1
|
Huang Y, Li B, Wu Z, Liu K, Min J. Inhibitors targeting the PWWP domain-containing proteins. Eur J Med Chem 2024; 280:116965. [PMID: 39413441 DOI: 10.1016/j.ejmech.2024.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
PWWP domain-containing proteins play a pivotal role in chromatin-mediated biological processes, and their aberrant regulation is linked to various human diseases. Recent years have witnessed remarkable strides in unraveling the structural and functional features of PWWP domain-containing proteins, propelling significant advances in targeting the PWWP domain-containing proteins for drug discovery purposes. Several drugs have already been approved, while others are currently in clinical trials. This review offers a comprehensive overview of the latest developments on PWWP domain-containing proteins, including their structural characteristics and biological significance. It also provides detailed insights into the drug discovery process targeting these proteins, including screening, design, and structural optimization.
Collapse
Affiliation(s)
- Yunyuan Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Boyi Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Zhibin Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Pal S, Nare Z, Rao VA, Smith BO, Morrison I, Fitzgerald EA, Scott A, Bingham MJ, Pesnot T. Accelerating BRPF1b hit identification with BioPhysical and Active Learning Screening (BioPALS). ChemMedChem 2024; 19:e202300590. [PMID: 38372199 DOI: 10.1002/cmdc.202300590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
We report the development of BioPhysical and Active Learning Screening (BioPALS); a rapid and versatile hit identification protocol combining AI-powered virtual screening with a GCI-driven biophysical confirmation workflow. Its application to the BRPF1b bromodomain afforded a range of novel micromolar binders with favorable ADMET properties. In addition to the excellent in silico/in vitro confirmation rate demonstrated with BRPF1b, binding kinetics were determined, and binding topologies predicted for all hits. BioPALS is a lean, data-rich, and standardized approach to hit identification applicable to a wide range of biological targets.
Collapse
Affiliation(s)
- Sandeep Pal
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Zandile Nare
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Vincenzo A Rao
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Brian O Smith
- University of Glasgow, School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, G12 8QQ, Glasgow, UK
| | - Ian Morrison
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | | | - Andrew Scott
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Matilda J Bingham
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Thomas Pesnot
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| |
Collapse
|
3
|
Barman S, Bardhan I, Padhan J, Sudhamalla B. Integrated virtual screening and MD simulation approaches toward discovering potential inhibitors for targeting BRPF1 bromodomain in hepatocellular carcinoma. J Mol Graph Model 2024; 126:108642. [PMID: 37797430 DOI: 10.1016/j.jmgm.2023.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive and life-threatening cancers. Although multiple treatment options are available, the prognosis of HCC patients is poor due to metastasis and drug resistance. Hence, discovering novel targets is essential for better therapeutic development for HCC. In this study, we used the cancer genome atlas (TCGA) dataset to analyze the expression of bromodomain-containing proteins in HCC, as bromodomains are emerging attractive therapeutic targets. Our analysis identified BRPF1 as the most highly upregulated gene in HCC among the 43 bromodomain-containing genes. Upregulation of BRPF1 was significantly associated with poorer patient survival. Therefore, targeting BRPF1 may be an approach for HCC treatment. Previously, several potential inhibitors of BRPF1 bromodomain have been discovered. However, due to the limited clinical success of the current inhibitors, we aim to search for new inhibitors with high affinity and specificity for the BRPF1 bromodomain. In this study, we utilized high-throughput virtual screening methods to screen synthetic and natural compound databases against the BRPF1 bromodomain. In addition, we used machine learning-based QSAR modeling to predict the IC50 values of the selected BRPF1 bromodomain inhibitors. Extensive MD simulations were used to calculate the binding free energies of BRPF1 bromodomain and inhibitor complexes. Using this approach, we identified four lead scaffolds with a similar or better binding affinity towards the BRPF1 bromodomain than the previously reported inhibitors. Overall, this study discovered some promising compounds that have the potential to act as potent BRPF1 bromodomain inhibitors.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Ishita Bardhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India.
