1
|
Barrios O, Inclán C, Herrera P, Bort A, Martín A, Cano J, Díaz-Laviada I, Gómez R. Ruthenium(II) complexes containing PEGylated N-heterocyclic carbene ligands for tunning biocompatibility in the fight against cancer. J Inorg Biochem 2025; 262:112765. [PMID: 39476504 DOI: 10.1016/j.jinorgbio.2024.112765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
A synthetic procedure was designed for the preparation and characterization of Ag and Ru complexes containing NHC ligands functionalized with PEG fragments. Stability studies were conducted to gain insight of the species in water and other solvents like DMSO, or with reagents like imidazole as representative group for histidine amino acid. The presence of Cl atoms instead of H in the 4,5 positions of the N-heterocyclic carbene afforded higher water stability. The complexes containing PEG units must be considered inactive as anticancer agents. To enhance the anticancer activity of PEG-containing complexes, the balance between hydrophilicity and hydrophobicity was adjusted using a silane moiety, and an anionic carbosilane dendrimer as a lipophilic carrier.
Collapse
Affiliation(s)
- Oscar Barrios
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Claudia Inclán
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, Spain
| | - Pablo Herrera
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, Spain
| | - Alicia Bort
- University of Alcalá, Biochemistry and Molecular Biology Unit, Department of Systems Biology and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, Spain
| | - Avelino Martín
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, Spain
| | - Jesús Cano
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid 28034, Spain
| | - Inés Díaz-Laviada
- University of Alcalá, Biochemistry and Molecular Biology Unit, Department of Systems Biology and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, Spain.
| | - Rafael Gómez
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid 28034, Spain.
| |
Collapse
|
2
|
Ruan W, Xie Z, Wang Y, Xia L, Guo Y, Qiao D. An Overview of Naphthylimide as Specific Scaffold for New Drug Discovery. Molecules 2024; 29:4529. [PMID: 39407459 PMCID: PMC11478049 DOI: 10.3390/molecules29194529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Naphthylimides play a pivotal role as aromatic heterocyclic compounds, serving as the foundational structures for numerous pharmacologically significant drugs. These drugs encompass antibacterial, antifungal, anticancer, antimalarial, antiviral, anti-inflammatory, antithrombotic, and antiprotozoal agents. The planar and heteroaromatic characteristics of naphthylimides grant them a strong ability to intercalate into DNA. This intercalation property renders naphthylimide derivatives highly valuable for various biological activities. The advantageous pharmacological activity and ease of synthesis associated with naphthylimides and their derivatives provide significant benefits in the design and development of new compounds within this class. Currently, only a few such molecules are undergoing preclinical and clinical evaluations. In this paper, we have compiled the literature on naphthylimides reported by researchers from 2006 to 2024. Our focus lies on exploring the pharmacological activities of their analogues from a drug development and discovery perspective, while examining their structure-activity relationship and mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | - Yuping Guo
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (W.R.); (Z.X.); (Y.W.); (L.X.)
| | - Dan Qiao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (W.R.); (Z.X.); (Y.W.); (L.X.)
| |
Collapse
|
3
|
Ali JH, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int 2023; 23:197. [PMID: 37679807 PMCID: PMC10483736 DOI: 10.1186/s12935-023-03041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomerase can overcome replicative senescence by elongation of telomeres but is also a specific element in most cancer cells. It is expressed more vastly than any other tumor marker. Telomerase as a tumor target inducing replicative immortality can be overcome by only one other mechanism: alternative lengthening of telomeres (ALT). This limits the probability to develop resistance to treatments. Moreover, telomerase inhibition offers some degree of specificity with a low risk of toxicity in normal cells. Nevertheless, only one telomerase antagonist reached late preclinical studies. The underlying causes, the pitfalls of telomerase-based therapies, and future chances based on recent technical advancements are summarized in this review. Based on new findings and approaches, we propose a concept how long-term survival in telomerase-based cancer therapies can be significantly improved: the TICCA (Transient Immediate Complete and Combinatory Attack) strategy.
Collapse
Affiliation(s)
- Jaber Haj Ali
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany.
| |
Collapse
|
4
|
Lenis Rojas OA, Cordeiro S, Baptista PV, Fernandes AR. Half-sandwich Ru(II) N-heterocyclic carbene complexes in anticancer drug design. J Inorg Biochem 2023; 245:112255. [PMID: 37196411 DOI: 10.1016/j.jinorgbio.2023.112255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
The ruthenium arene fragment is a rich source for the design of anticancer drugs; in this design, the co-ligand is a critical factor for obtaining effective anticancer complexes. In comparison with other types of ligands, N-heterocyclic carbenes (NHCs) have been less explored, despite the versatility in structural modifications and the marked stabilization of metal ions, being these characteristics important for the design of metal drugs. However, notable advances have been made in the development of NHC Ruthenium arene as anticancer agents. These advances include high antitumor activities, proven both in in vitro and in in vivo models and, in some cases, with marked selectivity against tumorigenic cells. The versatility of the structure has played a fundamental role, since they have allowed a selective interaction with their molecular targets through, for example, bio-conjugation with known anticancer molecules. For this reason, the structure-activity relationship of the imidazole, benzimidazole, and abnormal NHC ruthenium (II) η6-arene complexes have been studied. Taking into account this study, several synthetic aspects are provided to contribute to the next generations of this kind of complexes. Moreover, in recent years nanotechnology has provided innovative nanomedicines, where half-sandwich Ruthenium(II) complexes are paving their way. In this review, the recent developments in nanomaterials functionalized with Ruthenium complexes for targeted drug delivery to tumors will also be highlighted.
