1
|
Ayad Mohamed Rasheed H, Al-Majidi SMH. 5-nitro isatin containing heterocyclics derivatives: synthesis, antioxidant activity, anticancer activity and molecular docking. Nat Prod Res 2025; 39:56-65. [PMID: 37615126 DOI: 10.1080/14786419.2023.2250898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
The manuscript describes the synthesis of eight Novel 1,2,4-triazine and 1,2-diazino derivatives having the 5-nitro isatin moiety. Antiradical and anticancer activities were evaluated using the DPPH method and the MTT assay against breast cancer (MCF-7) cell lines. The compound with the strongest antioxidant and anticancer properties after 24 h was compound 9 (1,2,4-triazine-3-thione) but after 48 h, compound 7 (1,2,4- triazine-3-ol) with good anticancer activity while compound 11 (1,2-diazino) after 72 h.
Collapse
Affiliation(s)
| | - Suaad M H Al-Majidi
- Department of chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
2
|
Szymanowska A, Radomska D, Czarnomysy R, Mojzych M, Kotwica-Mojzych K, Bielawski K, Bielawska A. The activity of pyrazolo[4,3- e][1,2,4]triazine and pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine sulphonamide derivatives in monolayer and spheroid breast cancer cell cultures. J Enzyme Inhib Med Chem 2024; 39:2343352. [PMID: 38700244 PMCID: PMC11073428 DOI: 10.1080/14756366.2024.2343352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
In the last decade, an increasing interest in compounds containing pyrazolo[4,3-e][1,2,4]triazine moiety is observed. Therefore, the aim of the research was to synthesise a novel sulphonyl pyrazolo[4,3-e][1,2,4]triazines (2a, 2b) and pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide derivatives (3a, 3b) to assess their anticancer activity. The MTT assay showed that 2a, 2b, 3a, 3b have stronger cytotoxic activity than cisplatin in both breast cancer cells (MCF-7 and MDA-MB-231) and exhibited weaker effect on normal breast cells (MCF-10A). The obtained results showed that the most active compound 3b increased apoptosis via caspase 9, caspase 8, and caspase 3/7. It is worth to note that compound 3b suppressed NF-κB expression and promoted p53, Bax, and ROS which play important role in activation of apoptosis. Moreover, our results confirmed that compound 3b triggers autophagy through increased formation of autophagosomes, expression of beclin-1 and mTOR inhibition. Thus, our study defines a possible mechanism underlying 3b-induced anti-cancer activity against breast cancer cell lines.
Collapse
Affiliation(s)
- Anna Szymanowska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | | | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Maji A, Yadav A, Sharma S, Saini R, Singh A, Mohanty A, Nandi CK, Ghosh K. One-Pot Synthesis of 1, 2-Dihydro [1,2,4] Triazinium Salt by Copper-Assisted Unprecedented Cyclization Reaction: Applications in DNA and Protein Interaction Studies. Chempluschem 2024; 89:e202400219. [PMID: 39126688 DOI: 10.1002/cplu.202400219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Copper catalyzed intramolecular annulation of 2-((2-benzylidene-1-phenylhydrazineyl)methyl)pyridine derivatives was described. It was found that Cu(II) is reduced under the reaction condition to Cu(I). Synthesized 1,2-dihydro [1,2,4] triazinium salt showed fluorescence activity in the solid state. On treating with base, an instant increase in fluorescence was observed. A detailed physicochemical assessment underscored the robust DNA-binding capabilities of the [1,2,4]triazinium cationic species (C1-C3) via intercalative mechanisms. Notably, binding assays with BSA accentuated the heightened nucleic acid affinity of these cationic species.
Collapse
Affiliation(s)
- Ankur Maji
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Aditya Yadav
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand Campus, VPO Kamand, Distt. Mandi Himachal Pradesh, 175075, India
| | - Shubham Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand Campus, VPO Kamand, Distt. Mandi Himachal Pradesh, 175075, India
| | - Rajat Saini
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Anshu Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Aurobinda Mohanty
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Chayan K Nandi
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand Campus, VPO Kamand, Distt. Mandi Himachal Pradesh, 175075, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
4
|
Mohamed-Ezzat RA, Elgemeie GH. Novel synthesis of new triazine sulfonamides with antitumor, anti-microbial and anti-SARS-CoV-2 activities. BMC Chem 2024; 18:58. [PMID: 38532431 DOI: 10.1186/s13065-024-01164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Novel approach for synthesizing triazine sulfonamide derivatives is accomplished via reacting the sulfaguanidine derivatives with N-cyanodithioiminocarbonate. Further reaction of the novel triazine sulfonamide analogues with various secondary amines and anilines generated various substituted triazine sulfonamide analogues of promising broad-spectrum activities including anti-microbial, anti-tumor, and anti-viral properties. The in vitro anti-proliferative activities of most of the novel compounds were evaluated on the NCI-60 cell line panel. The antifungal and antibacterial activities of the compounds were also estimated. The anti-viral activity against SARS CoV-2 virus was performed using MTT cytotoxicity assay to evaluate the half-maximal cytotoxic concentration (CC50) and inhibitory concentration 50 (IC50) of a representative compound from the novel triazine sulfonamide category. Compound 3a demonstrated potent antiviral activity against SARS-CoV-2 with IC50 = 2.378 µM as compared to the activity of the antiviral drug remdesivir (IC50 = 10.11 µM). Our results indicate that, upon optimization, these new triazine sulfonamides could potentially serve as novel antiviral drugs.
Collapse
Affiliation(s)
- Reham A Mohamed-Ezzat
- Chemistry of Natural & Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt
| | - Galal H Elgemeie
- Department of Chemistry, Faculty of Science, Helwan University, Helwan, Cairo, Egypt.
| |
Collapse
|
5
|
Kumawat J, Jain S, Misra N, Dwivedi J, Kishore D. 1,3,5-Triazine: Recent Development in Synthesis of its Analogs and Biological Profile. Mini Rev Med Chem 2024; 24:2019-2071. [PMID: 38847171 DOI: 10.2174/0113895575309800240526180356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 10/25/2024]
Abstract
Triazine is an important pharmacophore in the field of research for the development of novel medications due to its presence in numerous powerful physiologically active compounds with significant medical potential, such as anti-tumor, anti-viral, anti-inflammatory, anti-microbial, anti- HIV, anti-leishmanial and others. The easy availability of triazine, high reactivity, simple synthesis of their analog, and their notable broad range of biological activities have garnered chemist interest in designing s-triazine-based drugs. The interest of medicinal chemists has been sparked by the structure-activity relationship of these biologically active entities, leading to the discovery of several promising lead molecules. Its importance for medicinal chemistry research is demonstrated by the remarkable progress made with triazine derivatives in treating a variety of disorders in a very short period. Authors have collated and reviewed the medicinal potential of s-triazine analogous to afford medicinal chemists with a thorough and target-oriented overview of triazine-derived compounds. We hope the present compilation will help people from the industry and research working in the medicinal chemistry area.