| |
Collapse
|
4
|
Bayanbold K, Younger G, Darbro B, Sidhu A. Mosaicism in BRPF1-Related Neurodevelopmental Disorder: Report of Two Sisters and Literature Review. Case Rep Genet 2023; 2023:1692422. [PMID: 37946714 PMCID: PMC10632058 DOI: 10.1155/2023/1692422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/28/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Bromodomain and PHD finger containing 1 (BRPF1)-related neurodevelopmental disorder is characterized by intellectual disability, developmental delay, hypotonia, dysmorphic facial features, ptosis, and blepharophimosis. Both de novo and inherited pathogenic variants have been previously reported in association with this disorder. We report two affected female siblings with a novel variant in BRPF1 c.2420_2433del (p.Q807Lfs∗27) identified through whole-exome sequencing. Their history of mild intellectual disability, speech delay, attention deficient hyperactivity disorder (ADHD), and ptosis align with the features previously reported in the literature. The absence of the BRPF1 variant in parental buccal samples provides evidence of a de novo frameshift pathogenic variant, most likely as a result of parental gonadal mosaicism, which has not been previously reported. The frameshift pathogenic variant reported here lends further support to haploinsufficiency as the underlying mechanism of disease. We review the literature, compare the clinical features seen in our patients with others reported, and explore the possibility of genotype-phenotype correlation based on the location of pathogenic variants in BRPF1. Our study helps to summarize available knowledge and report the first case of a de novo frameshift pathogenic variant in BRPF1 in two siblings with this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Khaliunaa Bayanbold
- Free Radical Radiation Biology, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Georgianne Younger
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Benjamin Darbro
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Alpa Sidhu
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
5
|
Çınaroğlu SS, Biggin PC. The role of loop dynamics in the prediction of ligand-protein binding enthalpy. Chem Sci 2023; 14:6792-6805. [PMID: 37350814 PMCID: PMC10284145 DOI: 10.1039/d2sc06471e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/31/2023] [Indexed: 06/24/2023] Open
Abstract
The enthalpic and entropic components of ligand-protein binding free energy reflect the interactions and dynamics between ligand and protein. Despite decades of study, our understanding and hence our ability to predict these individual components remains poor. In recent years, there has been substantial effort and success in the prediction of relative and absolute binding free energies, but the prediction of the enthalpic (and entropic) contributions in biomolecular systems remains challenging. Indeed, it is not even clear what kind of performance in terms of accuracy could currently be obtained for such systems. It is, however, relatively straight-forward to compute the enthalpy of binding. We thus evaluated the performance of absolute enthalpy of binding calculations using molecular dynamics simulation for ten inhibitors against a member of the bromodomain family, BRD4-1, against isothermal titration calorimetry data. Initial calculations, with the AMBER force-field showed good agreement with experiment (R2 = 0.60) and surprisingly good accuracy with an average of root-mean-square error (RMSE) = 2.49 kcal mol-1. Of the ten predictions, three were obvious outliers that were all over-predicted compared to experiment. Analysis of various simulation factors, including parameterization, buffer concentration and conformational dynamics, revealed that the behaviour of a loop (the ZA loop on the periphery of the binding site) strongly dictates the enthalpic prediction. Consistent with previous observations, the loop exists in two distinct conformational states and by considering one or the other or both states, the prediction for the three outliers can be improved dramatically to the point where the R2 = 0.95 and the accuracy in terms of RMSE improves to 0.90 kcal mol-1. However, performance across force-fields is not consistent: if OPLS and CHARMM are used, different outliers are observed and the correlation with the ZA loop behaviour is not recapitulated, likely reflecting parameterization as a confounding problem. The results provide a benchmark standard for future study and comparison.
Collapse
Affiliation(s)
- Süleyman Selim Çınaroğlu
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK +44 (0)1865 613238 +44 (0)1865 613305
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK +44 (0)1865 613238 +44 (0)1865 613305
| |
Collapse
|
6
|
Pan Z, Zhao Y, Wang X, Xie X, Liu M, Zhang K, Wang L, Bai D, Foster LJ, Shu R, He G. Targeting bromodomain-containing proteins: research advances of drug discovery. MOLECULAR BIOMEDICINE 2023; 4:13. [PMID: 37142850 PMCID: PMC10159834 DOI: 10.1186/s43556-023-00127-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023] Open
Abstract
Bromodomain (BD) is an evolutionarily conserved protein module found in 46 different BD-containing proteins (BCPs). BD acts as a specific reader for acetylated lysine residues (KAc) and serves an essential role in transcriptional regulation, chromatin remodeling, DNA damage repair, and cell proliferation. On the other hand, BCPs have been shown to be involved in the pathogenesis of a variety of diseases, including cancers, inflammation, cardiovascular diseases, and viral infections. Over the past decade, researchers have brought new therapeutic strategies to relevant diseases by inhibiting the activity or downregulating the expression of BCPs to interfere with the transcription of pathogenic genes. An increasing number of potent inhibitors and degraders of BCPs have been developed, some of which are already in clinical trials. In this paper, we provide a comprehensive review of recent advances in the study of drugs that inhibit or down-regulate BCPs, focusing on the development history, molecular structure, biological activity, interaction with BCPs and therapeutic potentials of these drugs. In addition, we discuss current challenges, issues to be addressed and future research directions for the development of BCPs inhibitors. Lessons learned from the successful or unsuccessful development experiences of these inhibitors or degraders will facilitate the further development of efficient, selective and less toxic inhibitors of BCPs and eventually achieve drug application in the clinic.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mingxia Liu