Collapse
Affiliation(s)
- Oscar A Lenis Rojas
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB, Av. da República, EAN, 2780-157 Oeiras, Portugal.
| | - Sandra Cordeiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Pedro V Baptista
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alexandra R Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
| |
Collapse
|
5
|
Catalano A, Mariconda A, Sinicropi MS, Ceramella J, Iacopetta D, Saturnino C, Longo P. Biological Activities of Ruthenium NHC Complexes: An Update. Antibiotics (Basel) 2023; 12:365. [PMID: 36830276 PMCID: PMC9952499 DOI: 10.3390/antibiotics12020365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Ruthenium N-heterocyclic carbene (NHC) complexes have unique physico-chemical properties as catalysts and a huge potential in medicinal chemistry and pharmacology, exhibiting a variety of notable biological activities. In this review, the most recent studies on ruthenium NHC complexes are summarized, focusing specifically on antimicrobial and antiproliferative activities. Ruthenium NHC complexes are generally active against Gram-positive bacteria, such as Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Listeria monocytogenes and are seldom active against Gram-negative bacteria, including Salmonella typhimurium, Pseudomonas aeruginosa and Escherichia coli and fungal strains of Candida albicans. The antiproliferative activity was tested against cancer cell lines of human colon, breast, cervix, epidermis, liver and rat glioblastoma cell lines. Ruthenium NHC complexes generally demonstrated cytotoxicity higher than standard anticancer drugs. Further studies are needed to explore the mechanism of action of these interesting compounds.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | | | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
6
|
Al Nasr IS, Koko WS, Khan TA, Gürbüz N, Özdemir I, Hamdi N. Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Enzymatic Inhibitory Agents with Antioxidant, Antimicrobial, Antiparasitical and Antiproliferative Activity. Molecules 2023; 28:molecules28031359. [PMID: 36771026 PMCID: PMC9921063 DOI: 10.3390/molecules28031359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
A series of [RuCl2(p-cymene)(NHC)] complexes were obtained by reacting [RuCl2(p-cymene)]2 with in situ generated Ag-N-heterocyclic carbene (NHC) complexes. The structure of the obtained complexes was determined by the appropriate spectroscopy and elemental analysis. In addition, we evaluated the biological activities of these compounds as antienzymatic, antioxidant, antibacterial, anticancer, and antiparasitic agents. The results revealed that complexes 3b and 3d were the most potent inhibitors against AchE with IC50 values of 2.52 and 5.06 μM mL-1. Additionally, 3d proved very good antimicrobial activity against all examined microorganisms with IZ (inhibition zone) over 25 mm and MIC (minimum inhibitory concentration) < 4 µM. Additionally, the ligand 2a and its corresponding ruthenium (II) complex 3a had good cytotoxic activity against both cancer cells HCT-116 and HepG-2, with IC50 values of (7.76 and 11.76) and (4.12 and 9.21) μM mL-1, respectively. Evaluation of the antiparasitic activity of these complexes against Leishmania major promastigotes and Toxoplasma gondii showed that ruthenium complexes were more potent than the free ligand, with an IC50 values less than 1.5 μM mL-1. However, 3d was found the best one with SI (selectivity index) values greater than 5 so it seems to be the best candidate for antileishmanial drug discovery program, and much future research are recommended for mode of action and in vivo evaluation. In general, Ru-NHC complexes are the most effective against L. major promastigotes.
Collapse
Affiliation(s)
- Ibrahim S. Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Waleed S. Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Tariq A. Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Nevin Gürbüz
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya 44280, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya 44280, Turkey
| | - Ismail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya 44280, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya 44280, Turkey
| | - Naceur Hamdi
- Department of Chemistry, College of Science and Arts at ArRass, Qassim University, Ar Rass 51921, Saudi Arabia
- Correspondence: ; Tel.: +966-556394839
| |
Collapse
|
7
|
Wang ZF, Nai XL, Xu Y, Pan FH, Tang FS, Qin QP, Yang L, Zhang SH. Cell nucleus localization and high anticancer activity of quinoline-benzopyran rhodium(III) metal complexes as therapeutic and fluorescence imaging agents. Dalton Trans 2022; 51:12866-12875. [PMID: 35861361 DOI: 10.1039/d2dt01929a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel rhodium(III) complexes, [RhIII(QB1)Cl3(DMSO)] (RhN1), [RhIII(QB2)Cl3(CH3OH)]·CH3OH (RhN2), [RhIII(QB3)Cl3(CH3OH)]·CH3OH (RhS), and [RhIII(QB4)Cl3(DMSO)] (RhQ), bearing quinoline-benzopyran ligands (QB1-QB4) were synthesized and used to develop highly anticancer therapeutic and fluorescence imaging agents. Compared with the QB1-QB4 ligands (IC50 > 89.2 ± 1.7 μM for A549/DDP), RhN1, RhN2, RhS and RhQ exhibit selective cytotoxicity against lung carcinoma cisplatin-resistant A549/DDP (A549CDDP) cancer cells, with IC50 values in the range of 0.08-2.7 μM. The fluorescent imaging agent RhQ with the more extended planar QB4 ligand exhibited high anticancer activity in A549CDDP cells and was found in the cell nucleus fraction, whereas RhS had no fluorescence properties. RhQ and RhS may trigger cell apoptosis by causing DNA damage and initiating the mitochondrial dysfunction pathway. Furthermore, RhQ has a higher antitumor efficacy (ca. 55.3%) than RhS (46.4%) and cisplatin (CDDP, 33.1%), and RhQ demonstrated significantly lower toxicity in vivo than CDDP, making it a promising Rh(III)-based anticancer therapeutic and fluorescence imaging agent.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China
| | - Xiao-Ling Nai
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yue Xu
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Feng-Hua Pan
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Fu-Shun Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China.
