
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dragana S. Šeklić
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Marko N. Živanović
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Milena D. Vukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Vladimir P. Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
20
|
Synthesis, Spectral, Crystal structure, Hirshfeld surface, Computational analysis, and Antimicrobial studies of Ethyl-(E)-4-(2-(2-arylidenehydrazinyl)-2-oxoethyl)piperazine-1-carboxylates. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Tambe A, Sadaphal G, Dhawale R, Shirole G. Pumice-based sulfonic acid: a sustainable and recyclable acidic catalyst for one-pot synthesis of pyrazole anchored 1,4-dihydropyridine derivatives at room temperature. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
El-Gammal OA, El-Bindary AA, Sh. Mohamed F, Rezk GN, El-Bindary MA. Synthesis, characterization, design, molecular docking, anti COVID-19 activity, DFT calculations of novel Schiff base with some transition metal complexes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117850] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Emam AM, Dahal A, Singh SS, Tosso RD, Ibrahim SM, El-Sadek M, Jois SD, Enriz RD, Kothayer H. Quinazoline-tethered hydrazone: A versatile scaffold toward dual anti-TB and EGFR inhibition activities in NSCLC. Arch Pharm (Weinheim) 2021; 354:e2100281. [PMID: 34585758 DOI: 10.1002/ardp.202100281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/07/2022]
Abstract
Globally, lung cancer and tuberculosis are considered to be very serious and complex diseases. Evidence suggests that chronic infection with tuberculosis (TB) can often lead to lung tumors; therefore, developing drugs that target both diseases is of great clinical significance. In our study, we designed and synthesized a suite of 14 new quinazolinones (5a-n) and performed biological investigations of these compounds in Mycobacterium tuberculosis (MTB) and cancer cell lines. In addition, we conducted a molecular modeling study to determine the mechanism of action of these compounds at the molecular level. Compounds that showed anticancer activity in the preliminary screening were further evaluated in three cancer cell lines (A549, Calu-3, and BT-474 cells) and characterized in an epidermal growth factor receptor (EGFR) binding assay. Cytotoxicity in noncancerous lung fibroblast cells was also evaluated to obtain safety data. Our theoretical and experimental studies indicated that our compounds showed a mechanism of action similar to that of erlotinib by inhibiting the EGFR tyrosine kinase. In turn, the antituberculosis activity of these compounds would be produced by the inhibition of enoyl-ACP-reductase. From our findings, we were able to identify two potential lead compounds (5i and 5l) with dual activity and elevated safety toward noncancerous lung fibroblast cells. In addition, our data identified three compounds with excellent anti-TB activities (compounds 5i, 5l, and 5n).
Collapse
Affiliation(s)
- Aya M Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Rodrigo D Tosso
- Pharmacy Department, Facultad de Química, Bioquímica y Farmacia, IMIBIO-CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| | - Samy M Ibrahim
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed El-Sadek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Ricardo D Enriz
- Pharmacy Department, Facultad de Química, Bioquímica y Farmacia, IMIBIO-CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
24
|
Parhizkari M, Bayat M, Hosseini FS. Simple Synthesis of 2-Amino- N'-(9 H-Fluoren-9-Ylidene)-Hexahydroquinoline-3-Carbohydrazide Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1974500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Marzieh Parhizkari
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Fahimeh Sadat Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
25
|
Popiołek Ł. Updated Information on Antimicrobial Activity of Hydrazide-Hydrazones. Int J Mol Sci 2021; 22:9389. [PMID: 34502297 PMCID: PMC8430688 DOI: 10.3390/ijms22179389] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023] Open
Abstract
Hydrazide-hydrazones possess a wide spectrum of bioactivity, including antibacterial, antitubercular, antifungal, anticancer, anti-inflammatory, anticonvulsant, antidepressant, antiviral, and antiprotozoal properties. This review is focused on the latest scientific reports regarding antibacterial, antimycobacterial, and antifungal activities of hydrazide-hydrazones published between 2017 and 2021. The molecules and their chemical structures presented in this article are the most active derivatives, with discussed activities having a hydrazide-hydrazone moiety as the main scaffold or as a side chain. Presented information constitute a concise summary, which may be used as a practical guide for further design of new molecules with antimicrobial activity.
