1
|
Scarano N, Espinoza S, Brullo C, Cichero E. Computational Methods for the Discovery and Optimization of TAAR1 and TAAR5 Ligands. Int J Mol Sci 2024; 25:8226. [PMID: 39125796 PMCID: PMC11312273 DOI: 10.3390/ijms25158226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) represent a family of druggable targets when treating several diseases and continue to be a leading part of the drug discovery process. Trace amine-associated receptors (TAARs) are GPCRs involved in many physiological functions with TAAR1 having important roles within the central nervous system (CNS). By using homology modeling methods, the responsiveness of TAAR1 to endogenous and synthetic ligands has been explored. In addition, the discovery of different chemo-types as selective murine and/or human TAAR1 ligands has helped in the understanding of the species-specificity preferences. The availability of TAAR1-ligand complexes sheds light on how different ligands bind TAAR1. TAAR5 is considered an olfactory receptor but has specific involvement in some brain functions. In this case, the drug discovery effort has been limited. Here, we review the successful computational efforts developed in the search for novel TAAR1 and TAAR5 ligands. A specific focus on applying structure-based and/or ligand-based methods has been done. We also give a perspective of the experimental data available to guide the future drug design of new ligands, probing species-specificity preferences towards more selective ligands. Hints for applying repositioning approaches are also discussed.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| | - Stefano Espinoza
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy;
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| |
Collapse
|
2
|
Grossi G, Scarano N, Musumeci F, Tonelli M, Kanov E, Carbone A, Fossa P, Gainetdinov RR, Cichero E, Schenone S. Discovery of a Novel Chemo-Type for TAAR1 Agonism via Molecular Modeling. Molecules 2024; 29:1739. [PMID: 38675561 PMCID: PMC11052455 DOI: 10.3390/molecules29081739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The search for novel effective TAAR1 ligands continues to draw great attention due to the wide range of pharmacological applications related to TAAR1 targeting. Herein, molecular docking studies of known TAAR1 ligands, characterized by an oxazoline core, have been performed in order to identify novel promising chemo-types for the discovery of more active TAAR1 agonists. In particular, the oxazoline-based compound S18616 has been taken as a reference compound for the computational study, leading to the development of quite flat and conformationally locked ligands. The choice of a "Y-shape" conformation was suggested for the design of TAAR1 ligands, interacting with the protein cavity delimited by ASP103 and aromatic residues such as PHE186, PHE195, PHE268, and PHE267. The obtained results allowed us to preliminary in silico screen an in-house series of pyrimidinone-benzimidazoles (1a-10a) as a novel scaffold to target TAAR1. Combined ligand-based (LBCM) and structure based (SBCM) computational methods suggested the biological evaluation of compounds 1a-10a, leading to the identification of derivatives 1a-3a (hTAAR1 EC50 = 526.3-657.4 nM) as promising novel TAAR1 agonists.
Collapse
Affiliation(s)
- Giancarlo Grossi
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Michele Tonelli
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Evgeny Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna Carbone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| |
Collapse
|
3
|
Xu Z, Guo L, Yu J, Shen S, Wu C, Zhang W, Zhao C, Deng Y, Tian X, Feng Y, Hou H, Su L, Wang H, Guo S, Wang H, Wang K, Chen P, Zhao J, Zhang X, Yong X, Cheng L, Liu L, Yang S, Yang F, Wang X, Yu X, Xu Y, Sun JP, Yan W, Shao Z. Ligand recognition and G-protein coupling of trace amine receptor TAAR1. Nature 2023; 624:672-681. [PMID: 37935376 DOI: 10.1038/s41586-023-06804-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.
Collapse
Affiliation(s)
- Zheng Xu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Lulu Guo
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Yu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weifeng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Chang Zhao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Deng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lantian Su
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shuo Guo
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Heli Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kexin Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Peipei Chen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Xiaoyu Zhang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Cheng
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
| | - Xiao Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Jin-Peng Sun
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| |
Collapse
|
4
|
Cichero E, Francesconi V, Casini B, Casale M, Kanov E, Gerasimov AS, Sukhanov I, Savchenko A, Espinoza S, Gainetdinov RR, Tonelli M. Discovery of Guanfacine as a Novel TAAR1 Agonist: A Combination Strategy through Molecular Modeling Studies and Biological Assays. Pharmaceuticals (Basel) 2023; 16:1632. [PMID: 38004497 PMCID: PMC10674299 DOI: 10.3390/ph16111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) is an attractive target for the design of innovative drugs to be applied in diverse pharmacological settings. Due to a non-negligible structural similarity with endogenous ligands, most of the agonists developed so far resulted in being affected by a low selectivity for TAAR1 with respect to other monoaminergic G protein-coupled receptors, like the adrenoreceptors. This study utilized comparative molecular docking studies and quantitative-structure activity relationship (QSAR) analyses to unveil key structural differences between TAAR1 and alpha2-adrenoreceptor (α2-ADR), with the aim to design novel TAAR1 agonists characterized by a higher selectivity profile and reduced off-target effects. While the presence of hydrophobic motives is encouraged towards both the two receptors, the introduction of polar/positively charged groups and the ligand conformation deeply affect the TAAR1 or α2-ADR putative selectivity. These computational methods allowed the identification of the α2A-ADR agonist guanfacine as an attractive TAAR1-targeting lead compound, demonstrating nanomolar activity in vitro. In vivo exploration of the efficacy of guanfacine showed that it is able to decrease the locomotor activity of dopamine transporter knockout (DAT-KO) rats. Therefore, guanfacine can be considered as an interesting template molecule worthy of structural optimization. The dual activity of guanfacine on both α2-ADR and TAAR1 signaling and the related crosstalk between the two pathways will deserve more in-depth investigation.