Collapse
Affiliation(s)
- Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Namita Misra
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| |
Collapse
|
6
|
Rezaei M, Bayat M. Efficient synthesis of new indenopyridotriazine [4.3.3]propellanes and spiroindenopyridotriazine-4 H-pyran derivatives. RSC Adv 2023; 13:31488-31496. [PMID: 37901267 PMCID: PMC10604634 DOI: 10.1039/d3ra06248a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
The pyrido[1,2,4]triazines as substrates, generated from 1,6-diaminopyridinone derivatives and ninhydrin, were reacted with malononitrile and CH-acids to afford a new library spiro[indeno[1,2-e]pyrido[1,2-b][1,2,4]triazine-7,5'-pyran]-1,3,6'-tricarbonitrile in ethanol at reflux condition in excellent yield. Also, novel indenopyridotriazine [4.3.3]propellanes were synthesized via the reaction of pyrido[1,2,4]triazine and N-methyl-1-(methylthio)-2-nitroethenamine (NMSM) by using of HOAc in ethanol. The important aspects of this protocol are the abundance of starting materials, mild conditions, structural diversity of products, excellent yields and easy isolation of products with no chromatographic technique.
Collapse
Affiliation(s)
- Monireh Rezaei
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran
| |
Collapse
|
7
|
He M, Fan M, Yang W, Peng Z, Wang G. Novel kojic acid-1,2,4-triazine hybrids as anti-tyrosinase agents: Synthesis, biological evaluation, mode of action, and anti-browning studies. Food Chem 2023; 419:136047. [PMID: 37018861 DOI: 10.1016/j.foodchem.2023.136047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023]
Abstract
A class of new kojic acid hybrids (7a-7o) bearing a 1,2,4-triazine moiety were prepared, and their inhibitory activities and mechanism on tyrosinase were investigated. All derivatives showed good to excellent anti-tyrosinase activity with IC50 values ranging from 0.34 ± 0.06 μM to 8.44 ± 0.73 μM. In kinetic study, compound 7m was a mixed-type inhibitor with Ki and Kis of 0.73 and 1.27 μM, respectively. The interaction mechanism toward tyrosinase of compound 7m was further elaborated in combination with molecular docking and various spectral techniques. The results showed that compound 7m could change the secondary structure of tyrosinase to reduce its catalytic activity. Anti-browning assays demonstrated that 7m inhibited the browning of bananas effectively during storage. What's more, 7m was found to have low cytotoxicity in vitro. In conclusion, compound 7m has the potential to be applied as an anti-browning agent.
Collapse
|
8
|
Kciuk M, Marciniak B, Celik I, Zerroug E, Dubey A, Sundaraj R, Mujwar S, Bukowski K, Mojzych M, Kontek R. Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides as an Important Scaffold for Anticancer Drug Discovery-In Vitro and In Silico Evaluation. Int J Mol Sci 2023; 24:10959. [PMID: 37446136 DOI: 10.3390/ijms241310959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides (MM-compounds) are a relatively new class of heterocyclic compounds that exhibit a wide variety of biological actions, including anticancer properties. Here, we used caspase enzyme activity assays, flow cytometry analysis of propidium iodide (PI)-stained cells, and a DNA laddering assay to investigate the mechanisms of cell death triggered by the MM-compounds (MM134, -6, -7, and -9). Due to inconsistent results in caspase activity assays, we have performed a bromodeoxyuridine (BrdU) incorporation assay, colony formation assay, and gene expression profiling. The compounds' cytotoxic and pro-oxidative properties were also assessed. Additionally, computational studies were performed to demonstrate the potential of the scaffold for future drug discovery endeavors. MM-compounds exhibited strong micromolar (0.06-0.35 µM) anti-proliferative and pro-oxidative activity in two cancer cell lines (BxPC-3 and PC-3). Activation of caspase 3/7 was observed following a 24-h treatment of BxPC-3 cells with IC50 concentrations of MM134, -6, and -9 compounds. However, no DNA fragmentation characteristics for apoptosis were observed in the flow cytometry and DNA laddering analysis. Gene expression data indicated up-regulation of BCL10, GADD45A, RIPK2, TNF, TNFRSF10B, and TNFRSF1A (TNF-R1) following treatment of cells with the MM134 compound. Moreover, in silico studies indicated AKT2 kinase as the primary target of compounds. MM-compounds exhibit strong cytotoxic activity with pro-oxidative, pro-apoptotic, and possibly pro-necroptotic properties that could be employed for further drug discovery approaches.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Enfale Zerroug
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, University of Biskra, BP 145, Biskra 07000, Algeria
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 274203, Uttar Prades, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Rajamanikandan Sundaraj
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Karol Bukowski
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
9
|
Barbuceanu SF, Rosca EV, Apostol TV, Socea LI, Draghici C, Farcasanu IC, Ruta LL, Nitulescu GM, Iscrulescu L, Pahontu EM, Boscencu R, Saramet G, Olaru OT. New Heterocyclic Compounds from Oxazol-5(4 H)-one and 1,2,4-Triazin-6(5 H)-one Classes: Synthesis, Characterization and Toxicity Evaluation. Molecules 2023; 28:4834. [PMID: 37375389 DOI: 10.3390/molecules28124834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
This paper describes the synthesis of new heterocycles from oxazol-5(4H)-one and 1,2,4-triazin-6(5H)-one classes containing a phenyl-/4-bromophenylsulfonylphenyl moiety. The oxazol-5(4H)-ones were obtained via condensation of 2-(4-(4-X-phenylsulfonyl)benzamido)acetic acids with benzaldehyde/4-fluorobenzaldehyde in acetic anhydride and in the presence of sodium acetate. The reaction of oxazolones with phenylhydrazine, in acetic acid and sodium acetate, yielded the corresponding 1,2,4-triazin-6(5H)-ones. The structures of the compounds were confirmed using spectral (FT-IR, 1H-NMR, 13C-NMR, MS) and elemental analysis. The toxicity of the compounds was evaluated on Daphnia magna Straus crustaceans and on the budding yeast Saccharomyces cerevisiae. The results indicate that both the heterocyclic nucleus and halogen atoms significantly influenced the toxicity against D. magna, with the oxazolones being less toxic than triazinones. The halogen-free oxazolone had the lowest toxicity, and the fluorine-containing triazinone exhibited the highest toxicity. The compounds showed low toxicity against yeast cells, apparently due to the activity of plasma membrane multidrug transporters Pdr5 and Snq2. The predictive analyses indicated an antiproliferative effect as the most probable biological action. The PASS prediction and CHEMBL similarity studies show evidence that the compounds could inhibit certain relevant oncological protein kinases. These results correlated with toxicity assays suggest that halogen-free oxazolone could be a good candidate for future anticancer investigations.