Collapse
Affiliation(s)
- Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
26
|
Design, synthesis and inhibitory activity of novel 2, 3-dihydroquinolin-4(1H)-one derivatives as potential succinate dehydrogenase inhibitors. Eur J Med Chem 2021; 214:113246. [PMID: 33582385 DOI: 10.1016/j.ejmech.2021.113246] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/23/2022]
Abstract
Thirty-three new 2, 3-dihydroquinolin-4(1H)-one analogues were designed, synthesized and characterized by IR, 1H NMR, 13C NMR and HRMS. The crystal structures of compounds 2g and 4l were characterized by single crystal X-ray diffraction. Their antifungal activities were determined against five plant pathogenic fungi namely Rhizoctonia solani, Fusarum graminearum, Helminthosporium maydis, Sclerotinia sclerotiorum and Botrytis cinerea. The results indicated that most of them revealed significant antifungal activity at 20 mg/L. Compound 4e showed the strongest antifungal activity against Botrytis cinerea and had better effects than the commercial fungicide fluopyram. Meanwhile, the active compounds were evaluated for their inhibitory activities against succinate dehydrogenase (SDH). The results displayed that they exhibited excellent activity. Compound 4e had better inhibitory activity than fluopyram. The molecular modeling results demonstrated that compound 4e could strongly bind to and interact with the binding sites of SDH. The inhibitory activity of 2, 3-dihydroquinolin-4(1H)-one derivatives against SDH has been reported for the first time.
Collapse
|
27
|
Novel Derivatives of 4-Methyl-1,2,3-Thiadiazole-5-Carboxylic Acid Hydrazide: Synthesis, Lipophilicity, and In Vitro Antimicrobial Activity Screening. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial infections, especially those caused by strains resistant to commonly used antibiotics and chemotherapeutics, are still a current threat to public health. Therefore, the search for new molecules with potential antimicrobial activity is an important research goal. In this article, we present the synthesis and evaluation of the in vitro antimicrobial activity of a series of 15 new derivatives of 4-methyl-1,2,3-thiadiazole-5-carboxylic acid. The potential antimicrobial effect of the new compounds was observed mainly against Gram-positive bacteria. Compound 15, with the 5-nitro-2-furoyl moiety, showed the highest bioactivity: minimum inhibitory concentration (MIC) = 1.95–15.62 µg/mL and minimum bactericidal concentration (MBC)/MIC = 1–4 µg/mL.
Collapse
|
28
|
Combined experimental and theoretical studies of the structure-antiradical activity relationship of heterocyclic hydrazone compounds. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Shirinzadeh H, Neuhaus E, Ince Erguc E, Tascioglu Aliyev A, Gurer-Orhan H, Suzen S. New indole-7-aldehyde derivatives as melatonin analogues; synthesis and screening their antioxidant and anticancer potential. Bioorg Chem 2020; 104:104219. [PMID: 32916391 DOI: 10.1016/j.bioorg.2020.104219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022]
Abstract
Over the last decade, there has been substantial interest in the use of melatonin (MLT) and MLT-like compounds in the treatment of several diseases. MLT can scavenge different reactive oxygen species and can also stimulate the synthesis of antioxidant enzymes. Our ongoing study relies on changing the groups in the different modifiable sites of the indole ring to increase the antioxidant activity. In this study a new approach for substitution of indole ring as indole based MLT analogue was proposed. We report the synthesis and characterization of a series of new indole-7-aldehyde hydrazide/hydrazone derivatives as indole-based MLT analogues. Anticancer potential of the compounds were evaluated both by their antioxidant and CYP1 inhibitory activities. In vitro antioxidant capacity of the compounds was investigated both in a cell-based (DCFH assay) and a cell-free (DPPH assay) assay. Potential inhibitory effects of the compounds on CYP1 catalytic activity were investigated via EROD assay. Cytotoxic activity of the compounds was further evaluated by the MTT assay in CHO-K1 cells. MLT analogues having an o-halogenated aromatic moiety exhibited effective antioxidant properties without having any cytotoxic effect. In conclusion, MLT derivatives represent promising scaffolds for discovery of effective antioxidant agents.