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyao Zhang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lian Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Gu He
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Zu G, Liu Y, Cao J, Zhao B, Zhang H, You L. BRPF1-KAT6A/KAT6B Complex: Molecular Structure, Biological Function and Human Disease. Cancers (Basel) 2022; 14:4068. [PMID: 36077605 PMCID: PMC9454415 DOI: 10.3390/cancers14174068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The bromodomain and PHD finger-containing protein1 (BRPF1) is a member of family IV of the bromodomain-containing proteins that participate in the post-translational modification of histones. It functions in the form of a tetrameric complex with a monocytic leukemia zinc finger protein (MOZ or KAT6A), MOZ-related factor (MORF or KAT6B) or HAT bound to ORC1 (HBO1 or KAT7) and two small non-catalytic proteins, the inhibitor of growth 5 (ING5) or the paralog ING4 and MYST/Esa1-associated factor 6 (MEAF6). Mounting studies have demonstrated that all the four core subunits play crucial roles in different biological processes across diverse species, such as embryonic development, forebrain development, skeletal patterning and hematopoiesis. BRPF1, KAT6A and KAT6B mutations were identified as the cause of neurodevelopmental disorders, leukemia, medulloblastoma and other types of cancer, with germline mutations associated with neurodevelopmental disorders displaying intellectual disability, and somatic variants associated with leukemia, medulloblastoma and other cancers. In this paper, we depict the molecular structures and biological functions of the BRPF1-KAT6A/KAT6B complex, summarize the variants of the complex related to neurodevelopmental disorders and cancers and discuss future research directions and therapeutic potentials.
Collapse
Affiliation(s)
- Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Liu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jingli Cao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baicheng Zhao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hang Zhang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai 200040, China
| |
Collapse
|
8
|
Yalçin-Özkat G. Computational studies with flavonoids and terpenoids as BRPF1 inhibitors: in silico biological activity prediction, molecular docking, molecular dynamics simulations, MM/PBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:533-550. [PMID: 35822928 DOI: 10.1080/1062936x.2022.2096113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The BRPF1 protein is encoded by the BRPF1 gene. In addition, the BRPF1 gene is known to be upregulated in leukaemia. Recent studies have shown that it is also overexpressed in hepatocellular carcinoma (HCC) as well. Therefore, BRPF1 is a significant target for anti-cancer drug development studies, especially on HCC. 40 terpenoids and flavonoids were chosen because of their anticancer properties given in the literature. In this study, the biological activity of molecules was also investigated with in silico structure-activity relationship analysis. In addition, interactions between a series of terpenoids and flavonoids and the BRPF1 protein were investigated by molecular docking and molecular dynamics simulations. The energy change caused by the interactions of BRPF1 with different compounds was also evaluated by MM/PBSA calculations. It has been revealed that compound 5 (-9.2 kcal/mol), a kind of secoclerodane type diterpenoid, has a higher affinity both compared to other flavonoids and terpenoids, and 9F9 (-7.9 kcal/mol), a selective BRPF1 inhibitor. The study presented in this article demonstrates that compound 5, as a natural product, could form a chemical scaffold for the development of selective BRPF1 bromodomain inhibitors.
Collapse
Affiliation(s)
- G Yalçin-Özkat
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Magdeburg, Germany
- Bioengineering Department, Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
9
|
Xiang Q, Luo G, Zhang C, Hu Q, Wang C, Wu T, Xu H, Hu J, Zhuang X, Zhang M, Wu S, Xu J, Zhang Y, Liu J, Xu Y. Discovery, optimization and evaluation of 1-(indolin-1-yl)ethan-1-ones as novel selective TRIM24/BRPF1 bromodomain inhibitors. Eur J Med Chem 2022; 236:114311. [PMID: 35385803 DOI: 10.1016/j.ejmech.2022.114311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/12/2022]
Abstract
TRIM24 (tripartite motif-containing protein 24) and BRPF1 (bromodomain and PHD finger containing protein 1) are epigenetics "readers" and potential therapeutic targets for cancer and other diseases. Here we describe the structure-guided design of 1-(indolin-1-yl)ethan-1-ones as novel TRIM24/BRPF1 bromodomain inhibitors. The representative compound 20l (Y08624) is a new TRIM24/BRPF1 dual inhibitor, with IC50 values of 0.98 and 1.16 μM, respectively. Cellular activity of 20l was validated by viability assay in prostate cancer (PC) cell lines. In PC xenograft models, 20l suppressed tumor growth (50 mg/kg/day, TGI = 53%) without exhibiting noticeable toxicity. Compound 20l represents a versatile starting point for the development of more potent TRIM24/BRPF1 inhibitors.