| | - Qi-Pin Qin
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Lin Yang
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Shu-Hua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China
| |
Collapse
|
8
|
Macedo LJA, Rodrigues FP, Hassan A, Máximo LNC, Zobi F, da Silva RS, Crespilho FN. Non-destructive molecular FTIR spectromicroscopy for real time assessment of redox metallodrugs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1094-1102. [PMID: 34935794 DOI: 10.1039/d1ay01198g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent emergence of FTIR spectromicroscopy (micro-FTIR) as a dynamic spectroscopy for imaging to study biological chemistry has opened new possibilities for investigating in situ drug release, redox chemistry effects on biological molecules, DNA and drug interactions, membrane dynamics, and redox reactions with proteins at the single cell level. Micro-FTIR applied to metallodrugs has been playing an important role since the last decade because of its great potential to achieve more robust and controlled pharmacological effects against several diseases, including cancer. An important aspect in the development of these drugs is to understand their cellular properties, such as uptake, accumulation, activity, and toxicity. In this review, we present the potential application of micro-FTIR and its importance for studying metal-based drugs, highlighting the perspectives of chemistry of living cells. We also emphasise bioimaging, which is of high importance to localize the cellular processes, for a proper understanding of the mechanism of action.
Collapse
Affiliation(s)
- Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| | - Fernando P Rodrigues
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Ayaz Hassan
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| | - Leandro N C Máximo
- Department of Chemistry, Federal Institute of Education, Science and Technology, Goiano, Urutuai, GO 75790-000, Brazil
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, CH-1700, Switzerland
| | - Roberto S da Silva
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
9
|
Recent Developments on 1,8-Naphthalimide Moiety as Potential Target for Anticancer Agents. Bioorg Chem 2022; 121:105677. [DOI: 10.1016/j.bioorg.2022.105677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 01/07/2023]
|
10
|
Microwave assisted synthesis of rhodium(+Ⅰ) N-heterocyclic carbene complexes and their cytotoxicity against tumor cell lines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Naphthalimide-NHC complexes: Synthesis and properties in catalytic, biological and photophysical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Lee BYT, Sullivan MP, Yano E, Tong KKH, Hanif M, Kawakubo-Yasukochi T, Jamieson SMF, Soehnel T, Goldstone DC, Hartinger CG. Anthracenyl Functionalization of Half-Sandwich Carbene Complexes: In Vitro Anticancer Activity and Reactions with Biomolecules. Inorg Chem 2021; 60:14636-14644. [PMID: 34528438 DOI: 10.1021/acs.inorgchem.1c01675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
N-Heterocyclic carbene (NHC) ligands are widely investigated in medicinal inorganic chemistry. Here, we report the preparation and characterization of a series of half-sandwich [M(L)(NHC)Cl2] (M = Ru, Os, Rh, Ir; L = cym/Cp*) complexes with a N-flanking anthracenyl moiety attached to imidazole- and benzimidazole-derived NHC ligands. The anticancer activity of the complexes was investigated in cell culture studies where, in comparison to a Rh derivative with an all-carbon-donor-atom-based ligand (5a), they were found to be cytotoxic with IC50 values in the low micromolar range. The Ru derivative 1a was chosen as a representative for stability studies as well as for biomolecule interaction experiments. It underwent partial chlorido/aqua ligand exchange in DMSO-d6/D2O to rapidly form an equilibrium in aqueous media. The reactions of 1a with biomolecules proceeded quickly and resulted in the formation of adducts with amino acids, DNA, and protein. Hen egg white lysozyme crystals were soaked with 1a, and the crystallographic analysis revealed an interaction with an l-aspartic acid residue (Asp119), resulting in the cleavage of the p-cymene ligand but the retention of the NHC moiety. Cell morphology studies for the Rh analog 3a suggested that the cytotoxicity is exerted via mechanisms different from that of cisplatin.
Collapse
Affiliation(s)
| | | | - Ena Yano
- OBT (Oral Health-Brain Health-Total Health) Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | - Tomoyo Kawakubo-Yasukochi
- OBT (Oral Health-Brain Health-Total Health) Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
13
|
Burmeister H, Dietze P, Preu L, Bandow JE, Ott I. Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Antibacterial Agents and Inhibitors of Bacterial Thioredoxin Reductase. Molecules 2021; 26:4282. [PMID: 34299558 PMCID: PMC8303947 DOI: 10.3390/molecules26144282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022] Open
Abstract
A series of ruthenium(II) complexes with N-heterocyclic carbene (NHC) ligands of the general type (arene)(NHC)Ru(II)X2 (where X = halide) was prepared, characterized, and evaluated as antibacterial agents in comparison to the respective metal free benzimidazolium cations. The ruthenium(II) NHC complexes generally triggered stronger bacterial growth inhibition than the metal free benzimidazolium cations. The effects were much stronger against Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) than against Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa), and all complexes were inactive against the fungus Candida albicans. Moderate inhibition of bacterial thioredoxin reductase was confirmed for selected complexes, indicating that inhibition of this enzyme might be a contributing factor to the antibacterial effects.