Collapse
Affiliation(s)
- Hanif Shirinzadeh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali YildirimUniversity, Yanlızbag Yerleskesi, 24100 Erzincan, Turkey.
| | - Eddy Neuhaus
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan-06100, Ankara, Turkey
| | - Elif Ince Erguc
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Izmir, Turkey; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İzmir Katip Celebi University, 35620 Izmir, Turkey
| | - Alev Tascioglu Aliyev
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Izmir, Turkey
| | - Hande Gurer-Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Izmir, Turkey
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan-06100, Ankara, Turkey
| |
Collapse
|
30
|
Yang J, Liu XR, Yu MK, Yang WB, Yang ZW, Zhao SS. Co and Cu complexes with 2-acetylpyridine-4-hydroxy phenylacetyl acylhydrazone: Synthesis, crystal structures, CT-DNA/BSA binding behaviors, antibacterial activities and molecular docking studies. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Villamizar-Mogotocoro AF, Vargas-Méndez LY, Kouznetsov VV. Pyridine and quinoline molecules as crucial protagonists in the never-stopping discovery of new agents against tuberculosis. Eur J Pharm Sci 2020; 151:105374. [DOI: 10.1016/j.ejps.2020.105374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
|
32
|
Hajibabaei M, Shafiei F, Abdoli‐Senejani M. Quantitative modeling for prediction of thermodynamic properties of some pyridine derivatives using molecular descriptors and genetic algorithm‐multiple linear regressions. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maryam Hajibabaei
- Department of Chemistry, Arak BranchIslamic Azad University Arak Iran
| | - Fatemeh Shafiei
- Department of Chemistry, Arak BranchIslamic Azad University Arak Iran
| | | |
Collapse
|
33
|
Suay‐Garcia B, Bueso‐Bordils JI, Falcó A, Pérez‐Gracia MT, Antón‐Fos G, Alemán‐López P. Quantitative structure–activity relationship methods in the discovery and development of antibacterials. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Beatriz Suay‐Garcia
- Departamento de Matemáticas, Física y Ciencias Tecnológicas Universidad Cardenal Herrera‐CEU, CEU Universities Alfara del Patriarca, Valencia Spain
| | - Jose Ignacio Bueso‐Bordils
- Departamento de Farmacia, Universidad Cardenal Herrera‐CEU CEU Universities Alfara del Patriarca, Valencia Spain
| | - Antonio Falcó
- Departamento de Matemáticas, Física y Ciencias Tecnológicas Universidad Cardenal Herrera‐CEU, CEU Universities Alfara del Patriarca, Valencia Spain
| | - María Teresa Pérez‐Gracia
- Departamento de Farmacia, Universidad Cardenal Herrera‐CEU CEU Universities Alfara del Patriarca, Valencia Spain
| | - Gerardo Antón‐Fos
- Departamento de Farmacia, Universidad Cardenal Herrera‐CEU CEU Universities Alfara del Patriarca, Valencia Spain
| | - Pedro Alemán‐López
- Departamento de Farmacia, Universidad Cardenal Herrera‐CEU CEU Universities Alfara del Patriarca, Valencia Spain
| |
Collapse
|
34
|
Sridhara MB, Rakesh KP, Manukumar HM, Shantharam CS, Vivek HK, Kumara HK, Mohammed YHE, Gowda DC. Synthesis of Dihydrazones as Potential Anticancer and DNA Binding Candidates: A Validation by Molecular Docking Studies. Anticancer Agents Med Chem 2020; 20:845-858. [PMID: 32096753 DOI: 10.2174/1871520620666200225104558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Accounting for mortality nearly one in four of human and second highest leading cause of death worldwide. Every year, about 10 million new cancers are diagnosed and causing major health issues in both developing and developed countries. METHODS A series of new dihydrazones were synthesized and screened for in vitro anticancer activity against three different MDA-MB-231, A546 and MCF7 cell lines and validated by DNA binding and molecular docking approaches. RESULT In the present investigations, synthesized compounds 21, 22, 23 and 24 exhibited potent anticancer activity against tested cancer cell lines and DNA binding study using methyl green comparing to Doxorubicin and ethidium bromide as a positive control respectively. CONCLUSION The Structure Activity Relationship (SAR) showed that the electron withdrawing groups (-Cl, -NO2, - F, and -Br) favored the DNA binding studies and anticancer activity whereas, electron donating groups (-OH and - OCH3) showed moderate activity. In the molecular docking study, binding interactions of the most active compounds 21, 22, 23 and 24 stacked with A-T rich regions of the DNA minor groove by surface binding interactions were confirmed. Further, the tuning of active analogs for targeted therapy was warranted.