Collapse
Affiliation(s)
- Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Guolong Luo
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Qingqing Hu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Tianbang Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hongrui Xu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiankang Hu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Xiaoxi Zhuang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Maofeng Zhang
- College of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, China
| | - Shuang Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| |
Collapse
|
10
|
Li W, Li F, Zhang X, Lin HK, Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther 2021; 6:422. [PMID: 34924561 PMCID: PMC8685280 DOI: 10.1038/s41392-021-00825-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
More and more in-depth studies have revealed that the occurrence and development of tumors depend on gene mutation and tumor heterogeneity. The most important manifestation of tumor heterogeneity is the dynamic change of tumor microenvironment (TME) heterogeneity. This depends not only on the tumor cells themselves in the microenvironment where the infiltrating immune cells and matrix together forming an antitumor and/or pro-tumor network. TME has resulted in novel therapeutic interventions as a place beyond tumor beds. The malignant cancer cells, tumor infiltrate immune cells, angiogenic vascular cells, lymphatic endothelial cells, cancer-associated fibroblastic cells, and the released factors including intracellular metabolites, hormonal signals and inflammatory mediators all contribute actively to cancer progression. Protein post-translational modification (PTM) is often regarded as a degradative mechanism in protein destruction or turnover to maintain physiological homeostasis. Advances in quantitative transcriptomics, proteomics, and nuclease-based gene editing are now paving the global ways for exploring PTMs. In this review, we focus on recent developments in the PTM area and speculate on their importance as a critical functional readout for the regulation of TME. A wealth of information has been emerging to prove useful in the search for conventional therapies and the development of global therapeutic strategies.
Collapse
Affiliation(s)
- Wen Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
| | - Feifei Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China.
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| |
Collapse
|
11
|
Zhang X, Zhou C, Yang Y, Liu H, Wang S, Ding X, Wang H. The Discovery of Potential MDM2 Inhibitors: A Combination of Pharmacophore Modeling, Virtual Screening, Molecular Docking Studies, and in vitro/in vivo Biological Evaluation. ChemMedChem 2021; 17:e202100517. [PMID: 34806333 DOI: 10.1002/cmdc.202100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Small-molecule inhibitors of MDM2 that block the MDM2-p53 protein-protein interaction have been considered as potential therapeutic agents for the treatment of cancer. Here, we identify five highly potent inhibitors of MDM2 (termed as WY 1-5) that display significant inhibitory effects on MDM2-p53 interaction by using a combined strategy of pharmacophore modeling, virtual screening, and molecular docking studies. Among them, WY-5 is the most active MDM2 inhibitor with an IC50 value of 14.1±2.8 nM. Moreover, WY-5 significantly up-regulate the protein level of p53 in SK-Hep-1 cells harboring wild-type p53. In vitro anticancer study reveals that WY-5 markedly inhibits the survival of SK-Hep-1 cells. In vivo anticancer study suggests that WY-5 significantly inhibits the growth of SK-Hep-1 cells-derived xenograft in nude mice, with no observable toxicity. Our results demonstrate that WY-5 may be a promising candidate for the treatment of cancer harboring wild-type p53.
Collapse
Affiliation(s)
- Xuelin Zhang
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Chunqiao Zhou
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Hailin Liu
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Song Wang
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Xiaoli Ding
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Hu Wang
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| |
Collapse
|
12
|
Wang Q, Shao X, Leung ELH, Chen Y, Yao X. Selectively targeting individual bromodomain: Drug discovery and molecular mechanisms. Pharmacol Res 2021; 172:105804. [PMID: 34450309 DOI: 10.1016/j.phrs.2021.105804] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Bromodomain-containing proteins include bromodomain and extra-terminal (BET) and non-BET families. Due to the conserved bromodomain (BD) module between BD-containing proteins, and especially BETs with each member having two BDs (BD1 and BD2), the high degree of structural similarity makes BD-selective inhibitors much difficult to be designed. However, increasing evidences emphasized that individual BDs had distinct functions and different cellular phenotypes after pharmacological inhibition, and selectively targeting one of the BDs could result in a different efficacy and tolerability profile. This review is to summarize the pioneering progress of BD-selective inhibitors targeting BET and non-BET proteins, focusing on their structural features, biological activity, therapeutic application and experimental/theoretical mechanisms. The present proteolysis targeting chimeras (PROTAC) degraders targeting BDs, and clinical status of BD-selective inhibitors were also analyzed, providing a new insight into future direction of bromodomain-selective drug discovery.