Collapse
Affiliation(s)
- Hilke Burmeister
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany; (H.B.); (L.P.)
| | - Pascal Dietze
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (P.D.); (J.E.B.)
| | - Lutz Preu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany; (H.B.); (L.P.)
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (P.D.); (J.E.B.)
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany; (H.B.); (L.P.)
| |
Collapse
|
14
|
Tolbatov I, Marzo T, Coletti C, La Mendola D, Storchi L, Re N, Marrone A. Reactivity of antitumor coinage metal-based N-heterocyclic carbene complexes with cysteine and selenocysteine protein sites. J Inorg Biochem 2021; 223:111533. [PMID: 34273714 DOI: 10.1016/j.jinorgbio.2021.111533] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
The reaction of the antitumor M(I)-bis-N-heterocyclic carbene (M(I)-NHC) complexes, M = Cu, Ag, and Au, with their potential protein binding sites, i.e. cysteine and selenocysteine, was investigated by means of density functional theory approaches. Capped cysteine and selenocysteine were employed to better model the corresponding residues environment within peptide structures. By assuming the neutral or deprotonated form of the side chains of these amino acids and by considering the possible assistance of an external proton donor such as an adjacent acidic residue or the acidic component of the surrounding buffer environment, we devised five possible routes leading to the binding of the investigated M(I)-NHC scaffolds to these protein sites, reflecting their different location in the protein structure and exposure to the bulk. The targeting of either cysteine or selenocysteine in their neutral forms is a kinetically unfavored process, expected to be quite slow if observable at all at physiological temperature. On the other hand, the reaction with the deprotonated forms is much more favored, even though an external proton source is required to assist the protonation of the leaving carbene. Our calculations also show that all coinage metals are characterized by a similar reactivity toward the binding of cysteine and selenocysteine sites, although the Au(I) complex has significantly higher reaction and activation free energies compared to Cu(I) and Ag(I).
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne Franche-Comté(UBFC), Avenue Alain Savary 9, 21078 Dijon, France; Dipartimento di Farmacia, Università "G d'Annunzio" Chieti-Pescara, Via dei Vestini, Chieti, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; CISUP - Centre for Instrumentation Sharing (Centro per l'Integrazione della Strumentazione Scientifica), University of Pisa, Italy; University Consortium for Research in the Chemistry of Metal ions in Biological Systems (CIRCMSB), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università "G d'Annunzio" Chieti-Pescara, Via dei Vestini, Chieti, Italy.
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; University Consortium for Research in the Chemistry of Metal ions in Biological Systems (CIRCMSB), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Loriano Storchi
- Dipartimento di Farmacia, Università "G d'Annunzio" Chieti-Pescara, Via dei Vestini, Chieti, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università "G d'Annunzio" Chieti-Pescara, Via dei Vestini, Chieti, Italy
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università "G d'Annunzio" Chieti-Pescara, Via dei Vestini, Chieti, Italy
| |
Collapse
|
15
|
Liang J, Sun D, Yang Y, Li M, Li H, Chen L. Discovery of metal-based complexes as promising antimicrobial agents. Eur J Med Chem 2021; 224:113696. [PMID: 34274828 DOI: 10.1016/j.ejmech.2021.113696] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023]
Abstract
The antimicrobial resistance (AMR) is an intractable problem for the world. Metal ions are essential for the cell process and biological function in microorganisms. Many metal-based complexes with the potential for releasing ions are more likely to be absorbed for their higher lipid solubility. Hence, this review highlights the clinical potential of organometallic compounds for the treatment of infections caused by bacteria or fungi in recent five years. The common scaffolds, including antimicrobial peptides, N-heterocyclic carbenes, Schiff bases, photosensitive-grand-cycle skeleton structures, aliphatic amines-based ligands, and special metal-based complexes are summarized here. We also discuss their therapeutic targets and the risks that should be paid attention to in the future studies, aiming to provide information for researchers on metal-based complexes as antimicrobial agents and inspire the design and synthesis of new antimicrobial drugs.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingxue Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
16
|
Steel TR, Walsh F, Wieczorek-Błauż A, Hanif M, Hartinger CG. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213890] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Bernier CM, DuChane CM, Martinez JS, Falkinham JO, Merola JS. Synthesis, Characterization, and Antimicrobial Activity of Rh III and Ir III N-Heterocyclic Carbene Piano-Stool Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chad M. Bernier
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christine M. DuChane
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Justin S. Martinez
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph S. Merola
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
18
|
Bal S, Demirci Ö, Şen B, Taşkın Tok T, Taslimi P, Aktaş A, Gök Y, Aygün M, Gülçin İ. Silver
N
‐heterocyclic carbene complexes bearing fluorinated benzyl group: Synthesis, characterization, crystal structure, computational studies, and inhibitory properties against some metabolic enzymes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Selma Bal