Collapse
Affiliation(s)
- Malavalli B Sridhara
- Department of Chemistry, Rani Channamma University, Vidyasangama, Belagavi-591156, Karnataka, India
| | - Kadalipura P Rakesh
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430073, China
| | | | - Chavalmane S Shantharam
- Department of Chemistry, Pooja Bhagavath Memorial Mahajana Education Centre, Mysuru-570016, Karnataka, India
| | - Hamse K Vivek
- Faculty of Natural Sciences, Adichunchanagiri University, B.G. Nagara, Mandya-571448, Karnataka, India
| | - Humegowdeenahally K Kumara
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570006, Karnataka, India
| | - Yasser H E Mohammed
- Department of Biochemistry, Faculty of Applied Science College, University of Hajjah, Hajjah, Yemen
| | - Dale C Gowda
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570006, Karnataka, India
| |
Collapse
|
35
|
Hamidi S, Tüfekci EF, Demirbaş N, Ünver Y, Kılıç AO. Bazı Sefalosporanik Asit, Siprofloksasin, Norfloksasin ve Penicillanik Asit Türevlerinin Antimikrobiyal ve Anti-Quorum Sensing Özelliklerinin Araştırılması. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2020. [DOI: 10.30934/kusbed.604829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Sang YL, Zhang XH, Lin XS, Liu YH, Liu XY. Syntheses, crystal structures, and antibacterial activity of oxidovanadium(V) and dioxidomolybdenum(VI) complexes derived from N′-(2-hydroxy-4-methoxybenzylidene)isonicotinohydrazide. J COORD CHEM 2020. [DOI: 10.1080/00958972.2019.1707192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ya-Li Sang
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| | - Xin-Hao Zhang
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| | - Xue-Song Lin
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| | - Yan-Hua Liu
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| | - Xiao-Yin Liu
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| |
Collapse
|
37
|
Yan M, Xu L, Wang Y, Wan J, Liu T, Liu W, Wan Y, Zhang B, Wang R, Li Q. Opportunities and challenges of using five-membered ring compounds as promising antitubercular agents. Drug Dev Res 2020; 81:402-418. [PMID: 31904877 DOI: 10.1002/ddr.21638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 12/07/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB), a chronic infectious disease, is one of the greatest risks to human beings and 10 million people were diagnosed with TB and 1.6 million died from this disease in 2017. In addition, with the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the TB situation has become even worse, which has aggravated the mortality and spread of this disease. To overcome this problem, research into novel antituberculosis agents with enhanced activities against MDR-TB, reduced toxicity, and shortened duration of therapy is of great importance. Fortunately, many novel potential anti-TB drug candidates with five-membered rings, which are most likely to be effective against sensitive and resistant strains, have recently entered clinical trials. Different five-membered rings such as furans, pyranoses, thiazoles, pyrazolines, imidazoles, oxazolidinone, thiazolidins, isoxazoles, triazoles, oxadiazoles, thiadiazoles, and tetrazoles have been designed, prepared, and evaluated for their antimycobacterial activity against Mycobacterium tuberculosis. In this article, we highlight the recent advances made in the discovery of novel five-membered ring compounds and focus on their antitubercular activities, toxicity, structure-activity relationships, and mechanisms of action.
Collapse
Affiliation(s)
- Mi Yan
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China
| | - Linlin Xu
- Department of Pharmacy, Taian Central Hospital, Taian, China
| | - Yinhu Wang
- School of Pharmacy, Liaocheng University, Liaocheng, China
| | - Jianhua Wan
- China Resources Land Huabei Region Shandong Company, Jinan, China
| | - Ting Liu
- Department of Laboratory Medical Centre, The Second Hospital of Shandong University, Jinan, China
| | - Wenjie Liu
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Bin Zhang
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China
| | - Rongmei Wang
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China
| | - Qiang Li
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
38
|
Abozeid MA, El-Sawi AA, Abdelmoteleb M, Awad H, Abdel-Aziz MM, Hassan Abdel-Rahman AR, Ibrahim El-Desoky ES. Synthesis of novel naphthalene-heterocycle hybrids with potent antitumor, anti-inflammatory and antituberculosis activities. RSC Adv 2020; 10:42998-43009. [PMID: 35514936 PMCID: PMC9058152 DOI: 10.1039/d0ra08526j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/19/2020] [Indexed: 01/16/2023] Open
Abstract