Collapse
Affiliation(s)
- Stefania-Felicia Barbuceanu
- Department of Organic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Elena-Valentina Rosca
- Department of Organic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Theodora-Venera Apostol
- Department of Organic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Laura-Ileana Socea
- Department of Organic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Constantin Draghici
- "C. D. Nenitescu" Institute of Organic and Supramolecular Chemistry Romanian Academy, 202B Splaiul Independenței, 060023 Bucharest, Romania
| | - Ileana Cornelia Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania
| | - Lavinia Liliana Ruta
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania
| | - George Mihai Nitulescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Lucian Iscrulescu
- Department of Organic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Elena-Mihaela Pahontu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Rica Boscencu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Gabriel Saramet
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Octavian Tudorel Olaru
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
10
|
Karjee P, Mandal S, Debnath B, Namdev N, Punniyamurthy T. Expedient (3+3)-annulation of in situ generated azaoxyallyl cations with diaziridines. Chem Commun (Camb) 2023. [PMID: 37317582 DOI: 10.1039/d3cc02136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Efficient annulation of in situ formed azaoxyallyl cations using a base has been accomplished with diaziridines to provide 1,2,4-triazines at room temperature. The substrate scope, scale up, functional group tolerance and transition-metal free reaction conditions are the important practical features.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Nirali Namdev
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
11
|
Sadchikova EV, Safronov NE, Beliaev NA, Nenajdenko VG, Belskaya NP. Isoxazolyl-Derived 1,4-Dihydroazolo[5,1- c][1,2,4]Triazines: Synthesis and Photochemical Properties. Molecules 2023; 28:molecules28073192. [PMID: 37049955 PMCID: PMC10095850 DOI: 10.3390/molecules28073192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
New fluorescent dyes containing an assembled 1,4-dihydroazolo[5,1-c][1,2,4]triazine (DAT) core and an isoxazole ring were synthesized through a reaction between diazopyrazole or diazoimidazoles and isoxazolyl-derived enamines in mild conditions. The photophysical characteristics (maxima absorption and emission, Stokes shifts, fluorescent quantum yields, and fluorescence lifetimes) of the new fluorophores were obtained. The prepared DATs demonstrated emission maxima ranging within 433-487 nm, quantum yields within 6.1-33.3%, and a large Stokes shift. The photophysical characteristics of representative DAT examples were studied in ten different solvents. Specific (hydrogen bonds) and non-specific (dipole-dipole) intermolecular and intramolecular interactions were analyzed using XRD data and spectral experiments. Solvatochromism was analyzed using Lippert-Mataga and Dimroth-Reichardt plots, revealing the relationship between the DAT structure and the nature of solute-solvent interactions. The significant advantages of DATs are the fluorescence of their powders (QY up to 98.7%). DAT-NMe210 expressed bright aggregation-induced emission (AIE) behavior in DMSO and THF as the water content increased. The numerous possible variations of the structures of the heterocycles included in the DATs, as well as substituents, create excellent prospects for adjusting their photophysical and physicochemical properties.
Collapse
Affiliation(s)
- Elena V Sadchikova
- Department of Technology for Organic Synthesis, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Nikita E Safronov
- Department of Technology for Organic Synthesis, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Nikolai A Beliaev
- Department of Technology for Organic Synthesis, Ural Federal University, 620002 Ekaterinburg, Russia
| | | | - Nataliya P Belskaya
- Department of Technology for Organic Synthesis, Ural Federal University, 620002 Ekaterinburg, Russia
| |
Collapse
|
12
|
Kumar H, Dhameja M, Kurella S, Uma A, Gupta P. Synthesis, in-vitro α-glucosidase inhibition and molecular docking studies of 1,3,4-thiadiazole-5,6-diphenyl-1,2,4-triazine hybrids: Potential leads in the search of new antidiabetic drugs. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Kowalczyk A, Świątek K, Celeda M, Utecht-Jarzyńska G, Jaskulska A, Gach-Janczak K, Jasiński M. Trifluoromethylated 4,5-Dihydro-1,2,4-triazin-6(1 H)-ones via (3+3)-Annulation of Nitrile Imines with α-Amino Esters. MATERIALS (BASEL, SWITZERLAND) 2023; 16:856. [PMID: 36676595 PMCID: PMC9864844 DOI: 10.3390/ma16020856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The synthesis of two series of monocyclic and bicyclic trifluoromethylated 4,5-dihydro-1,2,4-triazin-6(1H)-one derivatives based on (3+3)-annulation of methyl esters derived from natural α-amino acids with in situ generated trifluoroacetonitrile imines has been described. The devised protocol is characterized by a wide scope, easily accessible substrates, remarkable functional group tolerance, and high chemical yield. In reactions with chiral starting materials, no racemization at the stereogenic centers was observed and the respective enantiomerically pure products were obtained. Selected functional group interconversions carried out under catalytic hydrogenation and mild PTC oxidation conditions were also demonstrated.
Collapse
Affiliation(s)
- Anna Kowalczyk
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90237 Lodz, Poland
| | - Kamil Świątek
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90237 Lodz, Poland
| | - Małgorzata Celeda
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Lodz, Poland
| | - Greta Utecht-Jarzyńska
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Lodz, Poland
| | - Agata Jaskulska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90924 Lodz, Poland
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92215 Lodz, Poland
| | - Marcin Jasiński
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Lodz, Poland
| |
Collapse
|
14
|
Wu J, Wang Z, Wang C, Wang Y, Li H, Luo H, Li H, Wang F, Li D, Yang J. Research Progress on the Synthesis of Nitrogen-Containing Compounds with Cyanamide as a Building Block. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
15
|
4,5-Dihydro-1,2,4-triazin-6(1H)-ones (microreview). Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
16
|
Hoff LV, Hauser JM, Gademann K. Cross-Coupling Reactions of 5-Bromo-1,2,3-triazine. J Org Chem 2022; 87:15684-15692. [PMID: 36305330 DOI: 10.1021/acs.joc.2c02082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An efficient Pd catalyzed cross-coupling method for 5-bromo-1,2,3-triazine is described. Optimization of the reaction conditions allowed for the preparation of a representative scope of (hetero)aryl-1,2,3-triazines (20 examples, up to 97% yield). The reaction scope was evaluated using a data science enabled boronic acid chemical space to assess the generality of the method. Additionally, diversification of the resulting products enabled the preparation of pyrimidines and pyridines in yields of up to 80% and in only two steps.
Collapse
Affiliation(s)
- Lukas V Hoff
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Joana M Hauser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
17
|
Heterocyclic Compounds as Hsp90 Inhibitors: A Perspective on Anticancer Applications. Pharmaceutics 2022; 14:pharmaceutics14102220. [PMID: 36297655 PMCID: PMC9610671 DOI: 10.3390/pharmaceutics14102220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Heat shock proteins (Hsps) have garnered special attention in cancer therapy as molecular chaperones with regulatory/mediatory effects on folding, maintenance/stability, maturation, and conformation of proteins as well as their effects on prevention of protein aggregation. Hsp90 ensures the stability of various client proteins needed for the growth of cells or the survival of tumor cells; therefore, they are overexpressed in tumor cells and play key roles in carcinogenesis. Accordingly, Hsp90 inhibitors are recognized as attractive therapeutic agents for investigations pertaining to tumor suppression. Natural Hsp90 inhibitors comprising geldanamycin (GM), reclaimed analogs of GM including 17-AAG and DMAG, and radicicol, a natural macrocyclic antifungal, are among the first potent Hsp90 inhibitors. Herein, recently synthesized heterocyclic compounds recognized as potent Hsp90 inhibitors are reviewed along with the anticancer effects of heterocyclic compounds, comprising purine, pyrazole, triazine, quinolines, coumarin, and isoxazoles molecules.