- Department of Chemistry, Faculty of Science and Arts University of Kahramanmaraş Sütçü Imam Kahramanmaraş Turkey
| | - Özlem Demirci
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Turkey
| | - Betül Şen
- Faculty of Science, Department of Physics Dokuz Eylül University İzmir Turkey
| | - Tuğba Taşkın Tok
- Faculty of Arts and Sciences, Department of Chemistry Gaziantep University Gaziantep Turkey
- Institute of Health Sciences, Department of Bioinformatics and Computational Biology Gaziantep University Gaziantep Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
- Department of Chemistry, Faculty of Science Istinye University Istanbul Turkey
| | - Aydın Aktaş
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Turkey
- Vocational School of Health Service Inonu University Malatya Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Turkey
| | - Muhittin Aygün
- Faculty of Science, Department of Physics Dokuz Eylül University İzmir Turkey
| | - İlhami Gülçin
- Faculty of Science, Department of Chemistry Atatürk University Erzurum Turkey
| |
Collapse
|
19
|
Daubit IM, Wortmann S, Siegmund D, Hahn S, Nuernberger P, Metzler‐Nolte N. Unveiling Luminescent Ir I and Rh I N-Heterocyclic Carbene Complexes: Structure, Photophysical Specifics, and Cellular Localization in the Endoplasmic Reticulum. Chemistry 2021; 27:6783-6794. [PMID: 33755263 PMCID: PMC8252781 DOI: 10.1002/chem.202100375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 01/28/2023]
Abstract
Complexes of RhI and IrI of the [M(COD)(NHC)X] type (where M=Rh or Ir, COD=1,5-cyclooctadiene, NHC=N-heterocyclic carbene, and X=halide) have recently shown promising cytotoxic activities against several cancer cell lines. Initial mechanism of action studies provided some knowledge about their interaction with DNA and proteins. However, information about their cellular localization remains scarce owing to luminescence quenching within this complex type. Herein, the synthesis of two rare examples of luminescent RhI and IrI [M(COD)(NHC)I] complexes with 1,8-naphthalimide-based emitting ligands is reported. All new complexes are comprehensively characterized, including with single-crystal X-ray structures. Steric crowding in one derivative leads to two distinct rotamers in solution, which apparently can be distinguished both by pronounced NMR shifts and by their respective spectral and temporal emission signatures. When the photophysical properties of these new complexes are exploited for cellular imaging in HT-29 and PT-45 cancer cell lines, it is demonstrated that the complexes accumulate predominantly in the endoplasmic reticulum, which is an entirely new finding and provides the first insight into the cellular localization of such IrI (NHC) complexes.
Collapse
Affiliation(s)
- Isabelle Marie Daubit
- Faculty of Chemistry and BiochemistryInorganic Chemistry I—Bioinorganic ChemistryRuhr-Universität BochumUniversitätsstraße 15044780BochumGermany
| | - Svenja Wortmann
- Institut für Physikalische und Theoretische ChemieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Daniel Siegmund
- Division EnergyFraunhofer UMSICHTOsterfelder Str. 346047OberhausenGermany
| | - Stephan Hahn
- Molecular GI OncologyRuhr-Universität BochumUniversitätsstraße 15044780BochumGermany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische ChemieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Nils Metzler‐Nolte
- Faculty of Chemistry and BiochemistryInorganic Chemistry I—Bioinorganic ChemistryRuhr-Universität BochumUniversitätsstraße 15044780BochumGermany
| |
Collapse
|
20
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Daubit IM, Sullivan MP, John M, Goldstone DC, Hartinger CG, Metzler-Nolte N. A Combined Spectroscopic and Protein Crystallography Study Reveals Protein Interactions of Rh I(NHC) Complexes at the Molecular Level. Inorg Chem 2020; 59:17191-17199. [PMID: 33180473 DOI: 10.1021/acs.inorgchem.0c02438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While most Rh-N-heterocyclic carbene (NHC) complexes currently investigated in anticancer research contain a Rh(III) metal center, an increasing amount of research is focusing on the cytotoxic activity and mode of action of square-planar [RhCl(COD)(NHC)] (where COD = 1,5-cyclooctadiene) which contains a Rh(I) center. The enzyme thioredoxin reductase (TrxR) and the protein albumin have been proposed as potential targets, but the molecular processes taking place upon protein interaction remain elusive. Herein, we report the preparation of peptide-conjugated and its nonconjugated parent [RhCl(COD)(NHC)] complexes, an in-depth investigation of both their stability in solution, and a crystallographic study of protein interaction. The organorhodium compounds showed a rapid loss of the COD ligand and slow loss of the NHC ligand in aqueous solution. These ligand exchange reactions were reflected in studies on the interaction with hen egg white lysozyme (HEWL) as a model protein in single-crystal X-ray crystallographic investigations. Upon treatment of HEWL with an amino acid functionalized [RhCl(COD)(NHC)] complex, two distinct rhodium adducts were found initially after 7 d of incubation at His15 and after 4 weeks also at Lys33. In both cases, the COD and chlorido ligands had been substituted with aqua and/or hydroxido ligands. While the histidine (His) adduct also indicated a loss of the NHC ligand, the lysine (Lys) adduct retained the NHC core derived from the amino acid l-histidine. In either case, an octahedral coordination environment of the metal center indicates oxidation to Rh(III). This investigation gives the first insight on the interaction of Rh(I)(NHC) complexes and proteins at the molecular level.