Collapse
Affiliation(s)
- Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Valeria Francesconi
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Beatrice Casini
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Monica Casale
- Section of Chemistry and Food and Pharmaceutical Technologies, University of Genoa, 16148 Genoa, Italy;
| | - Evgeny Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrey S. Gerasimov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia; (I.S.); (A.S.)
| | - Artem Savchenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia; (I.S.); (A.S.)
| | - Stefano Espinoza
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy;
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Michele Tonelli
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| |
Collapse
|
5
|
Trace amine-associated receptor 1 (TAAR1) agonism as a new treatment strategy for schizophrenia and related disorders. Trends Neurosci 2023; 46:60-74. [PMID: 36369028 DOI: 10.1016/j.tins.2022.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Schizophrenia remains a major health burden, highlighting the need for new treatment approaches. We consider the potential for targeting the trace amine (TA) system. We first review genetic, preclinical, and clinical evidence for the role of TAs in the aetiopathology of schizophrenia. We then consider how the localisation and function of the trace amine-associated receptor 1 (TAAR1) position it to modulate key brain circuits for the disorder. Studies in rodents using Taar1 knockout (TAAR1-KO) and overexpression models show that TAAR1 agonism inhibits midbrain dopaminergic and serotonergic activity, and enhances prefrontal glutamatergic function. TAAR1 agonists also reduce hyperactivity, attenuate prepulse inhibition (PPI) deficits and social withdrawal, and improve cognitive measures in animal models. Finally, we consider findings from clinical trials of TAAR1 agonists and how this approach may address psychotic and negative symptoms, tolerability issues, and other unmet needs in the treatment of schizophrenia.
Collapse
|
6
|
Krasavin M, Peshkov AA, Lukin A, Komarova K, Vinogradova L, Smirnova D, Kanov EV, Kuvarzin SR, Murtazina RZ, Efimova EV, Gureev M, Onokhin K, Zakharov K, Gainetdinov RR. Discovery and In Vivo Efficacy of Trace Amine-Associated Receptor 1 (TAAR1) Agonist 4-(2-Aminoethyl)- N-(3,5-dimethylphenyl)piperidine-1-carboxamide Hydrochloride (AP163) for the Treatment of Psychotic Disorders. Int J Mol Sci 2022; 23:ijms231911579. [PMID: 36232878 PMCID: PMC9569940 DOI: 10.3390/ijms231911579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Starting from a screening hit, a set of analogs was synthesized based on a 4-(2-aminoethyl)piperidine core not associated previously with trace amine-associated receptor 1 (TAAR1) modulation in the literature. Several structure–activity relationship generalizations have been drawn from the observed data, some of which were corroborated by molecular modeling against the crystal structure of TAAR1. The four most active compounds (EC50 for TAAR1 agonistic activity ranging from 0.033 to 0.112 μM) were nominated for evaluation in vivo. The dopamine transporter knockout (DAT-KO) rat model of dopamine-dependent hyperlocomotion was used to evaluate compounds’ efficacy in vivo. Out of four compounds, only one compound (AP163) displayed a statistically significant and dose-dependent reduction in hyperlocomotion in DAT-KO rats. As such, compound AP163 represents a viable lead for further preclinical characterization as a potential novel treatment option for disorders associated with increased dopaminergic function, such as schizophrenia.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Department of Medicinal Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (R.R.G.)
| | - Anatoly A. Peshkov
- Department of Medicinal Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Alexey Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Daria Smirnova
- Department of Medicinal Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Evgeny V. Kanov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Savelii R. Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Ramilya Z. Murtazina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Evgeniya V. Efimova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Maxim Gureev
- Center of Bio- and Chemoinformatics, Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Kirill Onokhin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Konstantin Zakharov
- Accellena Research and Development Inc., 88A Sredniy pr. V.O., Saint Petersburg 199106, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (R.R.G.)
| |
Collapse
|
7
|
New 2-[(4-Amino-6-N-substituted-1,3,5-triazin-2-yl)methylthio]-N-(imidazolidin-2-ylidene)-4-chloro-5-methylbenzenesulfonamide Derivatives, Design, Synthesis and Anticancer Evaluation. Int J Mol Sci 2022; 23:ijms23137178. [PMID: 35806186 PMCID: PMC9267128 DOI: 10.3390/ijms23137178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/07/2022] Open
Abstract
In the search for new compounds with antitumor activity, new potential anticancer agents were designed as molecular hybrids containing the structures of a triazine ring and a sulfonamide fragment. Applying the synthesis in solution, a base of new sulfonamide derivatives 20–162 was obtained by the reaction of the corresponding esters 11–19 with appropriate biguanide hydrochlorides. The structures of the compounds were confirmed by spectroscopy (IR, NMR), mass spectrometry (HRMS or MALDI-TOF/TOF), elemental analysis (C,H,N) and X-ray crystallography. The cytotoxic activity of the obtained compounds toward three tumor cell lines, HCT-116, MCF-7 and HeLa, was examined. The results showed that some of the most active compounds belonged to the R1 = 4-trifluoromethylbenzyl and R1 = 3,5-bis(trifluoromethyl)benzyl series and exhibited IC50 values ranging from 3.6 µM to 11.0 µM. The SAR relationships were described, indicating the key role of the R2 = 4-phenylpiperazin-1-yl substituent for the cytotoxic activity against the HCT-116 and MCF-7 lines. The studies regarding the mechanism of action of the active compounds included the assessment of the inhibition of MDM2-p53 interactions, cell cycle analysis and apoptosis induction examination. The results indicated that the studied compounds did not inhibit MDM2-p53 interactions but induced G0/G1 and G2/M cell cycle arrest in a p53-independent manner. Furthermore, the active compounds induced apoptosis in cells harboring wild-type and mutant p53. The compound design was conducted step by step and assisted by QSAR models that correlated the activity of the compounds against the HCT-116 cell line with molecular descriptors.
