1
|
Krátký M. Novel sulfonamide derivatives as a tool to combat methicillin-resistant Staphylococcus aureus. Future Med Chem 2024; 16:545-562. [PMID: 38348480 DOI: 10.4155/fmc-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Increasing resistance in Staphylococcus aureus has created a critical need for new drugs, especially those effective against methicillin-resistant strains (methicillin-resistant Staphylococcus aureus [MRSA]). Sulfonamides are a privileged scaffold for the development of novel antistaphylococcal agents. This review covers recent advances in sulfonamides active against MRSA. Based on the substitution patterns of sulfonamide moieties, its derivatives can be tuned for desired properties and biological activity. Contrary to the traditional view, not only N-monosubstituted 4-aminobenzenesulfonamides are effective. Novel sulfonamides have various mechanisms of action, not only 'classical' inhibition of the folate biosynthetic pathway. Some of them can overcome resistance to classical sulfa drugs and cotrimoxazole, are bactericidal and active in vivo. Hybrid compounds with distinct bioactive scaffolds are particularly advantageous.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Sarabando SN, Dias CJ, Vieira C, Bartolomeu M, Neves MGPMS, Almeida A, Monteiro CJP, Faustino MAF. Sulfonamide Porphyrins as Potent Photosensitizers against Multidrug-Resistant Staphylococcus aureus (MRSA): The Role of Co-Adjuvants. Molecules 2023; 28:molecules28052067. [PMID: 36903314 PMCID: PMC10004250 DOI: 10.3390/molecules28052067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Sulfonamides are a conventional class of antibiotics that are well-suited to combat infections. However, their overuse leads to antimicrobial resistance. Porphyrins and analogs have demonstrated excellent photosensitizing properties and have been used as antimicrobial agents to photoinactivate microorganisms, including multiresistant Staphylococcus aureus (MRSA) strains. It is well recognized that the combination of different therapeutic agents might improve the biological outcome. In this present work, a novel meso-arylporphyrin and its Zn(II) complex functionalized with sulfonamide groups were synthesized and characterized and the antibacterial activity towards MRSA with and without the presence of the adjuvant KI was evaluated. For comparison, the studies were also extended to the corresponding sulfonated porphyrin TPP(SO3H)4. Photodynamic studies revealed that all porphyrin derivatives were effective in photoinactivating MRSA (>99.9% of reduction) at a concentration of 5.0 μM upon white light radiation with an irradiance of 25 mW cm-2 and a total light dose of 15 J cm-2. The combination of the porphyrin photosensitizers with the co-adjuvant KI during the photodynamic treatment proved to be very promising allowing a significant reduction in the treatment time and photosensitizer concentration by six times and at least five times, respectively. The combined effect observed for TPP(SO2NHEt)4 and ZnTPP(SO2NHEt)4 with KI seems to be due to the formation of reactive iodine radicals. In the photodynamic studies with TPP(SO3H)4 plus KI, the cooperative action was mainly due to the formation of free iodine (I2).
Collapse
Affiliation(s)
- Sofia N. Sarabando
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cristina J. Dias
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Vieira
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Bartolomeu
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (C.J.P.M.); (M.A.F.F.)
| | - Maria Amparo F. Faustino
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (C.J.P.M.); (M.A.F.F.)
| |
Collapse
|
3
|
Spesia MB, Durantini EN. Evolution of Phthalocyanine Structures as Photodynamic Agents for Bacteria Inactivation. CHEM REC 2022; 22:e202100292. [PMID: 35018719 DOI: 10.1002/tcr.202100292] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Phthalocyanine derivatives have been proposed as photosensitizers for the treatment of several microbial infections. In this review, the progress in the structures of phthalocyanines was analyzed, considering that these compounds can easily functionalize and can form complexes with various metal ions. In this sense, different substituents were used to increase the interaction with the microorganisms, improving their photodynamic inactivation. Furthermore, these photosensitizers absorb strongly at phototherapeutic window, emit red fluorescence, and efficiently produce the formation of reactive oxygen species. Subsequently, the influence of binding, bacteria types, cell density, washing effect, and media on photoinactivation was remarked to elimination of microbes. Finally, photokilling of bacterial biofilm by phthalocyanines and the mechanism of action were discussed. Therefore, this review brings together the main features of phthalocyanines as antimicrobial phototherapeutic agents.
Collapse
Affiliation(s)
- Mariana B Spesia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
4
|
Gomes ATPC, Faustino MAF, Neves MGPMS, Almeida A. Bioluminescent Models to Evaluate the Efficiency of Light-Based Antibacterial Approaches. Methods Mol Biol 2022; 2451:631-669. [PMID: 35505039 DOI: 10.1007/978-1-0716-2099-1_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The emergence of microbial resistance to antimicrobials among several common pathogenic microbial strains is an increasing problem worldwide. Thus, it is urgent to develop not only new antimicrobial therapeutics to fight microbial infections, but also new effective, rapid, and inexpensive methods to monitor the efficacy of these new therapeutics. Antimicrobial photodynamic therapy (aPDT) and antimicrobial blue light (aBL) therapy are receiving considerable attention for their antimicrobial potential and represent realistic alternatives to antibiotics. To monitor the photoinactivation process provided by aPDT and aBL, faster and more effective methods are required instead of laborious conventional plating and overnight incubation procedures. Bioluminescent microbial models are very interesting in this context. Light emission from bioluminescent microorganisms is a highly sensitive indication of their metabolic activity and can be used to monitor, in real time, the effects of antimicrobial agents and therapeutics. This chapter reviews the efforts of the scientific community concerning the development of in vitro, ex vivo, and in vivo bioluminescent bacterial models and their potential to evaluate the efficiency of aPDT and aBL in the inactivation of bacteria.