Collapse
Affiliation(s)
- Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China
| | - Xiaomin Shao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China
| | - Elaine Lai Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau(SAR) 999078, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China.
| | - Xiaojun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau(SAR) 999078, China.
| |
Collapse
|
13
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
14
|
Duan YC, Zhang SJ, Shi XJ, Jin LF, Yu T, Song Y, Guan YY. Research progress of dual inhibitors targeting crosstalk between histone epigenetic modulators for cancer therapy. Eur J Med Chem 2021; 222:113588. [PMID: 34107385 DOI: 10.1016/j.ejmech.2021.113588] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Abnormal epigenetics is a critical hallmark of human cancers. Anticancer drug discovery directed at histone epigenetic modulators has gained impressive advances with six drugs available for cancer therapy and numerous other candidates undergoing clinical trials. However, limited therapeutic profile, drug resistance, narrow safety margin, and dose-limiting toxicities pose intractable challenges for their clinical utility. Because histone epigenetic modulators undergo intricate crosstalk and act cooperatively to shape an aberrant epigenetic profile, co-targeting histone epigenetic modulators with a different mechanism of action has rapidly emerged as an attractive strategy to overcome the limitations faced by the single-target epigenetic inhibitors. In this review, we summarize in detail the crosstalk of histone epigenetic modulators in regulating gene transcription and the progress of dual epigenetic inhibitors targeting this crosstalk.
Collapse
Affiliation(s)
- Ying-Chao Duan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Shao-Jie Zhang
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Xiao-Jing Shi
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, Henan Province, PR China
| | - Lin-Feng Jin
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Tong Yu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yu Song
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yuan-Yuan Guan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| |
Collapse
|
15
|
Akinsiku OE, Soremekun OS, Olotu FA, Soliman MES. Exploring the Role of Asp1116 in Selective Drug Targeting of CREBcAMP- Responsive Element-binding Protein Implicated in Prostate Cancer. Comb Chem High Throughput Screen 2021; 23:178-184. [PMID: 32072894 DOI: 10.2174/1386207323666200219122057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The selective targeting of CREB-cAMP-responsive element-binding protein (CBP) has recently evolved as a vital therapeutic approach for curtailing its aberrant upregulation associated with the development of prostate cancer. Inhibition of CBP has been discovered to be an important therapeutic option in androgen receptor signalling pathway mediated prostate cancer. Y08197, a novel selective inhibitor of CBP, has shown promising therapeutic outcome in prostate carcinogenesis over non-selective analogues such as CPI-637. METHODS/RESULTS Herein, we used molecular dynamics simulation to gain insights into the mechanistic and selective targeting of Y08197 at the bromodomain active site. Molecular Mechanics/ Poisson-Boltzmann Surface Area (MM/PBSA) analysis revealed a similar inhibitory effect between Y08197 and CPI-637. Furthermore, in exploring the selective affinity of Y08197 towards CBP in combination with Bromodomain and PHD finger-containing protein 1(BRPF1), our findings highlighted Asp1116 as the 'culprit' residue responsible for this selective targeting. Upon binding, Asp1116 assumed a conformation that altered the architecture of the bromodomain active site, thereby orienting the helices around the active site in a more compacted position. In addition to some specific structural perturbations mediated by Asp1116 on the dynamics of CBP, our study revealed that the strong hydrogen bond interaction (N-H...O) elicited in CBP-Y08197 sequestered Y08197 tightly into the CBP bromodomain active site. CONCLUSION Conclusively, the inhibition and selective pattern of Y08197 can be replicated in future structure-based CBP inhibitors and other bromodomain implicated in carcinogenesis.
Collapse
Affiliation(s)
- Oluwayimika E Akinsiku
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
16
|
Design, synthesis, and biological evaluation of dual targeting inhibitors of histone deacetylase 6/8 and bromodomain BRPF1. Eur J Med Chem 2020; 200:112338. [PMID: 32497960 DOI: 10.1016/j.ejmech.2020.112338] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/19/2023]
Abstract
Histone modifying proteins, specifically histone deacetylases (HDACs) and bromodomains, have emerged as novel promising targets for anticancer therapy. In the current work, based on available crystal structures and docking studies, we designed dual inhibitors of both HDAC6/8 and the bromodomain and PHD finger containing protein 1 (BRPF1). Biochemical and biophysical tests showed that compounds 23a,b and 37 are nanomolar inhibitors of both target proteins. Detailed structure-activity relationships were deduced for the synthesized inhibitors which were supported by extensive docking and molecular dynamics studies. Cellular testing in acute myeloid leukemia (AML) cells showed only a weak effect, most probably because of the poor permeability of the inhibitors. We also aimed to analyse the target engagement and the cellular activity of the novel inhibitors by determining the protein acetylation levels in cells by western blotting (tubulin vs histone acetylation), and by assessing their effects on various cancer cell lines.