Collapse
|
8
|
Liao S, Pino MJ, Deleon C, Lindner-Jackson M, Wu C. Interaction analyses of hTAAR1 and mTAAR1 with antagonist EPPTB. Life Sci 2022; 300:120553. [PMID: 35452636 DOI: 10.1016/j.lfs.2022.120553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) plays a critical role in regulating monoaminergic activity. EPPTB is the only known selective potent antagonist of the mouse (m) TAAR1 presently, while it was shown to be weak at antagonizing human (h) TAAR1. The lack of high-resolution structure of TAAR1 hinders the understanding of the differences in the interaction modes between EPPTB and m/hTARR1. The purpose of this study is to probe these interaction modes using homology modeling, molecular docking, molecular dynamics (MD) simulations, and molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. Eight populated conformers of hTAAR1-EPPTB complex were observed during the MD simulations and could be used in structure-based virtual screening in future. The MM-GBSA binding energy of hTAAR1-EPPTB complex (-96.5 kcal/mol) is larger than that of mTAAR1-EPPTB complex (-106.7 kcal/mol), which is consistent with the experimental finding that EPPTB has weaker binding affinity to hTAAR1. The several residues in binding site of hTAAR1 (F1544.56, T1945.42 and I2907.39) are different from these of mTAAR1 (Y1534.56, A1935.42 and Y2877.39), which might contribute to the binding affinity difference. Our docking analysis on another hTAAR1 antagonist Compound 3 has found that 1). this compound binds in different pockets of our mTAAR1 and hTAAR1 homology models with a slightly stronger binding affinity to hTAAR1; 2). both antagonists bind to a very similar pocket of hTAAR1.
Collapse
Affiliation(s)
- Siyan Liao
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Michael James Pino
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States of America
| | - Catherine Deleon
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States of America
| | - Maurice Lindner-Jackson
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States of America
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States of America.
| |
Collapse
|
9
|
Tonelli M. One step away from the breakthrough of TAAR1 agonists for the treatment of neuropsychiatric disorders. Curr Med Chem 2022; 29:4893-4895. [PMID: 35170404 DOI: 10.2174/0929867329666220216111512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV n. 3, 16132, Genoa, Italy
| |
Collapse
|
10
|
Heffernan MLR, Herman LW, Brown S, Jones PG, Shao L, Hewitt MC, Campbell JE, Dedic N, Hopkins SC, Koblan KS, Xie L. Ulotaront: A TAAR1 Agonist for the Treatment of Schizophrenia. ACS Med Chem Lett 2022; 13:92-98. [PMID: 35047111 PMCID: PMC8762745 DOI: 10.1021/acsmedchemlett.1c00527] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
![]()
Ulotaront (SEP-363856)
is a trace-amine associated receptor 1 (TAAR1)
agonist with 5-HT1A receptor agonist activity in Phase 3 clinical
development, with FDA Breakthrough Therapy Designation, for the treatment
of schizophrenia. TAAR1 is a G-protein-coupled receptor (GPCR) that
is expressed in cortical, limbic, and midbrain monoaminergic regions.
It is activated by endogenous trace amines, and is believed to play
an important role in modulating dopaminergic, serotonergic, and glutamatergic
circuitry. TAAR1 agonism data are reported herein for ulotaront and
its analogues in comparison to endogenous TAAR1 agonists. In addition,
a human TAAR1 homology model was built around ulotaront to identify
key interactions and attempt to better understand the scaffold-specific
TAAR1 agonism structure–activity relationships.