Collapse
Affiliation(s)
- Isabelle M Daubit
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Milena John
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
22
|
The copper(II) complexes of new anthrahydrazone ligands: In vitro and in vivo antitumor activity and structure-activity relationship. J Inorg Biochem 2020; 212:111208. [DOI: 10.1016/j.jinorgbio.2020.111208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022]
|
23
|
Liu F, Shen Y, Chen S, Yan G, Zhang Q, Guo Q, Gu Y. Tumor‐Targeting Fluorescent Probe Based on 1,8‐Naphthalimide and Porphyrin Groups. ChemistrySelect 2020. [DOI: 10.1002/slct.202001340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fan Liu
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
- School of MechanicalMedical & Process EngineeringScience and Engineering FacultyQueensland University of Technology Brisbane QLD 4001 Australia
| | - Yan‐Chun Shen
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Si Chen
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Guo‐Ping Yan
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Qiao Zhang
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Qing‐Zhong Guo
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Yuan‐Tong Gu
- School of MechanicalMedical & Process EngineeringScience and Engineering FacultyQueensland University of Technology Brisbane QLD 4001 Australia
| |
Collapse
|
24
|
Guarra F, Busto N, Guerri A, Marchetti L, Marzo T, García B, Biver T, Gabbiani C. Cytotoxic Ag(I) and Au(I) NHC-carbenes bind DNA and show TrxR inhibition. J Inorg Biochem 2020; 205:110998. [DOI: 10.1016/j.jinorgbio.2020.110998] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/18/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
|
25
|
Karges J, Yempala T, Tharaud M, Gibson D, Gasser G. A Multi-action and Multi-target Ru II -Pt IV Conjugate Combining Cancer-Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resistant Cancers. Angew Chem Int Ed Engl 2020; 59:7069-7075. [PMID: 32017379 DOI: 10.1002/anie.201916400] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Indexed: 12/21/2022]
Abstract
PtII complexes are commonly used to treat cancer. To reduce their side effects and improve their pharmacological properties, PtIV complexes are being developed as prodrug candidates that are activated by reduction in cancer cells. Concomitantly, RuII polypyridine complexes have gained much attention as photosensitizers for use in photodynamic therapy due to their attractive characteristics. In this article, a novel PtIV -RuII conjugate, which combines cancer activated chemotherapy with PDT, is presented. Upon entering the cancer cell, the PtIV centre is reduced to PtII and the axial ligands including the RuII complex and phenylbutyrate are released. As each component has its individual targets, the conjugate exerts a multi-target and multi-action effect with (photo-)cytotoxicity values upon irradiation up to 595 nm in the low nanomolar range in various (drug resistant) 2D monolayer cancer cells and 3D multicellular tumour spheroids.
Collapse
Affiliation(s)
- Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Thirumal Yempala
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Mickaël Tharaud
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75005, Paris, France
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
26
|
Karges J, Yempala T, Tharaud M, Gibson D, Gasser G. A Multi‐action and Multi‐target Ru
II
–Pt
IV
Conjugate Combining Cancer‐Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resistant Cancers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916400] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Johannes Karges
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Thirumal Yempala
- Institute for Drug Research School of Pharmacy The Hebrew University of Jerusalem 91120 Jerusalem Israel
| | - Mickaël Tharaud
- Université de Paris Institut de Physique du Globe de Paris CNRS 75005 Paris France
| | - Dan Gibson
- Institute for Drug Research School of Pharmacy The Hebrew University of Jerusalem 91120 Jerusalem Israel
| | - Gilles Gasser
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| |
Collapse
|
27
|
Assessment of the electronic structure of a triruthenium acetate-pyridylnaphthalimide cluster. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Wang J, Nie JJ, Guo P, Yan Z, Yu B, Bu W. Rhodium(I) Complex-Based Polymeric Nanomicelles in Water Exhibiting Coexistent Near-Infrared Phosphorescence Imaging and Anticancer Activity in Vivo. J Am Chem Soc 2020; 142:2709-2714. [DOI: 10.1021/jacs.9b11013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jing-Jun Nie
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pingxia Guo
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zihao Yan
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
29
|
|
30
|
Fan R, Bian M, Hu L, Liu W. A new rhodium(I) NHC complex inhibits TrxR: In vitro cytotoxicity and in vivo hepatocellular carcinoma suppression. Eur J Med Chem 2019; 183:111721. [PMID: 31577978 DOI: 10.1016/j.ejmech.2019.111721] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022]
Abstract
Thioredoxin reductase (TrxR) is often overexpressed in different types of cancer cells including hepatocellular carcinoma (HCC) cells and regarded as a target with great promise for anticancer drug research and development. Here, we have synthesized and characterized nine new designed rhodium(I) N-heterocyclic carbene (NHC) complexes. All of them were effective towards cancer cells, especially complex 1e was more active than cisplatin and manifested strong antiproliferative activity against HCC cells. In vivo anticancer studies showed that 1e significantly repressed tumor growth in an HCC nude mouse model and ameliorated liver lesions in a chronic HCC model caused by CCl4. Notably, a mechanistic study revealed that 1e can strongly inhibit TrxR system both in vitro and in vivo. Furthermore, 1e promoted intracellular ROS accumulation, damaged mitochondrial membrane potential, promoted cancer cell apoptosis and blocked the cells in the G1 phase.