Collapse
|
18
|
Branowska D, Wysocki W, Wolińska E, Koc K, Stańska K, Mirosław B, Karczmarzyk Z. Synthesis, structure and sulfonamide–sulfonimide tautomerism of sulfonamide–1,2,4-triazine derivatives. Acta Crystallogr C 2022; 78:462-469. [DOI: 10.1107/s2053229622007781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Two new 1,2,4-triazine-containing sulfonamide derivatives, namely, 4-bromo-N-(5,6-diphenyl-2H-1,2,4-triazin-3-ylidene)benzenesulfonamide, C21H15BrN4O4S, 3a, and methyl 2-{[(5,6-diphenyl-1,2,4-triazin-3-yl)sulfamoyl]methyl}benzoate, C24H20N4O4S, 3b, which crystallize in the different sulfonimide and sulfonamide tautomeric forms, respectively, were synthesized and characterized by spectroscopic, X-ray diffraction and theoretical calculation methods. Both molecules adopt a very similar conformation of the common part of the structure and the differences occur within the substituents on the sulfonamide group. The amino groups characteristic for the existing tautomeric forms are involved in strong intermolecular N—H...N and N—H...O hydrogen bonds in 3a and 3b, respectively. The Hirshfeld surface analysis showed that H...H contacts constitute a high percentage of the intermolecular interactions. Theoretical calculations at the ab initio DFT/B3LYP/6-311++G(d,p) level showed that the two tautomeric forms observed for 3a and 3b can co-exist in chloroform, ethanol and water solutions, with a distinct predominance of the sulfonamide form; the participation of the sulfonimide form increases with increasing solvent polarity.
Collapse
|
19
|
[3+3] Cycloadditions of Azomethine Ylides with Nitrile Imines for the Synthesis of 2,3,4,5‐Tetrahydro‐1,2,4‐Triazine‐5‐Carboxylates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Design, synthesis and biological evaluation of quinoline-1,2,4-triazine hybrids as antimalarial agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Galeta J, Šlachtová V, Dračínský M, Vrabel M. Regio- and Diastereoselective 1,3-Dipolar Cycloadditions of 1,2,4-Triazin-1-ium Ylides: a Straightforward Synthetic Route to Polysubstituted Pyrrolo[2,1- f][1,2,4]triazines. ACS OMEGA 2022; 7:21233-21238. [PMID: 35755338 PMCID: PMC9219532 DOI: 10.1021/acsomega.2c02276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
A synthetic strategy to pyrrolo[2,1-f][1,2,4]triazines is reported. We show that various synthetically easily accessible 1,2,4-triazines can be efficiently alkylated under mild conditions to provide the corresponding 1-alkyl-1,2,4-triazinium salts. These bench-stable salts serve as precursors to triazinium ylides, which react in 1,3-dipolar cycloadditions with electron-poor dipolarophiles to yield polysubstituted pyrrolotriazines in a single step.
Collapse
|
22
|
Quantum chemical evaluation, QSAR analysis, molecular docking and dynamics investigation of s-triazine derivatives as potential anticancer agents. Struct Chem 2022. [DOI: 10.1007/s11224-022-01968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides as Novel Potential Anticancer Agents: Cytotoxic and Genotoxic Activities In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123761. [PMID: 35744887 PMCID: PMC9229263 DOI: 10.3390/molecules27123761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
In this paper, we present for the first time the evaluation of cytotoxicity and genotoxicity of de novo synthesized pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides MM129, MM130, and MM131 in human tumor cell lines: HeLa, HCT 116, PC-3, and BxPC-3. Cytotoxic and genotoxic properties of the tested compounds were estimated using the MTT assay, comet assay (alkaline and neutral version), and γ-H2AX immuno-staining. Examined sulfonamides exhibited strong anticancer properties towards tested cells in a very low concentration range (IC50 = 0.17-1.15 μM) after 72 h exposure time. The results of the alkaline and neutral version of the comet assay following 24 h incubation of the cells with tested compounds demonstrated the capability of heterocycles to induce significant DNA damage in exposed cells. HCT 116 cells were the most sensitive to the genotoxic activity of novel tricyclic pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides in the neutral version of the comet assay. Immunocytochemical detection of γ-H2AX showed an increase in DNA DSBs level in the HCT 116 cell line, after 24 h incubation with all tested compounds, confirming the results obtained in the neutral comet assay. Among all investigated compounds, MM131 showed the strongest cytotoxic and genotoxic activity toward all tested cell types. In conclusion, our results suggest that MM129, MM130, and MM131 exhibit high cytotoxic and genotoxic potential in vitro, especially towards the colorectal cancer cell line HCT 116. However, further investigations and analyses are required for their future implementation in the field of medicine.
Collapse
|
24
|
Tao LF, Zhang S, Huang F, Wang WT, Luo ZH, Qian L, Liao JY. Diastereo- and Enantioselective Silver-Catalyzed [3+3] Cycloaddition and Kinetic Resolution of Azomethine Imines with Activated Isocyanides. Angew Chem Int Ed Engl 2022; 61:e202202679. [PMID: 35289973 DOI: 10.1002/anie.202202679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/15/2022]
Abstract
In contrast to the well-established [3+2] cycloaddition reactions, the catalytic enantioselective [3+n] (n≥3) cycloaddition reaction of activated isocyanides for the preparation of six-membered or larger ring systems has remained underdeveloped. Herein, we report the first example of highly diastereo- and enantioselective [3+3] cycloaddition of activated isocyanides with azomethine imines. By employing silver catalysis, a wide range of biologically important bicyclic 1,2,4-triazines were obtained in high yields (up to 99 %) with good to excellent stereoselectivities (up to >20 : 1 dr, 99 % ee). In addition, the same catalytic system could be applied to both the late-stage functionalization of complex bioactive molecules and the kinetic resolution of racemic azomethine imines, further highlighting its versatility and synthetic utility.
Collapse
Affiliation(s)
- Ling-Fei Tao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Sen Zhang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Fen Huang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Tao Wang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhang-Hong Luo
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Linghui Qian
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Yu Liao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| |
Collapse
|
25
|
Zhu Z, Boger DL. N1/N4 1,4-Cycloaddition of 1,2,4,5-Tetrazines with Enamines Promoted by the Lewis Acid ZnCl 2. J Org Chem 2022; 87:6288-6301. [PMID: 35417656 PMCID: PMC9081262 DOI: 10.1021/acs.joc.2c00543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The second example of selective N1/N4 1,4-cycloaddition (vs C3/C6 1,4-cycloaddition) of 1,2,4,5-tetrazines with preformed or in situ generated enamines now promoted by the Lewis acid ZnCl2 and with an expanded scope is described. The reaction constitutes a formal [4 + 2] cycloaddition across two nitrogen atoms (N1/N4 vs C3/C6) of a 1,2,4,5-tetrazine followed by retro [4 + 2] cycloaddition loss of a nitrile and aromatization to provide 1,2,4-triazines. Optimization of reaction parameters, simplification of its implementation through in situ enamine generation from ketones, definition of the enamine reaction scope for 3,6-bis(thiomethyl)-1,2,4,5-tetrazine, exploration of the 1,2,4,5-tetrazine scope, and representative applications of the product 1,2,4-triazines are detailed. The work establishes and further extends a powerful method for efficient one-step regioselective synthesis of 1,2,4-triazines under mild reaction conditions directly now from easily accessible ketones. It extends the substrate scope of a solvent (hexafluoroisopropanol) hydrogen bonding-promoted reaction that we recently reported with aryl-conjugated enamines, permitting the use of simple ketone-derived enamines and expanding the generality of the remarkable reaction. The reaction is regioselective with respect to the site of reaction with unsymmetrical ketones and provides exclusively a single 1,2,4-triazine regioisomer consistent with our previously established stepwise mechanism of formal N1/N4 1,4-cycloaddition, overcoming the challenges observed in conventional approaches to 1,2,4-triazines.