Collapse
Affiliation(s)
| | - Lee W. Herman
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Scott Brown
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Philip G. Jones
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Liming Shao
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Michael C. Hewitt
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - John E. Campbell
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Nina Dedic
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Seth C. Hopkins
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Kenneth S. Koblan
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Linghong Xie
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| |
Collapse
|
11
|
Sabbadini R, Pesce E, Parodi A, Mustorgi E, Bruzzone S, Pedemonte N, Casale M, Millo E, Cichero E. Probing Allosteric Hsp70 Inhibitors by Molecular Modelling Studies to Expedite the Development of Novel Combined F508del CFTR Modulators. Pharmaceuticals (Basel) 2021; 14:ph14121296. [PMID: 34959696 PMCID: PMC8709398 DOI: 10.3390/ph14121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Cystic fibrosis (CF) is caused by different mutations related to the cystic fibrosis transmembrane regulator protein (CFTR), with F508del being the most common. Pioneering the development of CFTR modulators, thanks to the development of effective correctors or potentiators, more recent studies deeply encouraged the administration of triple combination therapeutics. However, combinations of molecules interacting with other proteins involved in functionality of the CFTR channel recently arose as a promising approach to address a large rescue of F508del-CFTR. In this context, the design of compounds properly targeting the molecular chaperone Hsp70, such as the allosteric inhibitor MKT-077, proved to be effective for the development of indirect CFTR modulators, endowed with ability to amplify the accumulation of the rescued protein. Herein we performed structure-based studies of a number of allosteric HSP70 inhibitors, considering the recent X-ray crystallographic structure of the human enzyme. This allowed us to point out the main interaction supporting the binding mode of MKT-077, as well as of the related analogues. In particular, cation-π and π-π stacking with the conserve residue Tyr175 deeply stabilized inhibitor binding at the HSP70 cavity. Molecular docking studies had been followed by QSAR analysis and then by virtual screening of aminoaryl thiazoles (I-IIIa) as putative HSP70 inhibitors. Their effectiveness as CFTR modulators has been verified by biological assays, in combination with VX-809, whose positive results confirmed the reliability of the whole applied computational method. Along with this, the "in-silico" prediction of absorption, distribution, metabolism, and excretion (ADME) properties highlighted, once more, that AATs may represent a chemical class to be further investigated for the rational design of novel combination of compounds for CF treatment.
Collapse
Affiliation(s)
- Roberto Sabbadini
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy;
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16147 Genova, Italy; (E.P.); (N.P.)
| | - Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (A.P.); (S.B.)
| | - Eleonora Mustorgi
- Department of Pharmacy, Section of Chemistry and Food and Pharmaceutical Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy; (E.M.); (M.C.)
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (A.P.); (S.B.)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16147 Genova, Italy; (E.P.); (N.P.)
| | - Monica Casale
- Department of Pharmacy, Section of Chemistry and Food and Pharmaceutical Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy; (E.M.); (M.C.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (A.P.); (S.B.)
- Correspondence: (E.M.); (E.C.); Tel.: +10-335-3032-3033 (E.M.); +39-010-353-8350 (E.C.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy;
- Correspondence: (E.M.); (E.C.); Tel.: +10-335-3032-3033 (E.M.); +39-010-353-8350 (E.C.)
| |
Collapse
|
12
|
Potential of Ligands for Trace Amine-Associated Receptor 1 (TAAR1) in the Management of Substance Use Disorders. CNS Drugs 2021; 35:1239-1248. [PMID: 34766253 PMCID: PMC8787759 DOI: 10.1007/s40263-021-00871-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
Trace amines, including β-phenylethylamine (β-PEA), p-tyramine (TYR), tryptamine (TRP), and p-octopamine (OCT), represent a group of amines expressed at low levels in the mammalian brain. Given the close structural similarities to traditional monoamines, links between trace amines and the monoaminergic system have long been suspected. Trace amine-associated receptor 1 (TAAR1), the most well characterized receptor in the TAAR family, has been shown to be potently activated by trace amines such as TYR and PEA. Further, catecholamine metabolites and amphetamine analogs are also potent agonists of TAAR1, implicating the receptor in mediating the monoaminergic system and in substance use disorders. In the central nervous system, TAAR1 is expressed in brain regions involved in dopaminergic, serotonergic, and glutamatergic transmission, and genetic animal models and electrophysiological studies have revealed that TAAR1 is a potent modulator of the monoaminergic system. Selective and potent engineered TAAR1 ligands, including full (RO5166017 and RO5256390) and partial (RO5203648, RO5263397 and RO5073012) agonists and the antagonist EPPTB (N-(3-ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl) benzamide, RO5212773), serve as invaluable tools for the investigation of TAAR1 functions and display significant potential for the development of TAAR1-based pharmacotherapies for the treatment of substance use disorders. Despite a number of advances that have been made, more clinical studies are warranted in order to test the potential and efficacy of TAAR1 ligands in the treatment of psychiatric disorders, including substance use disorders.
Collapse
|
13
|
Trace amine-associated receptor 1 (TAAR1): Potential application in mood disorders: A systematic review. Neurosci Biobehav Rev 2021; 131:192-210. [PMID: 34537265 DOI: 10.1016/j.neubiorev.2021.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022]
Abstract
There is a need for innovation with respect to therapeutics in psychiatry. Available evidence indicates that the trace amine-associated receptor 1 (TAAR1) agonist SEP-363856 is promising, as it improves measures of cognitive and reward function in schizophrenia. Hedonic and cognitive impairments are transdiagnostic and constitute major burdens in mood disorders. Herein, we systematically review the behavioural and genetic literature documenting the role of TAAR1 in reward and cognitive function, and propose a mechanistic model of TAAR1's functions in the brain. Notably, TAAR1 activity confers antidepressant-like effects, enhances attention and response inhibition, and reduces compulsive reward seeking without impairing normal function. Further characterization of the responsible mechanisms suggests ion-homeostatic, metabolic, neurotrophic, and anti-inflammatory enhancements in the limbic system. Multiple lines of evidence establish the viability of TAAR1 as a biological target for the treatment of mood disorders. Furthermore, the evidence suggests a role for TAAR1 in reward and cognitive function, which is attributed to a cascade of events that are relevant to the cellular integrity and function of the central nervous system.