Multitarget-directed drugs (hybrid drugs) constitute an efficient avenue for the treatment of multifactorial diseases. In this work, novel naphthalene hybrids with different heterocyclic scaffolds such as nicotinonitrile, pyran, pyranopyrazole, pyrazole, pyrazolopyridine, and azepine were efficiently synthesized via tandem reactions of 3-formyl-4H-benzo[h]chromen-4-one 1 with different nucleophilic reagents. Analysis of these hybrids using PASS online software indicated different predicted biological activities such as anticancer, antimicrobial, antiviral, antiprotozoal, anti-inflammatory, etc. By focusing on antitumor, anti-inflammatory, and antituberculosis activities, many compounds revealed remarkable activities. While 3c, 3e, and 3h were more potent than doxorubicin in the case of HepG-2 cell lines, 3a–e, 3i, 6, 8, 10, 11, and 12b were more potent in the case of MCF-7. Moreover, compounds 3c, 3h, 8, 10, 3d, and 12b manifested superior activity and COX-2 selectivity to the reference anti-inflammatory Celecoxib. Regarding antituberculosis activity, 3c, 3d, and 3i were found to be the most promising with MIC less than 1 μg mL−1. The molecular docking studies showed strong polar and hydrophobic interactions with the novel naphthalene-heterocycle hybrids that were compatible with experimental evaluations to a great extent. Novel naphthalene-heterocycle hybrids were synthesized via tandem reactions of 3-formylchromone with different nucleophilic reagents. Various hybrids revealed potent antitumor and anti-inflammatory as well as promising antituberculosis activities.![]()
Collapse
Affiliation(s)
| | - Aya Atef El-Sawi
- Department of Chemistry
- Faculty of Science
- Mansoura University
- Mansoura-35516
- Egypt
| | - Mohamed Abdelmoteleb
- Food Allergy Research & Resource Program (FARRP)
- Department of Food Science & Technology
- University of Nebraska
- Lincoln
- USA
| | - Hanem Awad
- Department of Tanning Materials and Leather Technology
- Chemical Industries Research Division
- National Research Centre
- Giza
- Egypt
| | | | | | | |
Collapse
|
39
|
Synthesis, biology, computational studies and in vitro controlled release of new isoniazid-based adamantane derivatives. Future Med Chem 2019. [DOI: 10.4155/fmc-2019-0038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: There is a necessity for new drugs to be more efficient than today's standard due to the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) Results/methodology: 12 new isoniazid-based adamantane derivatives were synthesized and tested for their antitubercular activity. The pharmacological test results and the aqueous dissolution profile of representative examples of the new molecules are in agreement with the computational results obtained from docking poses and molecular dynamics simulations on the tested compounds. Conclusion: Among their congeners, the adamantane isonicotinoyl hydrazones Ia and Ih exhibit the best antitubercular activity (MIC = 0.04 μg/ml) and the lowest cytotoxicity (selectivity index ≥2500). These results are useful for in future in vivo studies.
Collapse
|
40
|
Wang J, Peng W, Li X, Fan W, Wei D, Wu B, Fan L, Wu C, Li L. Towards to potential 2-cyano-pyrimidines cathepsin-K inhibitors: An in silico design and screening research based on comprehensive application of quantitative structure–activity relationships, molecular docking and ADMET prediction. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Hu JP, Wu ZX, Xie T, Liu XY, Yan X, Sun X, Liu W, Liang L, He G, Gan Y, Gou XJ, Shi Z, Zou Q, Wan H, Shi HB, Chang S. Applications of Molecular Simulation in the Discovery of Antituberculosis Drugs: A Review. Protein Pept Lett 2019; 26:648-663. [PMID: 31218945 DOI: 10.2174/0929866526666190620145919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/10/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Abstract
After decades of efforts, tuberculosis has been well controlled in most places. The existing drugs are no longer sufficient for the treatment of drug-resistant Mycobacterium tuberculosis due to significant toxicity and selective pressure, especially for XDR-TB. In order to accelerate the development of high-efficiency, low-toxic antituberculosis drugs, it is particularly important to use Computer Aided Drug Design (CADD) for rational drug design. Here, we systematically reviewed the specific role of molecular simulation in the discovery of new antituberculosis drugs. The purpose of this review is to overview current applications of molecular simulation methods in the discovery of antituberculosis drugs. Furthermore, the unique advantages of molecular simulation was discussed in revealing the mechanism of drug resistance. The comprehensive use of different molecular simulation methods will help reveal the mechanism of drug resistance and improve the efficiency of rational drug design. With the help of molecular simulation methods such as QM/MM method, the mechanisms of biochemical reactions catalyzed by enzymes at atomic level in Mycobacterium tuberculosis has been deeply analyzed. QSAR and virtual screening both accelerate the development of highefficiency, low-toxic potential antituberculosis drugs. Improving the accuracy of existing algorithms and developing more efficient new methods for CADD will always be a hot topic in the future. It is of great value to utilize molecular dynamics simulation to investigate complex systems that cannot be studied in experiments, especially for drug resistance of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Jian-Ping Hu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Zhi-Xiang Wu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Tao Xie
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Xin-Yu Liu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiao Yan