Collapse
|
17
|
Abstract
Bromodomain-containing proteins are often part of chromatin-modifying complexes, and their activity can lead to altered expression of genes that drive cancer, inflammation and neurological disorders in humans. Bromodomain-PHD finger protein 1 (BRPF1) is part of the MOZ (monocytic leukemic zinc-finger protein) HAT (histone acetyltransferase) complex, which is associated with chromosomal translocations known to contribute to the development of acute myeloid leukemia (AML). BRPF1 contains a unique combination of chromatin reader domains including two plant homeodomain (PHD) fingers separated by a zinc knuckle (PZP domain), a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. BRPF1 is known to recruit the MOZ HAT complex to chromatin by recognizing acetylated lysine residues on the N-terminal histone tail region through its bromodomain. However, histone proteins can contain several acetylation modifications on their N-terminus, and it is unknown how additional marks influence bromodomain recruitment to chromatin. Here, we identify the BRPF1 bromodomain as a selective reader of di-acetyllysine modifications on histone H4. We used ITC assays to characterize the binding of di-acetylated histone ligands to the BRPF1 bromodomain and found that the domain binds preferentially to histone peptides H4K5acK8ac and H4K5acK12ac. Analytical ultracentrifugation (AUC) experiments revealed that the monomeric state of the BRPF1 bromodomain coordinates di-acetylated histone ligands. NMR chemical shift perturbation studies, along with binding and mutational analyses, revealed non-canonical regions of the bromodomain-binding pocket that are important for histone tail recognition. Together, our findings provide critical information on how the combinatorial action of post-translational modifications can modulate BRPF1 bromodomain binding and specificity.
Collapse
|
18
|
MacKerell AD, Jo S, Lakkaraju SK, Lind C, Yu W. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots). Biochim Biophys Acta Gen Subj 2020; 1864:129519. [PMID: 31911242 DOI: 10.1016/j.bbagen.2020.129519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/21/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fragment-based ligand design is used for the development of novel ligands that target macromolecules, most notably proteins. Central to its success is the identification of fragment binding sites that are spatially adjacent such that fragments occupying those sites may be linked to create drug-like ligands. Current experimental and computational approaches that address this problem typically identify only a limited number of sites as well as use a limited number of fragment types. METHODS The site-identification by ligand competitive saturation (SILCS) approach is extended to the identification of fragment bindings sites, with the method termed SILCS-Hotspots. The approach involves precomputation of the SILCS FragMaps following which the identification of Hotspots, performed by identifying of all possible fragment binding sites on the full 3D structure of the protein followed by spatial clustering. RESULTS The SILCS-Hotspots approach identifies a large number of sites on the target protein, including many sites not accessible in experimental structures due to low binding affinities and binding sites on the protein interior. The identified sites are shown to recapitulate the location of known drug-like molecules in both allosteric and orthosteric binding sites on seven proteins including the androgen receptor, the CDK2 and Erk5 kinases, PTP1B phosphatase and three GPCRs; the β2-adrenergic, GPR40 fatty-acid binding and M2-muscarinic receptors. Analysis indicates the importance of considering all possible fragment binding sites, and not just those accessible to experimental methods, when identifying novel binding sites and performing ligand design versus just considering the most favorable sites. The approach is shown to identify a larger number of known binding sites of drug-like molecules versus the commonly used FTMap and Fpocket methods. GENERAL SIGNIFICANCE The present results indicate the potential utility of the SILCS-Hotspots approach for fragment-based rational design of ligands, including allosteric modulators.
Collapse
Affiliation(s)
- Alexander D MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, United States of America.
| | - Sunhwan Jo
- SilcsBio, LLC, 8 Market Place, Suite 300, Baltimore, MD 21202, United States of America
| | | | - Christoffer Lind
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, United States of America
| | - Wenbo Yu
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, United States of America
| |
Collapse
|
19
|
Çınaroğlu SS, Timuçin E. Comprehensive evaluation of the MM-GBSA method on bromodomain-inhibitor sets. Brief Bioinform 2019; 21:2112-2125. [DOI: 10.1093/bib/bbz143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Abstract
MM-PB/GBSA methods represent a higher-level scoring theory than docking. This study reports an extensive testing of different MM-GBSA scoring schemes on two bromodomain (BRD) datasets. The first set is composed of 24 BRPF1 complexes, and the second one is a nonredundant set constructed from the PDBbind and composed of 28 diverse BRD complexes. A variety of MM-GBSA schemes were analyzed to evaluate the performance of four protocols with different numbers of minimization and MD steps, 10 different force fields and three different water models. Results showed that neither additional MD steps nor unfixing the receptor atoms improved scoring or ranking power. On the contrary, our results underscore the advantage of fixing receptor atoms or limiting the number of MD steps not only for a reduction in the computational costs but also for boosting the prediction accuracy. Among Amber force fields tested, ff14SB and its derivatives rather than ff94 or polarized force fields provided the most accurate scoring and ranking results. The TIP3P water model yielded the highest scoring and ranking power compared to the others. Posing power was further evaluated for the BRPF1 set. A slightly better posing power for the protocol which uses both minimization and MD steps with a fixed receptor than the one which uses only minimization with a fully flexible receptor-ligand system was observed. Overall, this study provides insights into the usage of the MM-GBSA methods for screening of BRD inhibitors, substantiating the benefits of shorter protocols and latest force fields and maintaining the crystal waters for accuracy.