Collapse
|
14
|
The Psychonauts' Benzodiazepines; Quantitative Structure-Activity Relationship (QSAR) Analysis and Docking Prediction of Their Biological Activity. Pharmaceuticals (Basel) 2021; 14:ph14080720. [PMID: 34451817 PMCID: PMC8398354 DOI: 10.3390/ph14080720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022] Open
Abstract
Designer benzodiazepines (DBZDs) represent a serious health concern and are increasingly reported in polydrug consumption-related fatalities. When new DBZDs are identified, very limited information is available on their pharmacodynamics. Here, computational models (i.e., quantitative structure-activity relationship/QSAR and Molecular Docking) were used to analyse DBZDs identified online by an automated web crawler (NPSfinder®) and to predict their possible activity/affinity on the gamma-aminobutyric acid A receptors (GABA-ARs). The computational software MOE was used to calculate 2D QSAR models, perform docking studies on crystallised GABA-A receptors (6HUO, 6HUP) and generate pharmacophore queries from the docking conformational results. 101 DBZDs were identified online by NPSfinder®. The validated QSAR model predicted high biological activity values for 41% of these DBDZs. These predictions were supported by the docking studies (good binding affinity) and the pharmacophore modelling confirmed the importance of the presence and location of hydrophobic and polar functions identified by QSAR. This study confirms once again the importance of web-based analysis in the assessment of drug scenarios (DBZDs), and how computational models could be used to acquire fast and reliable information on biological activity for index novel DBZDs, as preliminary data for further investigations.
Collapse
|
15
|
Synthesis, biological evaluation, molecular docking and in silico ADMET screening studies of novel isoxazoline derivatives from acridone. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Kathuria D, Raul AD, Wanjari P, Bharatam PV. Biguanides: Species with versatile therapeutic applications. Eur J Med Chem 2021; 219:113378. [PMID: 33857729 DOI: 10.1016/j.ejmech.2021.113378] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Biguanides are compounds in which two guanidine moieties are fused to form a highly conjugated system. Biguanides are highly basic and hence they are available as salts mostly hydrochloride salts, these cationic species have been found to exhibit many therapeutic properties. This review covers the research and development carried out on biguanides and accounts the various therapeutic applications of drugs containing biguanide group-such as antimalarial, antidiabetic, antiviral, anticancer, antibacterial, antifungal, anti-tubercular, antifilarial, anti-HIV, as well as other biological activities. The aim of this review is to compile all the medicinal chemistry applications of this class of compounds so as to pave way for the accelerated efforts in finding the drug action mechanisms associated with this class of compounds. Importance has been given to the organic chemistry of these biguanide derivatives also.
Collapse
Affiliation(s)
- Deepika Kathuria
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Akshay D Raul
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Pravin Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India.
| |
Collapse
|
17
|
Novel 1-Amidino-4-Phenylpiperazines as Potent Agonists at Human TAAR1 Receptor: Rational Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Pharmaceuticals (Basel) 2020; 13:ph13110391. [PMID: 33202687 PMCID: PMC7697893 DOI: 10.3390/ph13110391] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
Targeting trace amine-associated receptor 1 (TAAR1) receptor continues to offer an intriguing opportunity to develop innovative therapies in different pharmacological settings. Pursuing our endeavors in the search for effective and safe human TAAR1 (hTAAR1) ligands, we synthesized a new series of 1-amidino-4-phenylpiperazine derivatives (1–16) based on the application of a combined pharmacophore model/scaffold simplification strategy for an in-house series of biguanide-based TAAR1 agonists. Most of the novel compounds proved to be more effective than their prototypes, showing nanomolar EC50 values in functional activity at hTAAR1 and low general cytotoxicity (CC50 > 80 µM) when tested on the Vero-76 cell line. In this new series, the main determinant for TAAR1 agonism ability appears to result from the appropriate combination between the steric size and position of the substituents on the phenyl ring rather than from their different electronic nature, since both electron-withdrawing and electron donor groups are permitted. In particular, the ortho-substitution seems to impose a more appropriate spatial geometry to the molecule that entails an enhanced TAAR1 potency profile, as experienced, in the following order, by compounds 15 (2,3-diCl, EC50 = 20 nM), 2 (2-CH3, EC50 = 30 nM), 6 (2-OCH3, EC50 = 93 nM) and 3 (2-Cl, EC50 = 160 nM). Apart from the interest in them as valuable leads for the development of promising hTAAR1 agonists, these simple small molecules have further allowed us to identify the minimal structural requirements for producing an efficient hTAAR1 targeting ability.
Collapse
|
18
|
Molecular Docking and QSAR Studies as Computational Tools Exploring the Rescue Ability of F508del CFTR Correctors. Int J Mol Sci 2020; 21:ijms21218084. [PMID: 33138251 PMCID: PMC7663332 DOI: 10.3390/ijms21218084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is the autosomal recessive disorder most recurrent in Caucasian populations. Different mutations involving the cystic fibrosis transmembrane regulator protein (CFTR) gene, which encodes the CFTR channel, are involved in CF. A number of life-prolonging therapies have been conceived and deeply investigated to combat this disease. Among them, the administration of the so-called CFTR modulators, such as correctors and potentiators, have led to quite beneficial effects. Recently, based on QSAR (quantitative structure activity relationship) studies, we reported the rational design and synthesis of compound 2, an aminoarylthiazole-VX-809 hybrid derivative exhibiting promising F508del-CFTR corrector ability. Herein, we explored the docking mode of the prototype VX-809 as well as of the aforementioned correctors in order to derive useful guidelines for the rational design of further analogues. In addition, we refined our previous QSAR analysis taking into account our first series of in-house hybrids. This allowed us to optimize the QSAR model based on the chemical structure and the potency profile of hybrids as F508del-CFTR correctors, identifying novel molecular descriptors explaining the SAR of the dataset. This study is expected to speed up the discovery process of novel potent CFTR modulators.