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Xin Sun
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Wei Liu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Li Liang
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Gang He
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Ya Gan
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Xiao-Jun Gou
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Zheng Shi
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Qiang Zou
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Hua Wan
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Hu-Bing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
42
|
Khanapurmath N, Kulkarni MV, Joshi SD, Anil Kumar G. A click chemistry approach for the synthesis of cyclic ureido tethered coumarinyl and 1-aza coumarinyl 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis H37Rv and their in silico studies. Bioorg Med Chem 2019; 27:115054. [DOI: 10.1016/j.bmc.2019.115054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
|
43
|
Kumari P, Ansari SN, Kumar R, Saini AK, Mobin SM. Design and Construction of Aroyl-Hydrazone Derivatives: Synthesis, Crystal Structure, Molecular Docking and Their Biological Activities. Chem Biodivers 2019; 16:e1900315. [PMID: 31532059 DOI: 10.1002/cbdv.201900315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023]
Abstract
Here, we report the synthesis and characterization of four new aroyl-hydrazone derivatives L1 -L4 , and their structural as well as biological activities have been explored. In addition to docking with bovine serum albumin (BSA) and duplex DNA, the experimental results demonstrate the effective binding of L1 -L4 with BSA protein and calf thymus DNA (ct-DNA) which is in agreement with the docking results. Further biological activities of L1 -L4 have been examined through molecular docking with different proteins which are involved in the propagation of viral or cancer diseases. L1 shows best binding affinity with influenza A virus polymerase PB2 subunit (2VY7) with binding energy -11.42 kcal/mol and inhibition constant 4.23 nm, whereas L2 strongly bind with the hepatitis C virus NS5B polymerase (2WCX) with binding energy -10.47 kcal/mol and inhibition constant 21.06 nm. Ligand L3 binds strongly with TGF-beta receptor 1 (3FAA) and L4 with cancer-related EphA2 protein kinases (1MQB) with binding energy -10.61 kcal/mol, -10.02 kcal/mol and inhibition constant 16.67 nm and 45.41 nm, respectively. The binding energies of L1 -L4 are comparable with binding energies of their proven inhibitors. L1 , L3 and L4 can be considered as both 3FAA and 1MQB dual targeting anticancer agents, while L1 and L3 are both 2VY7 and 2WCX dual targeting antiviral agents. On the other side, L2 and L4 target only one virus related target (2WCX). Furthermore, the geometry optimizations of L1 -L4 were performed via density functional theory (DFT). Moreover, all four ligands (L1 -L4 ) were characterized by NMR, FT-IR, ESI-MS, elemental analysis and their molecular structures were validated by single crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Pratibha Kumari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Shagufi Naz Ansari
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | | | - Shaikh M Mobin
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.,Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.,Metallurgical Engineering and Material Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| |
Collapse
|
44
|
Recent advances in the synthetic and medicinal perspective of quinolones: A review. Bioorg Chem 2019; 92:103291. [PMID: 31561107 DOI: 10.1016/j.bioorg.2019.103291] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
Abstract
In the modern scenario, the quinolone scaffold has emerged as a very potent motif considering its clinical significance. Quinolones possess wide range of pharmacological activities such as anticancer, antibacterial, antifungal, antiprotozoal, antiviral, anti-inflammatory, carbonic anhydrase inhibitory and diuretic activity etc. The versatile synthetic approaches have been successfully applied and several of the resulted synthesized compounds exhibit fascinating biological activities in numerous fields. This has prompted to discover quinolone-based analogues among the researchers due to its great diversity in biological activities. In the past few years, various new, efficient and convenient synthetic approaches (including green chemistry and microwave-assisted synthesis) have been designed and developed to synthesize diverse quinolone-based scaffolds which represent a growing area of interest in academic and industry as well as to explore their biological activities. In this review, an attempt has been made by the authors to summarize (1) One of the most comprehensive listings of quinolone-based drugs or agents in the market or under various stages of clinical development; (2) Recent advances in the synthetic strategies for quinolone derivatives as well as their biological implications including insight of mechanistic studies. (3) Further, the biological data is correlated with structure-activity relationship studies to provide an insight into the rational design of more active agents.