Collapse
Affiliation(s)
- Ana T P C Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Maria A F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Maria G P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
5
|
Photodynamic therapy of prostate cancer using porphyrinic formulations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112301. [PMID: 34492530 DOI: 10.1016/j.jphotobiol.2021.112301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023]
Abstract
Prostate cancer (PCa) is the second most frequent cancer diagnosed in men worldwide. Among the common treatment options, photodynamic therapy (PDT) is being considered a promising local therapy to treat this cancer. Although PDT is an established treatment modality approved for several types of cancer, the low solubility, the reduced tumor selectivity, the absorption in the therapeutic window and the poor clearance from the body of the currently approved photosensitizers (PS) hampers its wide clinical application. In this regard, herein we synthesized three fluorinated porphyrinoid derivatives and entrapped them into polyvinylpyrrolidone (PVP) to prevent their aggregation and preserve their desirable photophysical properties under the physiological environment. In vitro studies revealed the negligible dark cytotoxicity of all PVP formulations (PS1@PVP, PS2@PVP and PS3@PVP) at the tested concentrations (5.0 to 20 μM), but also confirmed the significant photodynamic effect of PS2@PVP and PS3@PVP towards the PCa cell line PC-3, upon red light irradiation at an irradiance of 17.6 mW.cm-2. To provide insight into the underlying mechanisms of cell death under PDT treatment induced by PS2@PVP and PS3@PVP, their intracellular localization in PC-3 cells was firstly investigated by confocal microscopy. Since both PS2@PVP and PS3@PVP nanoparticles were mainly localized in mitochondria, the involvement of this organelle in PDT-induced apoptosis mediated by both formulations was further explored. Western blot analysis revealed that PDT treatment of PC-3 cells with either PS2@PVP or PS3@PVP resulted in the reduction of the expression level of the anti-apoptotic protein Bcl-2. As the photodamage to Bcl-2 after PDT with PS2@PVP and PS3@PVP was accompanied by the further activation of pro-caspase-3, we assumed that upon irradiation the photogenerated reactive oxygen species (ROS) were able to activate a caspase-dependent apoptotic response as a consequence of a post-mitochondrial event. Taken together, these findings demonstrate that among the tested fluorinated porphyrinoids, PS2@PVP and, particularly, PS3@PVP, are significantly more effective in overall PC-3 cell killing than PS1@PVP, thus highlighting their great potential as therapeutic agents for PCa.
Collapse
|
6
|
Bheemanaboina RRY, Wang J, Hu YY, Meng JP, Guan Z, Zhou CH. A facile reaction to access novel structural sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents. Bioorg Med Chem Lett 2021; 47:128198. [PMID: 34119615 DOI: 10.1016/j.bmcl.2021.128198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
A novel type of sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents was constructed via the unique ring-opened reaction of oxiranes by imidazoles for the first time. Some developed target hybrids showed potential antimicrobial potency against the tested microbes. Especially, imidazole derivative 5f could strongly suppressed the growth of MRSA (MIC = 4 μg/mL), which was 2-fold and 16-fold more potent than the positive control sulfathiazole and norfloxacin. This compound exhibited quite low propensity to induce bacterial resistance. Antibacterial mechanism exploration indicated that compound 5f could embed in MRSA DNA to form steady 5f-DNA complex, which possibly hinder DNA replication to exert antimicrobial behavior. Molecular docking showed that molecule 5f could bind with dihydrofolate synthetase through hydrogen bonds. These results implied that imidazole derivative 5f could be served as a promising molecule for the exploration of novel antibacterial candidates.
Collapse
Affiliation(s)
- Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuan-Yuan Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiang-Ping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Zhi Guan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Light-Activated Zirconium(IV) Phthalocyanine Derivatives Linked to Graphite Oxide Flakes and Discussion on Their Antibacterial Activity. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In search of an effective antibacterial agent that is useful in photodynamic therapy, new derivatives of zirconium(IV) phthalocyanine (ZrPc) complexes were obtained and linked to graphite oxide flakes. In the syntheses of ZrPc derivatives, two bis-axially substituted ligands with terminal amino group and different lengths of linear carbon chain (C4 in 4-aminobutyric acid or C11 in 11-aminoundecanoic acid) were used. The optical properties (absorption and photoluminescence spectra) of ZrPcs and the composites were examined. Broadband red–near-infrared lamp was tested as an external stimulus to activate ZrPcs and the composites. Optical techniques were used to show generation of singlet oxygen during irradiation. Considering the application of graphite oxide-based materials as bacteriostatic photosensitive additives for endodontic treatment of periapical tissue inflammation, the antibacterial activity was determined on one Escherichia coli strain isolated directly from an infected root canal of a human tooth and one strain with silver and antibiotic resistance. Looking at the obtained results, modified levels of activity toward different bacterial strains are discussed.
Collapse
|
8
|
Belosludov RV, Nevonen D, Rhoda HM, Sabin JR, Nemykin VN. Simultaneous Prediction of the Energies of Qx and Qy Bands and Intramolecular Charge-Transfer Transitions in Benzoannulated and Non-Peripherally Substituted Metal-Free Phthalocyanines and Their Analogues: No Standard TDDFT Silver Bullet Yet. J Phys Chem A 2018; 123:132-152. [DOI: 10.1021/acs.jpca.8b07647] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Rodion V. Belosludov
- Institute for Materials Research, Tohoku University, Katahira 2-1-1,
Aoba-ku Sendai 980-8577, Japan
| | - Dustin Nevonen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Hannah M. Rhoda
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Jared R. Sabin
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Victor N. Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|