Collapse
Affiliation(s)
- Rong Fan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mianli Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wukun Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
31
|
Johnson AD, Zammit R, Vella J, Valentino M, Buhagiar JA, Magri DC. Aminonaphthalimide hybrids of mitoxantrone and amonafide as anticancer and fluorescent cellular imaging agents. Bioorg Chem 2019; 93:103287. [PMID: 31561011 DOI: 10.1016/j.bioorg.2019.103287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/28/2019] [Accepted: 09/15/2019] [Indexed: 01/10/2023]
Abstract
Novel water-soluble 4-aminonaphthalimides were synthesised and their cellular fluorescent imaging, cytotoxicity and ability to induced apoptosis evaluated. The lead compound 1 was designed from the cross-fertilisation of the basic hydrophilic amino pharmacophore of mitoxantrone, and an aminonaphthalimide scaffold of the drug candidate, amonafide. The compounds are also fluorescent pH probes based on photoinduced electron transfer (PET) and internal charge transfer (ICT). The compounds are sensitive to solvent polarity with large Stoke shifts (>90 nm) and provide emissive-coloured solutions (blue to yellow). Excited state pKas of 9.0-9.3 and fluorescence quantum yields of 0.47-0.58 were determined in water. The cytotoxicity and cellular fluorescent imaging properties of the compounds were tested on human cancer cell lines K562 and MCF-7 by the MTT assay, phase contrast and fluorescence microscopy. Compounds 1 and 3 with flexible aminoalkyl chains exhibited GI50 comparable to amonafide, while 2 and 4 with a rigid piperazine moiety and butyl chain are less cytotoxic. Fluorescence microscopy with 1 allowed for the visualization of the intracellular microenvironment exemplifying the potential utility of such hybrid molecules as anticancer and fluorescent cellular imaging agents.
Collapse
Affiliation(s)
- Alex D Johnson
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD 2080, Malta
| | - Rodrianne Zammit
- Department of Biology, Faculty of Science, University of Malta, Msida, MSD 2080, Malta
| | - Jasmine Vella
- Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD 2080, Malta
| | - Mario Valentino
- Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD 2080, Malta
| | - Joseph A Buhagiar
- Department of Biology, Faculty of Science, University of Malta, Msida, MSD 2080, Malta
| | - David C Magri
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD 2080, Malta.
| |
Collapse
|
32
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
33
|
Hager LA, Mokesch S, Kieler C, Alonso-de Castro S, Baier D, Roller A, Kandioller W, Keppler BK, Berger W, Salassa L, Terenzi A. Ruthenium-arene complexes bearing naphthyl-substituted 1,3-dioxoindan-2-carboxamides ligands for G-quadruplex DNA recognition. Dalton Trans 2019; 48:12040-12049. [PMID: 31292575 DOI: 10.1039/c9dt02078k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Quadruplex nucleic acids - DNA/RNA secondary structures formed in guanine rich sequences - proved to have key roles in the biology of cancers and, as such, in recent years they emerged as promising targets for small molecules. Many reports demonstrated that metal complexes can effectively stabilize quadruplex structures, promoting telomerase inhibition, downregulation of the expression of cancer-related genes and ultimately cancer cell death. Although extensively explored as anticancer agents, studies on the ability of ruthenium arene complexes to interact with quadruplex nucleic acids are surprisingly almost unknown. Herein, we report on the synthesis and characterization of four novel Ru(ii) arene complexes with 1,3-dioxoindan-2-carboxamides ligands bearing pendant naphthyl-groups designed to bind quadruplexes by both stacking and coordinating interactions. We show how improvements on the hydrolytic stability of such complexes, by substituting the chlorido leaving ligand with pyridine, have a dramatic impact on their interaction with quadruplexes and on their cytotoxicity against ovarian cancer cells.
Collapse
Affiliation(s)
- Laura A Hager
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria.
| | - Stephan Mokesch
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria.
| | - Claudia Kieler
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | - Dina Baier
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Alexander Roller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria.
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria.
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Luca Salassa
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Alessio Terenzi
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria. and Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain
| |
Collapse
|
34
|
Li Y, Wu Q, Yu G, Li L, Zhao X, Huang X, Mei W. Polypyridyl Ruthenium(II) complex-induced mitochondrial membrane potential dissipation activates DNA damage-mediated apoptosis to inhibit liver cancer. Eur J Med Chem 2019; 164:282-291. [DOI: 10.1016/j.ejmech.2018.12.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022]
|
35
|
Ko CN, Li G, Leung CH, Ma DL. Dual function luminescent transition metal complexes for cancer theranostics: The combination of diagnosis and therapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Honorato J, Colina-Vegas L, Correa RS, Guedes APM, Miyata M, Pavan FR, Ellena J, Batista AA. Esterification of the free carboxylic group from the lutidinic acid ligand as a tool to improve the cytotoxicity of Ru(ii) complexes. Inorg Chem Front 2019. [DOI: 10.1039/c8qi00941d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The esterification of the free carboxyl group in ruthenium complexes improves the complex interactions with biomolecules, lipophilicity, and cellular uptake, making them more selective against tumor cells than cisplatin.