Collapse
|
45
|
Dragostin I, Dragostin OM, Samal SK, Dash S, Tatia R, Dragan M, Confederat L, Ghiciuc CM, Diculencu D, Lupușoru CE, Zamfir CL. New isoniazid derivatives with improved pharmaco-toxicological profile: Obtaining, characterization and biological evaluation. Eur J Pharm Sci 2019; 137:104974. [PMID: 31252051 DOI: 10.1016/j.ejps.2019.104974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Tuberculostatic drugs are the most common drug groups with global hepatotoxicity. Awareness of potentially severe hepatotoxic reactions is vital, as hepatic impairment can be a devastating and often fatal condition. The treatment problems that may arise, within this class of medicines, are mainly of two types: adverse reactions (collateral, toxic or hypersensitive reactions) and the initial or acquired resistance of Mycobacterium tuberculosis to one or more antituberculosis drugs. Prevention of adverse reactions, increase treatment adherence and success rates, providing better control of tuberculosis (TB). In this regard, obtaining new drugs with low toxicity and high tuberculostatic potential is essential. Thus, in this work, we have designed or synthesized new derivatives of isoniazid (INH), such as new Isonicotinoylhydrazone (INH-a, INH-b and INH-c). These derivatives demonstrated good biocompatibility, antimicrobial property similar to that of parent isoniazid and last but not least, a significantly improved Pharmacotoxicological profile compared to that of isoniazid.
Collapse
Affiliation(s)
- Ionut Dragostin
- University of Medicine and Pharmacy Grigore T. Popa, Faculty of Medicine, Department of Histology, 16 Universitatii Str., 700115, Iasi, Romania
| | - Oana M Dragostin
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str., Galati, Romania.
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, Materials Research Centre, Indian Institute of Science Bangalore, 560 012, Karnataka, India; Laboratory of Biomaterials and regenerative Medicine for Advanced Therapies, Indian Council of Medical Research-Regional Medical Research Centre, Bhubaneswar 751 023, Odisha, India
| | - Saumya Dash
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, Materials Research Centre, Indian Institute of Science Bangalore, 560 012, Karnataka, India
| | - Rodica Tatia
- Romanian National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Maria Dragan
- University of Medicine and Pharmacy Grigore T. Popa, Faculty of Pharmacy, 16 Universitatii Str., 700115, Iasi, Romania
| | - Luminița Confederat
- University of Medicine and Pharmacy Grigore T. Popa, Faculty of Medicine, Department of Microbiology, 16 Universitatii Str., 700115, Iasi, Romania
| | - Cristina M Ghiciuc
- University of Medicine and Pharmacy Grigore T. Popa, Faculty of Medicine, Department of Pharmacology, 16 Universitatii Str., 700115, Iasi, Romania
| | - Daniela Diculencu
- Clinical Pneumophysiology Hospital, Medical Analysis Laboratory, Iasi, Romania
| | - Cătălina E Lupușoru
- University of Medicine and Pharmacy Grigore T. Popa, Faculty of Medicine, Department of Pharmacology, 16 Universitatii Str., 700115, Iasi, Romania
| | - Carmen L Zamfir
- University of Medicine and Pharmacy Grigore T. Popa, Faculty of Medicine, Department of Histology, 16 Universitatii Str., 700115, Iasi, Romania
| |
Collapse
|
46
|
Maddila S, Nagaraju K, Chinnam S, Jonnalagadda SB. Microwave‐Assisted Multicomponent Reaction: A Green and Catalyst‐Free Method for the Synthesis of Poly‐Functionalized 1,4‐Dihydropyridines. ChemistrySelect 2019. [DOI: 10.1002/slct.201902779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Suresh Maddila
- Department of ChemistryGITAM Institute of SciencesGITAM University, Visakhapatnam, Andhra Pradesh India
- School of Chemistry & PhysicsUniversity of KwaZulu-NatalWestville Campus, Chilten Hills, Private Bag 54001 Durban- 4000 South Africa
| | - Kerru Nagaraju
- School of Chemistry & PhysicsUniversity of KwaZulu-NatalWestville Campus, Chilten Hills, Private Bag 54001 Durban- 4000 South Africa
| | - Sampath Chinnam
- Department of ChemistryB.M.S. College of Engineering, Basavanagudi, Bull Temple Road Bangalore 560019 Karnataka India
| | - Sreekantha B Jonnalagadda
- School of Chemistry & PhysicsUniversity of KwaZulu-NatalWestville Campus, Chilten Hills, Private Bag 54001 Durban- 4000 South Africa
| |
Collapse
|
47
|
Zhang B. Quinolone derivatives and their antifungal activities: An overview. Arch Pharm (Weinheim) 2019; 352:e1800382. [PMID: 31021468 DOI: 10.1002/ardp.201800382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 11/06/2022]
Abstract
More than 300 million people suffer from the incidence of life-threatening invasive fungal infections, resulting in over 1.35 million deaths annually. Currently, the antifungal agents available in clinics are rather limited, and the rapid development of resistance to the existing antifungal drugs has further aggravated mortality. Quinolones possess a broad spectrum of chemotherapeutic properties and demonstrate considerable antifungal activities as well. Various quinolone derivatives have been screened for their antifungal activities, and some of them exhibit excellent potency against both drug-susceptible and drug-resistant fungi. This review aims to outline the recent advances in quinolone derivatives as potential antifungal agents and summarize the structure-activity relationship, to provide insights for the rational design of more active candidates.