Collapse
|
19
|
Akella M, Malla R. Molecular modeling and in vitro study on pyrocatechol as potential pharmacophore of CD151 inhibitor. J Mol Graph Model 2020; 100:107681. [PMID: 32738620 DOI: 10.1016/j.jmgm.2020.107681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 11/24/2022]
Abstract
CD151 has been recognized as a prognostic marker, the therapeutic target of breast cancers, but less explored for small molecule inhibitors due to lack of a validated model. The 3-D structure of CD151 large extracellular loop (LEL) was modeled using the LOMETS server and validated by the Ramachandran plot. The validated structure was employed for molecular docking and structure-based pharmacophore analysis. Druglikeness was evaluated by the ADMET description protocol. Antiproliferative activity was evaluated by MTT, BrdU incorporation, flow cytometry, and cell death ELISAPLUS assay. This study predicted the best model for CD151-LEL with 94.1% residues in favored regions and Z score -2.79 kcal/mol using the threading method. The web-based receptor cavity method identified one functional target site, which was suitable for the binding of aromatic and heterocyclic compounds. Molecular docking study identified pyrocatechol (PCL) and 5-fluorouracil (FU) as potential leads of CD151-LEL. The pharmacophore model identified interaction points of modeled CD151-LEL with PCL and FU. Also, the analysis of ADMET properties revealed the drug-likeness of PCL and FU. The viability of MDA-MB 231 cells was significantly reduced with PCL and FU but less affected MCF-12A, normal healthy breast epithelial cell line. With 50% toxic concentration, both PCL and FU significantly inhibited 82.46 and 87.12% proliferation, respectively, of MDA-MB 231 cells by altering morphology and inducing G1 cell cycle arrest and apoptosis. In addition, PCL and FU inhibited the CD151 expression by 4.5-and 4.8-folds, respectively. This study suggests the further assessment of pyrocatechol as a potential lead of CD151 in breast cancer at the molecular level.
Collapse
Affiliation(s)
- Manasa Akella
- Cancer Biology Lab, Dept. of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to Be University), Visakhapatnam, 530045, Andhra Pradesh, India
| | - RamaRao Malla
- Cancer Biology Lab, Dept. of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to Be University), Visakhapatnam, 530045, Andhra Pradesh, India.
| |
Collapse
|
20
|
Tomorowicz Ł, Sławiński J, Żołnowska B, Szafrański K, Kawiak A. Synthesis, Antitumor Evaluation, Molecular Modeling and Quantitative Structure-Activity Relationship (QSAR) of Novel 2-[(4-Amino-6- N-substituted-1,3,5-triazin-2-yl)methylthio]-4-chloro-5-methyl- N-(1 H-benzo[ d]imidazol-2(3 H)-ylidene)Benzenesulfonamides. Int J Mol Sci 2020; 21:E2924. [PMID: 32331219 PMCID: PMC7215599 DOI: 10.3390/ijms21082924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023] Open
Abstract
A series of novel 2-[(4-amino-6-R2-1,3,5-triazin-2-yl)methylthio]-4-chloro-5-methyl-N-(5-R1-1H-benzo[d]imidazol-2(3H)-ylidene)benzenesulfonamides 6-49 was synthesized by the reaction of 5-substituted ethyl 2-{5-R1-2-[N-(5-chloro-1H-benzo[d]imidazol-2(3H)-ylidene)sulfamoyl]-4-methylphenylthio}acetate with appropriate biguanide hydrochlorides. The most active compounds, 22 and 46, showed significant cytotoxic activity and selectivity against colon (HCT-116), breast (MCF-7) and cervical cancer (HeLa) cell lines (IC50: 7-11 µM; 15-24 µM and 11-18 µM), respectively. Further QSAR (Quantitative Structure-Activity Relationships) studies on the cytotoxic activity of investigated compounds toward HCT-116, MCF-7 and HeLa were performed by using different topological (2D) and conformational (3D) molecular descriptors based on the stepwise multiple linear regression technique (MLR). The QSAR studies allowed us to make three statistically significant and predictive models for them. Moreover, the molecular docking studies were carried out to evaluate the possible binding mode of the most active compounds, 22 and 46, within the active site of the MDM2 protein.
Collapse
Affiliation(s)
- Łukasz Tomorowicz
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (Ł.T.); (K.S.)
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (Ł.T.); (K.S.)
| | - Beata Żołnowska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (Ł.T.); (K.S.)
| | - Krzysztof Szafrański
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (Ł.T.); (K.S.)