Collapse
Affiliation(s)
- Zixi Zhu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
26
|
Anjomshoa M, Sahihi M, Fatemi SJ, Shayegan S, Farsinejad A, Amirheidari B. In vitro biological and in silico molecular docking and ADME studies of a substituted triazine-coordinated cadmium(II) ion: efficient cytotoxicity, apoptosis, genotoxicity, and nuclease-like activity plus binding affinity towards apoptosis-related proteins. Biometals 2022; 35:549-572. [PMID: 35366135 DOI: 10.1007/s10534-022-00387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
A cadmium(II) complex containing dppt ligand with the formula [CdCl2(dppt)2], where dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine was synthesized, elucidated and submitted to in vitro cytotoxicity studies against human breast (MCF-7), glioblastoma (U-87), and lung (A549) cancer cell lines as well as mouse embryo normal cell line (NIH/3T3), in comparison with cisplatin employing MTT assay over 24 and 48 h. The complex exhibited the highest cytotoxic effect against MCF-7 cells among the other three cell lines with IC50 values of 8.7 ± 0.5 (24 h) and 1.2 ± 0.7 µM (48 h). Significantly, flow cytometric assessment of the complex-treated MCF-7 and U-87 cells demonstrated a dose-dependent induced apoptotic cell death. The cellular morphological changes were in concord with cytotoxicity and flow cytometric results. The results of comet assay showed that the complex is able to induce DNA damage in MCF-7 cells. These observations are of importance, as sustained damage to cellular DNA could lead to apoptotic cell death. The results of DNA-binding studies indicated that the complex fits into the DNA minor groove and interacts with DNA via a partial intercalation. Moreover, the complex was able to efficiently cleave pUC19 DNA through a hydrolytic mechanism. The binding affinity between the complex and apoptosis-relevant protein targets including APAF1, Bax, Bcl-2, Cas3, Cas7, and Cas9 was evaluated through molecular docking studies. In silico virtual studies revealed the complex's strong affinity towards apoptosis-related proteins; therefore the complex can act as a potential apoptosis inducer. Physicochemical, pharmacokinetics, lipophilicity, drug-likeness, and medicinal chemistry properties of the complex were also predicted through in silico absorption, distribution, metabolism and excretion studies.
Collapse
Affiliation(s)
- Marzieh Anjomshoa
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Sahihi
- Roberval Laboratory, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | | | - Shika Shayegan
- Department of Pharmacy, Eastern Mediterranean University, TRNC via Mersin 10, Famagusta, Turkey
| | - Alireza Farsinejad
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
27
|
Tao L, Zhang S, Huang F, Wang W, Luo Z, Qian L, Liao J. Diastereo‐ and Enantioselective Silver‐Catalyzed [3+3] Cycloaddition and Kinetic Resolution of Azomethine Imines with Activated Isocyanides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ling‐Fei Tao
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Sen Zhang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Fen Huang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Wen‐Tao Wang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Zhang‐Hong Luo
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Linghui Qian
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Jia‐Yu Liao
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University Hangzhou 310018 China
| |
Collapse
|
28
|
Discovery of novel 1,2,4-triazine-chalcone hybrids as anti-gastric cancer agents via an axis of ROS-ERK-DR5 in vitro and in vivo. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
29
|
Sahin Z, Biltekin SN, Ozansoy M, Hemiş B, Ozansoy MB, Yurttaş L, Berk B, Demirayak Ş. Synthesis and
in vitro
Antitumor Activities of Novel Thioamide Substituted Piperazinyl‐1,2,
4‐Triazines. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zafer Sahin
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry Istanbul Turkey
| | - Sevde Nur Biltekin
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Microbiology Istanbul Turkey
- Institute of Science Istanbul University Istanbul Turkey
| | - Mehmet Ozansoy
- Bahçeşehir University, School of Medicine, Department of Physiology Istanbul Turkey
| | - Bervis Hemiş
- Bahçeşehir University, School of Medicine Istanbul Turkey
| | | | - Leyla Yurttaş
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry Eskisehir Turkey
| | - Barkin Berk
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry Istanbul Turkey
| | - Şeref Demirayak
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry Istanbul Turkey
| |
Collapse
|
30
|
Alshammari NAH, Bakhotmah DA. Synthesis, Reactivity, and Applications of 4-Amino-3-Thioxo/Hydrazino-6-Substituted-1,2,4-Triazin-5-Ones and Their Derivatives: A Review. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2025863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nawaa Ali H. Alshammari
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Northern Border University, Rafha, Saudi Arabia
| | - Dina A. Bakhotmah
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Goudarzi A, Ghassemzadeh M, Saeidifar M, Aghapoor K, Mohsenzadeh F, Neumüller B. In vitro cytotoxicity and antibacterial activity of [Pd(AMTTO)(PPh 3) 2]: a novel promising palladium( ii) complex. NEW J CHEM 2022. [DOI: 10.1039/d1nj05545c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and characterization of a novel palladium complex based on a bioactive 3-mercapto-1,2,4-triazine derivative have been investigated. The Pd(ii) complex showed excellent anticancer and antibacterial activity.
Collapse
Affiliation(s)
- Atousa Goudarzi
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Mitra Ghassemzadeh
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Kioumars Aghapoor
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Farshid Mohsenzadeh
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Bernhard Neumüller
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
32
|
Sakr MEM, Kana MTHA, Elwahy AHM, Abdelwahed MS, El-Daly SA, Ebeid EZM. Spectroscopic Behavior and Photophysical Parameters of 2-(Acetoxymethyl)-6-(1,2,4-triazinylaminodihydroquinazolinyl)tetrahydropyran Derivative in Different Solid Hosts. J Fluoresc 2022; 32:1509-1516. [PMID: 35522344 PMCID: PMC9270284 DOI: 10.1007/s10895-022-02960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
Optical and photophysical properties of 6-substituted-1,2,4-Triazine fluorescent derivative dye doped in silicate based sol-gel, homopolymer of methyl methacrylate (PMMA), and copolymer (MMA/diethylene glycol dimethacrylate) (DEGDMA) were investigated. The pores of different hosts and caging of the dye were found to effect on the parameters such as molar absorptivity, cross sections of singlet-singlet electronic absorption and emission spectra, excited state lifetime, quantum yield of fluorescence. The dipole moment of electronic transition, the length of attenuation and oscillator strength of electronic transition from So → S1 have been calculated. The dye was pumped with different powers using 3rd harmonic Nd: YAG laser of 355 nm and pulse duration 8 ns, with repetition rate 10 Hz. Good photo stability for dye was attained. After 55,000 pumping pulses of (10 mJ/pulse), the photo-stabilities were decreased to 53%, 48%, and 45% of the initial ASE of dye in sol gel, PMMA, and Co-polymer respectively. The dye in sol-gel matrix showed improvement of photo stability compared with those in organic polymeric matrices.