Collapse
Affiliation(s)
- João Honorato
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- São Carlos
- Brazil
| | - Legna Colina-Vegas
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- São Carlos
- Brazil
| | - Rodrigo S. Correa
- Departamento de Química
- ICEB
- Universidade Federal de Ouro Preto – UFOP
- Ouro Preto MG
- Brazil
| | - Adriana P. M. Guedes
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- São Carlos
- Brazil
| | - Marcelo Miyata
- Faculdade de Ciências Farmacêuticas
- Universidade Estadual Paulista – UNESP
- Araraquara
- Brazil
| | - Fernando R. Pavan
- Faculdade de Ciências Farmacêuticas
- Universidade Estadual Paulista – UNESP
- Araraquara
- Brazil
| | - Javier Ellena
- Instituto de Física de São Carlos
- Universidade de São Paulo – USP
- São Carlos
- Brazil
| | - Alzir A. Batista
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- São Carlos
- Brazil
- Instituto de Química
| |
Collapse
|
37
|
Dabiri Y, Schmid A, Theobald J, Blagojevic B, Streciwilk W, Ott I, Wölfl S, Cheng X. A Ruthenium(II) N-Heterocyclic Carbene (NHC) Complex with Naphthalimide Ligand Triggers Apoptosis in Colorectal Cancer Cells via Activating the ROS-p38 MAPK Pathway. Int J Mol Sci 2018; 19:ijms19123964. [PMID: 30544880 PMCID: PMC6320930 DOI: 10.3390/ijms19123964] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
The p38 MAPK pathway is known to influence the anti-tumor effects of several chemotherapeutics, including that of organometallic drugs. Previous studies have demonstrated the important role of p38 both as a regulator and a sensor of cellular reactive oxygen species (ROS) levels. Investigating the anti-cancer properties of novel 1,8-naphthalimide derivatives containing Rh(I) and Ru(II) N-heterocyclic carbene (NHC) ligands, we observed a profound induction of ROS by the complexes, which is most likely generated from mitochondria (mtROS). Further analyses revealed a rapid and consistent activation of p38 signaling by the naphthalimide-NHC conjugates, with the Ru(II) analogue—termed MC6—showing the strongest effect. In view of this, genetic as well as pharmacological inhibition of p38α, attenuated the anti-proliferative and pro-apoptotic effects of MC6 in HCT116 colon cancer cells, highlighting the involvement of this signaling molecule in the compound’s toxicity. Furthermore, the influence of MC6 on p38 signaling appeared to be dependent on ROS levels as treatment with general- and mitochondria-targeted anti-oxidants abrogated p38 activation in response to MC6 as well as the molecule’s cytotoxic- and apoptogenic response in HCT116 cells. Altogether, our results provide new insight into the molecular mechanisms of naphthalimide-metal NHC analogues via the ROS-induced activation of p38 MAPK, which may have therapeutic interest for the treatment of various cancer types.
Collapse
Affiliation(s)
- Yasamin Dabiri
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Alice Schmid
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Jannick Theobald
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Biljana Blagojevic
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Wojciech Streciwilk
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany.
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany.
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Xinlai Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
38
|
Yang Y, Guo L, Ge X, Shi S, Gong Y, Xu Z, Zheng X, Liu Z. Structure-activity relationships for highly potent half-sandwich organoiridium(III) anticancer complexes with C^N-chelated ligands. J Inorg Biochem 2018; 191:1-7. [PMID: 30445339 DOI: 10.1016/j.jinorgbio.2018.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/16/2018] [Accepted: 11/08/2018] [Indexed: 01/13/2023]
Abstract
We herein report the synthesis, characterization, catalytic ability in converting coenzyme NADH to NAD+ and anticancer activity of half-sandwich iridium(III) complexes, [(η5-Cpxbiph)Ir(C^N)Cl]PF6-, where Cpxbiph = tetramethyl(biphenyl)cyclopentadienyl, C^N = varying imine-N-heterocyclic carbene ligands. The molecular structure of [(η5-Cpxbiph)Ir(L6)Cl]PF6 (complex Ir6), exhibiting the familiar "piano-stool" geometry, has been authenticated by X-ray crystallography. The anticancer activities of these complexes can be governed via substituent effects of three tunable domains and the ligand substituted variants offer an effective chelate ligand set that distinguishes anticancer activity and catalytic ability. Notably, complex Ir6 displays the greatest cytotoxic activities (IC50 = 0.85 μM), whose anticancer activity is more approximately 25-fold higher than that of cisplatin. The initial cell death mechanistic insight displays that this group of iridium(III) complexes exerts anticancer effects via cell cycle arrest, apoptosis induction and loss of the mitochondrial membrane potential. In addition, the confocal microscopy imaging shows that the complex Ir6 can damage lysosome. Overall, preliminary structure-activity relationships study and understanding of the cell death mechanism perhaps provide a rational strategy for enhancing anticancer activity of this family of complexes.
Collapse
Affiliation(s)
- Yuliang Yang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shaopeng Shi
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuteng Gong
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhishan Xu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; Department of Chemistry and Chemical Engineering, Shandong Normal University, Jinan 250014, China
| | - Xiaofeng Zheng
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|