Collapse
Affiliation(s)
| | - Emel Timuçin
- Department of Biostatistics and Medical Informatics, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, İstanbul, 34752, Turkey
| |
Collapse
|
20
|
Klein BJ, Cox KL, Jang SM, Côté J, Poirier MG, Kutateladze TG. Molecular Basis for the PZP Domain of BRPF1 Association with Chromatin. Structure 2019; 28:105-110.e3. [PMID: 31711755 DOI: 10.1016/j.str.2019.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/27/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022]
Abstract
The assembly of human histone acetyltransferase MOZ/MORF complexes relies on the scaffolding bromodomain plant homeodomain (PHD) finger 1 (BRPF1) subunit. The PHD-zinc-knuckle-PHD module of BRPF1 (BRPF1PZP) has been shown to associate with the histone H3 tail and DNA; however, the molecular mechanism underlying recognition of H3 and the relationship between the histone and DNA-binding activities remain unclear. In this study, we report the crystal structure of BRPF1PZP bound to the H3 tail and characterize the role of the bipartite interaction in the engagement of BRPF1PZP with the nucleosome core particle (NCP). We find that although both interactions of BRPF1PZP with the H3 tail and DNA are required for tight binding to NCP and for acetyltransferase function of the BRPF1-MORF-ING5-MEAF6 complex, binding to extranucleosomal DNA dominates. Our findings suggest that functionally active BRPF1PZP might be important in stabilization of the MOZ/MORF complexes at chromatin with accessible DNA.
Collapse
Affiliation(s)
- Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Khan L Cox
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | - Suk Min Jang
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC G1R 3S3, Canada
| | - Jacques Côté
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC G1R 3S3, Canada
| | - Michael G Poirier
- Department of Physics, Ohio State University, Columbus, OH 43210, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
21
|
O'Mahony DJ, Johnson RJ, Estiarte MA, Edwards WT, Duncton MA. A practical asymmetric synthesis of ortho-substituted 4-pyrazolyl-2-ethylamines. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Clegg MA, Tomkinson NCO, Prinjha RK, Humphreys PG. Advancements in the Development of non-BET Bromodomain Chemical Probes. ChemMedChem 2019; 14:362-385. [PMID: 30624862 DOI: 10.1002/cmdc.201800738] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 01/07/2023]
Abstract
The bromodomain and extra terminal (BET) family of bromodomain-containing proteins (BCPs) have been the subject of extensive research over the past decade, resulting in a plethora of high-quality chemical probes for their tandem bromodomains. In turn, these chemical probes have helped reveal the profound biological role of the BET bromodomains and their role in disease, ultimately leading to a number of molecules in active clinical development. However, the BET subfamily represents just 8/61 of the known human bromodomains, and attention has now expanded to the biological role of the remaining 53 non-BET bromodomains. Rapid growth of this research area has been accompanied by a greater understanding of the requirements for an effective bromodomain chemical probe and has led to a number of new non-BET bromodomain chemical probes being developed. Advances since December 2015 are discussed, highlighting the strengths/caveats of each molecule, and the value they add toward validating the non-BET bromodomains as tractable therapeutic targets.
Collapse
Affiliation(s)
- Michael A Clegg
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK.,WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Thomas Graham Building, Glasgow, G1 1XL, UK
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Thomas Graham Building, Glasgow, G1 1XL, UK
| | - Rab K Prinjha
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Philip G Humphreys
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK
| |
Collapse
|
23
|
Gay JC, Eckenroth BE, Evans CM, Langini C, Carlson S, Lloyd JT, Caflisch A, Glass KC. Disulfide bridge formation influences ligand recognition by the ATAD2 bromodomain. Proteins 2018; 87:157-167. [PMID: 30520161 DOI: 10.1002/prot.25636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 11/29/2018] [Indexed: 12/28/2022]
Abstract
The ATPase family, AAA domain-containing protein 2 (ATAD2) has a C-terminal bromodomain, which functions as a chromatin reader domain recognizing acetylated lysine on the histone tails within the nucleosome. ATAD2 is overexpressed in many cancers and its expression is correlated with poor patient outcomes, making it an attractive therapeutic target and potential biomarker. We solved the crystal structure of the ATAD2 bromodomain and found that it contains a disulfide bridge near the base of the acetyllysine binding pocket (Cys1057-Cys1079). Site-directed mutagenesis revealed that removal of a free C-terminal cysteine (C1101) residue greatly improved the solubility of the ATAD2 bromodomain in vitro. Isothermal titration calorimetry experiments in combination with the Ellman's assay demonstrated that formation of an intramolecular disulfide bridge negatively impacts the ligand binding affinities and alters the thermodynamic parameters of the ATAD2 bromodomain interaction with a histone H4K5ac peptide as well as a small molecule bromodomain ligand. Molecular dynamics simulations indicate that the formation of the disulfide bridge in the ATAD2 bromodomain does not alter the structure of the folded state or flexibility of the acetyllysine binding pocket. However, consideration of this unique structural feature should be taken into account when examining ligand-binding affinity, or in the design of new bromodomain inhibitor compounds that interact with this acetyllysine reader module.