Collapse
Affiliation(s)
- Mahmoud E. M. Sakr
- Laser Sciences and Interactions Department, National Institute of Laser-Enhanced Sciences (NILES), Cairo University, Giza, Egypt
| | - Maram T. H. Abou Kana
- Laser Sciences and Interactions Department, National Institute of Laser-Enhanced Sciences (NILES), Cairo University, Giza, Egypt
| | | | | | - Samy A. El-Daly
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - El-Zeiny M. Ebeid
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt ,Misr University for Science and Technology (MUST), 6th of October City, Egypt
| |
Collapse
|
33
|
Zheng J, Meng SY, Wang QR, Wang JM. Synthesis of Antimicrobial Benzo[1,2,4]triazoloazepinium Salts and Tetrahydronaphtho[1,2- e][1,2,4]triazines by Polar [3 + + 2] and [4 + 2]-Cycloaddition Reactions. J Org Chem 2021; 87:464-478. [PMID: 34962786 DOI: 10.1021/acs.joc.1c02484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel annulated azaheterocycles of benzo[1,2,4]triazoloazepine and tetrahydronaphtho[1,2-e][1,2,4]triazine derivatives have been synthesized. Treatment of 2-diazenyl-1,2,3,4-tetrahydronaphthalen-2-yl acetates with BF3·Et2O generates 1-aza-2-azoniaallenium cation intermediates (or azocarbenium ions), which are intercepted by nitriles via cascade polar [3+ + 2]-cycloaddition/rearrangement reactions to afford benzo[1,2,4]triazoloazepinium salts. These literature unprecedented fused tricycle compounds have been shown to exhibit antimicrobial activity against Gram-positive Staphylococcus aureus with in silico docking studies, suggesting that they may exhibit their antibiotic activity through inhibition of DNA gyrase. Additionally, when ethyl 2-(1-acetoxy-1,2,3,4-tetrahydronaphthalen-2-yl)diazene-1-carboxylate is employed, the reaction with BF3·Et2O produces 1,2-diaza-1,3-diene, which reacts with nitriles via a diaza-Diels-Alder reaction with inverse electron demand, leading to ethyl tetrahydronaphtho[1,2-e][1,2,4]triazine carboxylates. The DFT calculation has been performed to further prove the D-A reaction speculation.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Shu-Yu Meng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Quan-Rui Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Jing-Mei Wang
- Research Centre for Analysis and Measurement, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| |
Collapse
|
34
|
Zhang FG, Chen Z, Tang X, Ma JA. Triazines: Syntheses and Inverse Electron-demand Diels-Alder Reactions. Chem Rev 2021; 121:14555-14593. [PMID: 34586777 DOI: 10.1021/acs.chemrev.1c00611] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Triazines are an important class of six-membered aromatic heterocycles possessing three nitrogen atoms, resulting in three types of regio-isomers: 1,2,4-triazines (a-triazines), 1,2,3-triazines (v-triazines), and 1,3,5-triazines (s-triazines). Notably, the application of triazines as cyclic aza-dienes in inverse electron-demand Diels-Alder (IEDDA) cycloaddition reactions has been established as a unique and powerful method in N-heterocycle synthesis, natural product preparation, and bioorthogonal chemistry. In this review, we comprehensively summarize the advances in the construction of these triazines via annulation and ring-expansion reactions, especially emphasizing recent developments and challenges. The synthetic transformations of triazines are focused on IEDDA cycloaddition reactions, which have allowed access to a wide scope of heterocycles, including pyridines, carbolines, azepines, pyridazines, pyrazines, and pyrimidines. The utilization of triazine IEDDA reactions as key steps in natural product synthesis is also discussed. More importantly, a particular attention is paid on the bioorthogonal application of triazines in fast click ligation with various strained alkenes and alkynes, which opens a new opportunity for studying biomolecules in chemical biology.
Collapse
Affiliation(s)
- Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhen Chen
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Xiaodong Tang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
35
|
Alanazi RL, Zaki M, Bawazir WA. Synthesis and characterization of new metal complexes containing Triazino[5,6–b]indole moiety: In vitro DNA and HSA binding studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Synthesis, characterization, and in vitro assessment of cytotoxicity for novel azaheterocyclic nido-carboranes – Candidates in agents for boron neutron capture therapy (BNCT) of cancer. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Bacqueville D, Jacques-Jamin C, Dromigny H, Boyer F, Brunel Y, Ferret PJ, Redoulès D, Douki T, Bessou-Touya S, Duplan H. Phenylene Bis-Diphenyltriazine (TriAsorB), a new sunfilter protecting the skin against both UVB + UVA and blue light radiations. Photochem Photobiol Sci 2021; 20:1475-1486. [PMID: 34643936 DOI: 10.1007/s43630-021-00114-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Sunlight induces actinic keratosis, skin cancers and photoaging. Photoprotection is thus a major issue in public health to prevent the harmful effects of solar ultraviolet (UV) radiations. Recent data have shown that the visible (VIS) and infrared (IR) radiations can lead to skin damage by oxidative stress, suggesting that a balanced protection across the entire spectrum of sunlight is necessary to prevent cutaneous alterations. In this context, we developed a new generation of sunfilter called Phenylene Bis-Diphenyltriazine or TriAsorB (CAS N°55514-22-2). The aim of the present study was to assess the photoprotective efficacy of TriAsorB from UV to IR light. Spectrophotometric assays were performed to measure absorption and reflectance of TriAsorB in the different spectral ranges of sunlight: UV, VIS including blue light or high energy visible (HEV) and IR. DNA damage was evaluated using reconstructed human epidermis (RHE): 8-hydroxy-2'-deoxyguanosine (8OHdG) in response to HEV exposure, pyrimidine dimers (CPDs) and (6-4) photoproducts following solar-simulated radiation (SSR). TriAsorB is a broad spectrum UVB + UVA filter including long UVA. Interestingly, it also absorbs VIS radiations, especially in the HEV region. These radiations are also reflected. Protection in the IR spectral range is weak. Furthermore, the sunfilter specifically protects the skin against the oxidative lesions 8OHdG induced by HEV and prevents SSR-induced DNA damage. Thus, TriAsorB is an innovative sunfilter that might be used in sun care products for skin photoprotection from UV to VIS radiations. Finally, it prevents sunlight genotoxicity and protected the skin against solar radiations, especially blue light.
Collapse
Affiliation(s)
- D Bacqueville
- Centre de Recherche & Développement, Pierre Fabre Dermo-Cosmétique, Toulouse, France.