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307 Gdansk, Poland;
| |
Collapse
|
21
|
Yamamoto K, Tsuda Y, Kuriyama M, Demizu Y, Onomura O. Copper-Catalyzed Enantioselective Synthesis of Oxazolines from Aminotriols via Asymmetric Desymmetrization. Chem Asian J 2020; 15:840-844. [PMID: 32030893 DOI: 10.1002/asia.201901742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/28/2020] [Indexed: 11/06/2022]
Abstract
A copper-catalyzed enantioselective transformation of tris(hydroxymethyl)aminomethane-derived aminotriols was developed to provide multisubstituted oxazolines with a tetrasubstituted carbon center. The present transformation consisted of sequential reactions involving mono-sulfonylation of aminotriols, subsequent intramolecular cyclization to afford prochiral oxazoline diols, and sulfonylative asymmetric desymmetrization of resultant oxazoline diols. In addition, the kinetic resolution process would be involved in the sulfonylative asymmetric desymmetrization step, which would amplify the enantiopurities of the desired products. Various aminotriols were tolerated in the present reaction, affording the desired oxazolines in good to high yields with excellent enantioselectivities. The synthetic utility of the present reaction was demonstrated by the transformation of the optically active oxazoline into a chiral α-tertiary amine motif.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yutaro Tsuda
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yosuke Demizu
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
22
|
Tonelli M, Cichero E. Trace amine associated receptor 1 (TAAR1) modulators: a patent review (2010-present). Expert Opin Ther Pat 2019; 30:137-145. [DOI: 10.1080/13543776.2020.1708900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michele Tonelli
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, Genova, Italy
| | - Elena Cichero
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, Genova, Italy
| |
Collapse
|
23
|
Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood. Biomolecules 2019; 9:biom9110740. [PMID: 31731771 PMCID: PMC6920920 DOI: 10.3390/biom9110740] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Natural products from plants, such as chemopreventive agents, attract huge attention because of their low toxicity and high specificity. The rational drug design in combination with structure-based modeling and rapid screening methods offer significant potential for identifying and developing lead anticancer molecules. Thus, the molecular docking method plays an important role in screening a large set of molecules based on their free binding energies and proposes structural hypotheses of how the molecules can inhibit the target. Several peptide-based therapeutics have been developed to combat several health disorders, including cancers, metabolic disorders, heart-related diseases, and infectious diseases. Despite the discovery of hundreds of such therapeutic peptides however, only few peptide-based drugs have made it to the market. Moreover, the in silico activities of cyclic peptides towards molecular targets, such as protein kinases, proteases, and apoptosis related proteins have not been extensively investigated. In this study, we explored the in silico kinase and protease inhibitor potentials of cyclosaplin, and studied the interactions of cyclosaplin with other apoptosis-related proteins. Previously, the structure of cyclosaplin was elucidated by molecular modeling associated with dynamics that were used in the current study as well. Docking studies showed strong affinity of cyclosaplin towards cancer-related proteins. The binding affinity closer to 10 kcal/mol indicated efficient binding. Cyclosaplin showed strong binding affinities towards protein kinases such as EGFR, VEGFR2, PKB, and p38, indicating its potential role in protein kinase inhibition. Moreover, it displayed strong binding affinity to apoptosis-related proteins and revealed the possible role of cyclosaplin in apoptotic cell death. The protein–ligand interactions using LigPlot displayed some similar interactions between cyclosaplin and peptide-based ligands, especially in case of protein kinases and a few apoptosis related proteins. Thus, the in silico analyses gave the insights of cyclosaplin being a potential apoptosis inducer and protein kinase inhibitor.
Collapse
|
24
|
Zeb A, Kim D, Alam SI, Son M, Kumar R, Rampogu S, Parameswaran S, Shelake RM, Rana RM, Parate S, Kim JY, Lee KW. Computational Simulations Identify Pyrrolidine-2,3-Dione Derivatives as Novel Inhibitors of Cdk5/p25 Complex to Attenuate Alzheimer's Pathology. J Clin Med 2019; 8:E746. [PMID: 31137734 PMCID: PMC6572193 DOI: 10.3390/jcm8050746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
: Mechanistically, neurotoxic insults provoke Ca2+-mediated calpain activation, which cleaves the cytoplasmic region of membrane-embedded p35 and produces its truncated form p25. Upon physical interaction, cyclin-dependent kinase 5 (Cdk5) and p25 forms hyperactivated Cdk5/p25 complex and causes severe neuropathological aberrations including hyperphosphorylated tau-mediated neurofibrillary tangles formation, Alzheimer's symptoms, and neuronal death. Therefore, the inhibition of Cdk5/p25 complex may relieve p-tau-mediated Alzheimer's pathology. Herein, computational simulations have identified pyrrolidine-2,3-dione derivatives as novel inhibitors of Cdk5/p25 complex. A ligand-based pharmacophore was designed and employed as 3D query to retrieve drug-like molecules from chemical databases. By molecular docking, drug-like molecules obtaining dock score > 67.67 (Goldcore of the reference compound) were identified. Molecular dynamics simulation and binding free energy calculation retrieved four pyrrolidine-2,3-dione derivatives as novel candidate inhibitors of Cdk5/p25. The root means square deviation of Cdk5/p25 in complex with candidate inhibitors obtained an average value of ~2.15 Å during the 30 ns simulation period. Molecular interactions analysis suggested that each inhibitor occupied the ATP-binding site of Cdk5/p25 and formed stable interactions. Finally, the binding free energy estimation suggested that each inhibitor had lowest binding energy than the reference compound (-113.10 kJ/mol) to recapitulate their strong binding with Cdk5/p25. Overall, these inhibitors could mitigate tau-mediated Alzheimer's phenotype.