Collapse
Affiliation(s)
- Jamie C Gay
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| | - Chiara M Evans
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Cassiano Langini
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Jonathan T Lloyd
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Karen C Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| |
Collapse
|
24
|
From bench to bedside, via desktop. Recent advances in the application of cutting-edge in silico tools in the research of drugs targeting bromodomain modules. Biochem Pharmacol 2018; 159:40-51. [PMID: 30414936 DOI: 10.1016/j.bcp.2018.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
Abstract
The discipline of drug discovery has greatly benefited by computational tools and in silico algorithms aiming at rationalization of many related processes, from the stage of early hit identification to the preclinical phases of drug candidate validation. The various methodologies referred to as molecular modeling tools span a broad spectrum of applications, from straightforward approaches such as virtual screening of compound libraries to more advanced techniques involving the precise estimation of free energy upon binding of the candidate drug to its macromolecular target. To this end, we report an overview of specific studies where implementation of such sophisticated modeling algorithms has shown to be indispensable for addressing challenging systems and biological questions otherwise difficult to answer. We focus our attention on the emerging field of bromodomain inhibitors. Bromodomains are small modules involved in epigenetic signaling and currently comprise high-priority targets for developing both drug candidates and chemical probes for basic biomedical research. We attempt a critical presentation of selected cases utilizing cutting-edge in silico methodologies, with our main emphasis being on absolute or relative free energy simulations, on implementation of quantum-mechanics level calculations and on characterization of solvent thermodynamics. We discuss the advantages and strengths as well as the drawbacks and weaknesses of computational tools utilized in those works and we attempt to comment on specific issues related to their integration into the regular medicinal chemistry practice. Our conclusion is that while such methods indeed represent highly promising resources for further advancing the discipline, their application is not always trivial.
Collapse
|
25
|
Zhu J, Dong J, Batiste L, Unzue A, Dolbois A, Pascanu V, Śledź P, Nevado C, Caflisch A. Binding Motifs in the CBP Bromodomain: An Analysis of 20 Crystal Structures of Complexes with Small Molecules. ACS Med Chem Lett 2018; 9:929-934. [PMID: 30258543 DOI: 10.1021/acsmedchemlett.8b00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023] Open
Abstract
We analyze 20 crystal structures of complexes between the CBP bromodomain and small-molecule ligands that belong to eight different chemotypes identified by docking. The binding motif of the moiety that mimics the natural ligand (acetylated side chain of lysine) at the bottom of the binding pocket is conserved. In stark contrast, the rest of the ligands form different interactions with different side chains and backbone polar groups on the outer rim of the binding pocket. Hydrogen bonds are direct or water-bridged. van der Waals contacts are optimized by rotations of hydrophobic side chains and a slight inward displacement of the ZA loop. Rare types of interactions are observed for some of the ligands.
Collapse
|
26
|
Marchand JR, Caflisch A. In silico fragment-based drug design with SEED. Eur J Med Chem 2018; 156:907-917. [PMID: 30064119 DOI: 10.1016/j.ejmech.2018.07.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 12/13/2022]
Abstract
We report on two fragment-based drug design protocols, SEED2XR and ALTA, which start by high-throughput docking. SEED2XR is a two-stage protocol for fragment-based drug design. The first stage is in silico and consists of the automatic docking of 103-104 fragments using SEED, which requires about 1 s per fragment. SEED is a docking software developed specifically for fragment docking and binding energy evaluation by a force field with implicit solvent. In the second stage of SEED2XR, the 10-102 fragments with the most favorable predicted binding energies are validated by protein X-ray crystallography. The recent applications of SEED2XR to bromodomains demonstrate that the whole SEED2XR protocol can be carried out in about a week of working time, with hit rates ranging from 10% to 40%. Information on fragment-target interactions generated by the SEED2XR protocol or directly from SEED docking has been used for the discovery of hundreds of hits. ALTA is a computational protocol for screening which identifies candidate ligands that preserve the interactions between the optimal SEED fragments and the protein target. Medicinal chemistry optimization of ligands predicted by ALTA has resulted in pre-clinical candidates for protein kinases and bromodomains. The high-throughput, very low cost, sustainability, and high hit rate of the SEED-based protocols, unreachable by purely experimental techniques, make them perfectly suitable for both academic and industrial drug discovery research.
Collapse
Affiliation(s)
- Jean-Rémy Marchand
- Department of Biochemistry, University of Zürich, CH-8057, Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, CH-8057, Zürich, Switzerland.
| |
Collapse
|