- Service Recherche Pharmaco-Clinique, Département Recherche Appliquée, Pierre Fabre Dermo-Cosmétique and Personal Care, Avenue Hubert Curien, BP 13562, 31035, Toulouse Cedex 1, France.
| | - C Jacques-Jamin
- Centre de Recherche & Développement, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - H Dromigny
- Centre de Recherche & Développement, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - F Boyer
- Centre de Recherche & Développement, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - Y Brunel
- Centre de Recherche & Développement, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - P J Ferret
- Centre de Recherche & Développement, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - D Redoulès
- Pierre Fabre Dermo-Cosmétique, Laboratoires Dermatologiques Avène, Lavaur, France
| | - T Douki
- INAC/SyMMES/CIBEST, CEA Grenoble, Grenoble, France
| | - S Bessou-Touya
- Centre de Recherche & Développement, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - H Duplan
- Centre de Recherche & Développement, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| |
Collapse
|
38
|
Samy F, Taha A, Omar FM. New solvatochromic complexes of 1,2‐bis[(5,6‐diphenyl‐1,2,4‐triazin3‐yl)hydrazinylidene‐methyl]benzene: Synthesis, spectroscopic, biological, docking, and theoretical studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Fatma Samy
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Ali Taha
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Fouz M. Omar
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| |
Collapse
|
39
|
Hermanowicz JM, Kalaska B, Pawlak K, Sieklucka B, Miklosz J, Mojzych M, Pawlak D. Preclinical Toxicity and Safety of MM-129-First-in-Class BTK/PD-L1 Inhibitor as a Potential Candidate against Colon Cancer. Pharmaceutics 2021; 13:pharmaceutics13081222. [PMID: 34452183 PMCID: PMC8400941 DOI: 10.3390/pharmaceutics13081222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023] Open
Abstract
MM-129 is a novel inhibitor targeting BTK/PI3K/AKT/mTOR and PD-L1, as it possesses antitumor activity against colon cancer. To evaluate the safety profile of MM-129, we conducted a toxicity study using the zebrafish and rodent model. MM-129 was also assessed for pharmacokinetics features through an in vivo study on Wistar rats. The results revealed that MM-129 exhibited favorable pharmacokinetics with quick absorption and 68.6% of bioavailability after intraperitoneal administration. No serious adverse events were reported for the use of MM-129, confirming a favorable safety profile for this compound. It was not fatal and toxic to mice at an anticancer effective dose of 10 μmol/kg. At the end of 14 days of administering hematological and biochemical parameters, liver and renal functions were all at normal levels. No sublethal effects were either detected in zebrafish embryos treated with a concentration of 10 μM. MM-129 has the potential as a safe and well-tolerated anticancer formulation for future treatment of patients with colon cancer.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
- Correspondence: ; Tel./Fax: +48-8574-85601
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| | - Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| |
Collapse
|
40
|
Wang C, Fang L, Wang Z. Base-induced inverse-electron-demand aza-Diels-Alder reaction of azoalkenes and 1,3,5-triazinanes: Facile approaches to tetrahydro-1,2,4-triazines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Hermanowicz JM, Szymanowska A, Sieklucka B, Czarnomysy R, Pawlak K, Bielawska A, Bielawski K, Kalafut J, Przybyszewska A, Surazynski A, Rivero-Muller A, Mojzych M, Pawlak D. Exploration of novel heterofused 1,2,4-triazine derivative in colorectal cancer. J Enzyme Inhib Med Chem 2021; 36:535-548. [PMID: 33522320 PMCID: PMC7850456 DOI: 10.1080/14756366.2021.1879803] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in men and in women. The impact of the new pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide (MM-129) was evaluated against human colon cancer in vitro and in zebrafish xenografts. Our results show that this new synthesised compound effectively inhibits cell survival in BTK-dependent mechanism. Its effectiveness is much higher at a relatively low concentration as compared with the standard chemotherapy used for CRC, i.e. 5-fluorouracil (5-FU). Flow cytometry analysis after annexin V-FITC and propidium iodide staining revealed that apoptosis was the main response of CRC cells to MM-129 treatment. We also found that MM-129 effectively inhibits tumour development in zebrafish embryo xenograft model, where it showed a markedly synergistic anticancer effect when used in combination with 5-FU. The above results suggest that this novel heterofused 1,2,4-triazine derivative may be a promising candidate for further evaluation as chemotherapeutic agent against CRC.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland.,Department of Clinical Pharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Anna Szymanowska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kalafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Alicja Przybyszewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Adolfo Rivero-Muller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
42
|
Tayyab Imtiaz M, Anwar F, Saleem U, Ahmad B, Hira S, Mehmood Y, Bashir M, Najam S, Ismail T. Triazine Derivative as Putative Candidate for the Reduction of Hormone-Positive Breast Tumor: In Silico, Pharmacological, and Toxicological Approach. Front Pharmacol 2021; 12:686614. [PMID: 34122114 PMCID: PMC8193840 DOI: 10.3389/fphar.2021.686614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
Background and objectives: Breast cancer is a heterogeneous disease that poses the highest incidence of morbidity among women and presents many treatment challenges. In search of novel breast cancer therapies, several triazine derivatives have been developed for their potential chemotherapeutic activity. This study aims to evaluate the N-nitroso-N-methyl urea (NMU)-induced anti-mammary gland tumor activity of 2,4,6 (O-nitrophenyl amino) 1,3,5-triazine (O-NPAT). Methods: The in silico modeling and in vitro cytotoxicity assay were performed to strengthen the research hypothesis. For in vivo experimentation, 30 female rats were divided into five groups. Group I (normal control) received normal saline. Group II (disease control) received NMU (50 mg/kg). Group III (standard control) was treated with tamoxifen (5 mg/kg). Groups IV and V received O-NPAT at a dose level of 30 and 60 mg/kg, respectively. For tumor induction, 3 intraperitoneal doses of NMU were given at a 3-week interval, whereas all treatment compounds were administered orally for 14 consecutive days. Biochemical and oxidative stress markers were estimated for all experimental animals. DNA strand breakage alongside inflammatory markers was also measured for the analysis of inflammation. The hormonal profile of progesterone and estrogen was also estimated. Results: The test compound presented a significant reduction in organ weight and restored the hepatic and renal enzymes. O-NPAT treatments enhanced the antioxidant enzyme level of catalase (CAT), superoxide dismutase (SOD), and total sulfhydryl (TSH), with a highly significant reduction in lactate dehydrogenase (LDH) and lipid peroxidation. Also, the decrease in fragmented DNA, hormonal levels (estradiol and progesterone), and inflammatory cytokines (IL-6 and TNF-α) justified the dosage efficacy further supported by histopathological findings. Conclusion: All results indicated the anti-breast tumor activity of O-NPAT and presented its possibility of exploitation for beneficial effects in breast cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tayyab Imtiaz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Sundas Hira
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Yumna Mehmood
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Manal Bashir
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Saima Najam
- Faculty of Pharmacy, Lahore College of Pharmaceutical Sciences, Lahore, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSAT University, Abbottabad, Pakistan
| |
Collapse
|
43
|
Sarkar T, Talukdar K, Das BK, Shah TA, Debnath B, Punniyamurthy T. The transition-metal-catalyzed stereoselective ring-expansion of vinylaziridines and vinyloxiranes. Org Biomol Chem 2021; 19:3776-3790. [PMID: 33949586 DOI: 10.1039/d1ob00259g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transition-metal-aided stereoselective construction of sp3-carbon-rich heterocyclic scaffolds using strained-ring systems has received considerable attention in recent years due to the prominent presence of these scaffolds in myriad natural products, bioactive molecules, and pharmaceutical components. In this area, the catalytic ring-enlargement of vinylaziridines and vinyloxiranes plays a predominant role when synthesizing high sp3-content biorelevant heterocyclic compounds. This article aims to portray recent advancements in the ring-expansion of vinylaziridines and vinyloxiranes for accessing densely functionalized stereoselective heterocycles that have been developed over the past five years, with an emphasis on the substrate scopes and mechanistic insights into the key methodologies, and it is arranged based on the transition metals used and the ring sizes of the heterocyclic scaffolds.