Collapse
Affiliation(s)
- Amir Zeb
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Donghwan Kim
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Sayed Ibrar Alam
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Sciences, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Minky Son
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Raj Kumar
- Institute of Chemical Processes (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Shailima Rampogu
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Saravanan Parameswaran
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Rahul Mahadev Shelake
- Division of Applied Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| | - Rabia Mukhtar Rana
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Shraddha Parate
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Jae-Yean Kim
- Division of Applied Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| |
Collapse
|
25
|
Farfán-García ED, Márquez-Gómez R, Barrón-González M, Pérez-Capistran T, Rosales-Hernández MC, Pinto-Almazán R, Soriano-Ursúa MA. Monoamines and their Derivatives on GPCRs: Potential Therapy for Alzheimer's Disease. Curr Alzheimer Res 2019; 16:871-894. [PMID: 30963972 DOI: 10.2174/1570159x17666190409144558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Albeit cholinergic depletion remains the key event in Alzheimer's Disease (AD), recent information describes stronger links between monoamines (trace amines, catecholamines, histamine, serotonin, and melatonin) and AD than those known in the past century. Therefore, new drug design strategies focus efforts to translate the scope on these topics and to offer new drugs which can be applied as therapeutic tools in AD. In the present work, we reviewed the state-of-art regarding genetic, neuropathology and neurochemistry of AD involving monoamine systems. Then, we compiled the effects of monoamines found in the brain of mammals as well as the reported effects of their derivatives and some structure-activity relationships. Recent derivatives have triggered exciting effects and pharmacokinetic properties in both murine models and humans. In some cases, the mechanism of action is clear, essentially through the interaction on G-protein-coupled receptors as revised in this manuscript. Additional mechanisms are inhibition of enzymes for their biotransformation, regulation of free-radicals in the central nervous system and others for the effects on Tau phosphorylation or amyloid-beta accumulation. All these data make the monoamines and their derivatives attractive potential elements for AD therapy.
Collapse
Affiliation(s)
- Eunice D Farfán-García
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Ricardo Márquez-Gómez
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, OX1 3TH, Oxford, United Kingdom
| | - Mónica Barrón-González
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Teresa Pérez-Capistran
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Martha C Rosales-Hernández
- Laboratorio de Biofisica y Biocatalisis, Seccion de Estudios de Posgrado e Investigacion Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigacion Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal Mexico-Puebla km 34.5, C.P. 56530. Ixtapaluca, State of Mexico, Mexico
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| |
Collapse
|
26
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
27
|
Studies on the Dual Activity of EGFR and HER-2 Inhibitors Using Structure-Based Drug Design Techniques. Int J Mol Sci 2018; 19:ijms19123728. [PMID: 30477154 PMCID: PMC6321113 DOI: 10.3390/ijms19123728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022] Open
Abstract
HER-2 and EGFR are biological targets related to the development of cancer and the discovery and/or development of a dual inhibitor could be a good strategy to design an effective drug candidate. In this study, analyses of the chemical properties of a group of substances having affinity for both HER-2 and EGFR were carried out with the aim of understanding the main factors involved in the interaction between these inhibitors and the biological targets. Comparative analysis of molecular interaction fields (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques were applied on 63 compounds. From CoMFA analyses, we found for both HER-2 (r2 calibration = 0.98 and q2cv = 0.83) and EGFR (r2 calibration = 0.98 and q2cv = 0.73) good predictive models. Good models for CoMSIA technique have also been found for HER-2 (r2 calibration = 0.92 and q2cv = 0.74) and EGFR (r2 calibration = 0.97 and q2cv = 0.72). The constructed models could indicate some important characteristics for the inhibition of the biological targets. New compounds were proposed as candidates to inhibit both proteins. Therefore, this study may guide future projects for the development of new drug candidates for the treatment of breast cancer.
Collapse
|
28
|
Khairullina VR, Gimadieva AR, Gerchikov AY, Mustafin AG, Zarudii FS. Quantitative structure-activity relationship of the thymidylate synthase inhibitors of Mus musculus in the series of quinazolin-4-one and quinazolin-4-imine derivatives. J Mol Graph Model 2018; 85:198-211. [PMID: 30227365 DOI: 10.1016/j.jmgm.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/19/2018] [Accepted: 09/02/2018] [Indexed: 02/03/2023]
Abstract
A quantitative structure-activity relationship analysis of the 2-methylquinazolin-4-one and quinazolin-4-imine derivatives, well-known antifolate thymidylate synthase (TYMS) inhibitors, has been performed in the range IC50 = 0.4÷380000.0 nmoL/L using the GUSAR 2013 program. Based on the MNA and QNA descriptors using the self-consistent regression, 6 statistically significant consensus models for predicting the IC50 numerical values have been constructed. These models demonstrate high and moderate prognostic accuracies for the training and external validation test sets, respectively. The molecular fragments of TYMS inhibitors regulating their antitumor activity are identified. The obtained data open opportunities for developing novel promising inhibitors of TYMS.
Collapse
Affiliation(s)
| | - Alfiya R Gimadieva
- Ufa Institute of Chemistry - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prospect Oktyabrya, Ufa, 450054, Russian Federation
| | | | - Akhat G Mustafin
- Bashkir State University, 32 Z. Validi str., Ufa, 450076, Russian Federation; Ufa Institute of Chemistry - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prospect Oktyabrya, Ufa, 450054, Russian Federation
| | - Felix S Zarudii
- Bashkir State Medical University, 3 Lenina str, Ufa, 450000, Russian Federation
| |
Collapse
|