Collapse
Affiliation(s)
- Bo Zhang
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, P.R. China
| |
Collapse
|
48
|
Wang JL, Li L, Hu MB, Wu B, Fan WX, Peng W, Wei DN, Wu CJ. In silico drug design of inhibitor of nuclear factor kappa B kinase subunit beta inhibitors from 2-acylamino-3-aminothienopyridines based on quantitative structure–activity relationships and molecular docking. Comput Biol Chem 2019; 78:297-305. [DOI: 10.1016/j.compbiolchem.2018.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/11/2018] [Accepted: 12/26/2018] [Indexed: 11/17/2022]
|
49
|
Yu H, Guo S, Cheng JY, Jiang G, Li Z, Zhai W, Li A, Jiang Y, You Z. Synthesis and crystal structures of cobalt(III), copper(II), nickel(II) and zinc(II) complexes derived from 4-methoxy-N′-(pyridin-2-ylmethylene)benzohydrazide with urease inhibitory activity. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1533959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Huiyuan Yu
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Sihan Guo
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Jun-Yan Cheng
- College of Chemistry, Chemical Engineering and Material Science, Shandong Normal University, Jinan, P. R. China
| | - Guifa Jiang
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Zhiwen Li
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Wenqi Zhai
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Ang Li
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Yumin Jiang
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Zhonglu You
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| |
Collapse
|
50
|
Wu Y, Ding X, Ding L, Zhang Y, Cui L, Sun L, Li W, Wang D, Zhao Y. Synthesis and antibacterial activity evaluation of novel biaryloxazolidinone analogues containing a hydrazone moiety as promising antibacterial agents. Eur J Med Chem 2018; 158:247-258. [PMID: 30218910 DOI: 10.1016/j.ejmech.2018.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 07/14/2018] [Accepted: 09/03/2018] [Indexed: 11/25/2022]
Abstract
A series of linezolid analogues containing a hydrazone moiety were designed, synthesized and evaluated for their antibacterial activity. Most compounds exhibited more potent antibacterial activity against S.aureus, MRSA, MSSA, LREF and VRE pathogens as compared with linezolid and radezolid. Compounds 9a, 9c, 9f, 9g, 10m and 10t were more potent against tested clinical isolates of MRSA, MSSA, VRE and LREF as compared to linezolid. Compound 9a exhibited comparable activity with linezolid against human MAO-A for safety evaluation and showed moderate metabolism in human liver microsome. The most promising compound 9a showed remarkable antibacterial activity against S.aureus, MRSA, MSSA, LREF and VRE pathogens with MIC value of 0.0675 mg/mL, respectively, which was 15- to 30-fold more potent than linezolid.
Collapse
Affiliation(s)
- Yachuang Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Xiudong Ding
- Department of Clinical Laboratory, The 309th Hospital of Chinese People's Liberation Army, Beijing, 100091, China
| | - Liang Ding
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yongsheng Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Lei Cui
- Department of Clinical Laboratory, The 309th Hospital of Chinese People's Liberation Army, Beijing, 100091, China
| | - Lu Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Wei Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Di Wang
- Department of Clinical Laboratory, The 309th Hospital of Chinese People's Liberation Army, Beijing, 100091, China.
| | - Yanfang Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| |
Collapse
|