Collapse
Affiliation(s)
- Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Bijay Ketan Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Tariq A Shah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India. and Government Srinagar Women's College, Zakura Srinagar 190006, India
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
44
|
Gornowicz A, Szymanowska A, Mojzych M, Czarnomysy R, Bielawski K, Bielawska A. The Anticancer Action of a Novel 1,2,4-Triazine Sulfonamide Derivative in Colon Cancer Cells. Molecules 2021; 26:molecules26072045. [PMID: 33918514 PMCID: PMC8038278 DOI: 10.3390/molecules26072045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer therapy is one of the most important challenges of modern medical and chemical sciences. Among the many methods of combating cancer, chemotherapy plays a special role. Imperfect modern chemotherapy justifies continuing the search for new, more effective, and safe drugs. Sulfonamides are the classic group of chemotherapeutic drugs with a broad spectrum of pharmacological activity. Recent literature reports show that sulfonamide derivatives have anti-tumor activity in vitro and in vivo. The aim of the study was to synthesize a novel 1,2,4-triazine sulfonamide derivative and check its anticancer potential in DLD-1 and HT-29 colon cancer cells. The biological studies included MTT assay, DNA biosynthesis, cell cycle analysis, Annexin V binding assay, ethidium bromide/acridine orange staining, and caspase-8, -9, and -3/7 activity. The concentrations of important molecules (sICAM-1, mTOR, Beclin-1, cathepsin B) involved in the pathogenesis and poor prognosis of colorectal cancer were also evaluated by ELISA. We demonstrated that the novel compound was able to induce apoptosis through intrinsic and extrinsic pathways and was capable of decreasing sICAM-1, mTOR, cathepsin B concentrations, whereas increased Beclin-1 concentration was detected in both colon cancer cell lines. The novel compound represents promising multi-targeted potential in colorectal cancer, but further in vivo examinations are needed to confirm the claim.
Collapse
Affiliation(s)
- Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (A.S.); (A.B.)
- Correspondence:
| | - Anna Szymanowska
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (A.S.); (A.B.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland;
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (A.S.); (A.B.)
| |
Collapse
|
45
|
Abdel-Galil E, Arab AM, Afsah EM. Synthesis and biological activity evaluation of some new mixed azines appended tetrahydro-1,2,4-triazines. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1882497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ebrahim Abdel-Galil
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Anas M. Arab
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Elsayed M. Afsah
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
46
|
Sakr MA, Mohamed AA, Abou Kana MT, Elwahy AH, El-Daly SA, Ebeid EZM. Synthesis, characterization, DFT and TD-DFT study of novel bis(5,6-diphenyl-1,2,4-triazines). J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Abu‐Hashem AA. Synthesis of new pyrazoles, oxadiazoles, triazoles, pyrrolotriazines, and pyrrolotriazepines as potential cytotoxic agents. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ameen Ali Abu‐Hashem
- Photochemistry Department (Heterocyclic Unit), Organic Chemistry National Research Centre Giza Egypt
- Faculty of Science, Chemistry Department Jazan University Jazan Saudi Arabia
| |
Collapse
|
48
|
Jain S, Jain PK, Sain S, Kishore D, Dwivedi J. Anticancer s-Triazine Derivatives: A Synthetic Attribute. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x17666200131111851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
1, 3, 5-Triazine (s-Triazine) is a versatile nucleus to design and develop potent bioactive
molecules for drug discovery, particularly in cancer therapy. The aim of this review is to present the
most recent trends in the field of synthetic strategies made for functionalized triazine derivatives active
against cell proliferation. This review article covers the synthesis of aryl methylamino, morpholino,
triamino substituted triazines, antimitotic agents coupled triazines and many more. Many 1,3,5-
triazine derivatives, both hetero-fused and uncondensed, have shown remarkable antitumor activities.
We have highlighted various derivatives with 1, 3, 5-triazine core targeting different kinases with an
aim to help researchers for developing new 1, 3, 5-triazine derived compounds for antitumor activity.
Collapse
Affiliation(s)
- Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Pankaj Kumar Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali-304022, India
| | - Shalu Sain
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| |
Collapse
|
49
|
Zhu Z, Glinkerman CM, Boger DL. Selective N1/N4 1,4-Cycloaddition of 1,2,4,5-Tetrazines Enabled by Solvent Hydrogen Bonding. J Am Chem Soc 2020; 142:20778-20787. [PMID: 33252223 PMCID: PMC7725851 DOI: 10.1021/jacs.0c09775] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unprecedented 1,4-cycloaddition (vs 3,6-cycloaddition) of 1,2,4,5-tetrazines is described with preformed or in situ generated aryl-conjugated enamines promoted by the solvent hydrogen bonding of hexafluoroisopropanol (HFIP) that is conducted under mild reaction conditions (0.1 M HFIP, 25 °C, 12 h). The reaction constitutes a formal [4 + 2] cycloaddition across the two nitrogen atoms (N1/N4) of the 1,2,4,5-tetrazine followed by a formal retro [4 + 2] cycloaddition loss of a nitrile and aromatization to generate a 1,2,4-triazine derivative. The factors that impact the remarkable change in the reaction mode, optimization of reaction parameters, the scope and simplification of its implementation through in situ enamine generation from aldehydes and ketones, the reaction scope for 3,6-bis(thiomethyl)-1,2,4,5-tetrazine, a survey of participating 1,2,4,5-tetrazines, and key mechanistic insights into this reaction are detailed. Given its simplicity and breath, the study establishes a novel method for the simple and efficient one-step synthesis of 1,2,4-triazines under mild conditions from readily accessible starting materials. Whereas alternative protic solvents (e.g., MeOH vs HFIP) provide products of the conventional 3,6-cycoladdition, the enhanced hydrogen bonding capability of HFIP uniquely results in promotion of the unprecedented formal 1,4-cycloaddition. As such, the studies represent an example of not just an enhancement in the rate or efficiency of a heterocyclic azadiene cycloaddition by hydrogen bonding catalysis but also the first to alter the mode (N1/N4 vs C3/C6) of cycloaddition.
Collapse
Affiliation(s)
- Zixi Zhu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Christopher M. Glinkerman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
50
|
Farag A, Halim SA, Roushdy N, Badran AS, Ibrahim MA. Facile synthesis and photodetection characteristics of novel nanostructured triazinyliminomethylpyrano[3,2-c]quinoline-based hybrid heterojunction. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|