1
|
Mercy A AH, V R PP, K N, Kataria R, Nandi GC. Solvent Controlled Chemodivergent Sulfonyl Addition into Enynones: Synthesis of α-Furyl Sulfones and Stereodefined Vinyl Sulfones. J Org Chem 2025; 90:830-839. [PMID: 39731616 DOI: 10.1021/acs.joc.4c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Sodium salt of aryl sulfinic acid reacts with enynone in a different manner, yielding α-furyl sulfone and stereodefined vinyl sulfone in toluene and EtOH respectively in the presence of ZnCl2. The salient features of this protocol include chemoselectivity, broad substrate scope, high efficiency, high yield, and easy purification. The synthetic utilities of the products are demonstrated by cycloaddition and cis-trans photoisomerization reactions.
Collapse
Affiliation(s)
- Antony Haritha Mercy A
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India
| | - Padma Priya V R
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India
| | - Natarajan K
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganesh Chandra Nandi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India
| |
Collapse
|
2
|
Mishra A, Qamar F, Ashrafi K, Fatima S, Samim M, Mohmmed A, Abdin MZ. Emerging nanotechnology-driven drug delivery solutions for malaria: Addressing drug resistance and improving therapeutic success. Int J Pharm 2025; 670:125163. [PMID: 39788401 DOI: 10.1016/j.ijpharm.2024.125163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/14/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Malaria remains the fifth deadliest parasitic infection worldwide, despite significant advancements in technology. A major challenge in combating this disease lies in the growing resistance of malaria parasites to antimalarial drugs and insect vectors to insecticides. The emerging inefficacy of artemisinin-based combination therapies (ACTs) further exacerbates the issue. Additionally, the absence of a highly effective malaria vaccine continues to be a significant obstacle. The complex biology of the malaria parasite and the multifaceted nature of the disease contribute to these challenges. Recent advancements in nanotechnology offer promising solutions in malaria treatment, providing benefits such as improved drug stability, sustained release, and targeted delivery to specific cells. Encapsulation technology, in particular, addresses critical limitations like poor solubility, low bioavailability, and frequent dosing requirements. Thus, this review explores innovative strategies to combat malaria, focusing on nanotechnology-based antimalarial formulations and their evaluation in vitro and in vivo. Moreover, the study highlights the SAR of potent antimalarial compounds, molecular markers linked with drug resistance, ACTs, advocates for eco-friendly approaches, nanotechnology-driven vaccines, and new antimalarial agents with their specific targets.
Collapse
Affiliation(s)
- Anuradha Mishra
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Firdaus Qamar
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Kudsiya Ashrafi
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saman Fatima
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Malik Zainul Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
3
|
Yadav P, Rawat V, Love SK, Verma VP. Novel frontiers through nitrogen substitution at 6th, 10th and 11th position of artemisinin: Synthetic approaches and antimalarial activity. Eur J Med Chem 2025; 281:117032. [PMID: 39531931 DOI: 10.1016/j.ejmech.2024.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Malaria pertains to an array of catastrophic illnesses spurred on by the Plasmodium spp. Artemisinin (ART) is currently prescribed in conjunction with another medication as part of therapeutic regimens for acute malaria. These currently prescribed pharmaceuticals have been around for a while, even after lack of required thermos-metabolic stabilities, alongside fresh proclaims about surfacing resistance and neurotoxicity linked with sequential administration of such combination therapies. Over the years, ARTs seem to have gained popularity through the accelerated reduction in parasitaemia, thus dictating use of differentially stable ART derivatives, in combination or alone, to control the proliferation of malaria. The endoperoxide bridge in the ART pharmacophore plays a non-negotiable role in its action against multiple stages in the parasitic life cycle. However, shorter half-lives and limited bioavailability tend to open doors for another class of endoperoxides. Nitrogen substitution at 6th, 10th and 11th positions of ART draws attention as the best replacements through their disparate stabilities and inability to demonstrate in vivo hydrolytic decomposition into DHA. Discussions pertaining such azaartemisinins and aminoartemisinins reported over the past 30 years have been strongly focused upon, on account of their synthetic methodologies and antimalarial efficacies, in order to assign future candidature to the meritorious moiety.
Collapse
Affiliation(s)
- Priyanka Yadav
- Department of Chemistry, Banasthali University, Banasthali Newai, 304022, Rajasthan, India
| | - Varun Rawat
- Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shalini Kaushik Love
- Department of Education in Science and Mathematics (DESM), Regional Institute of Education (NCERT), Bhubaneshwar, 751022, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai, 304022, Rajasthan, India; Department of Education in Science and Mathematics (DESM), Regional Institute of Education (NCERT), Bhubaneshwar, 751022, India.
| |
Collapse
|
4
|
Li Y, Zhang W, Kweon J, Pan Y, Wang Q, Chang S, Wang Y. Reductive sulfinylation by nucleophilic chain isomerization of sulfonylpyridinium. Nat Commun 2025; 16:377. [PMID: 39753559 PMCID: PMC11699136 DOI: 10.1038/s41467-024-55786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025] Open
Abstract
Sulfur-containing units are fundamental components widely found in bioactive compounds, prompting notable efforts toward developing synthetic methodologies for incorporating sulfur functionality into organic precursors. The synthesis of sulfinate esters and sulfinamides has garnered significant interest owing to their immense potential for applications, especially in drug development. However, most existing synthetic protocols suffer from some limitations. To address these challenges, we herein present a practical and efficient approach for the reductive sulfinylation of diverse nucleophiles with sulfonylpyridinium salts (SulPy) through the nucleophilic chain substitution, namely SNC reaction, which involves S(VI) to S(IV) nucleophilic chain isomerization process. These versatile sulfinylation reagents can be readily accessed from diverse commercially available resourses. The late-stage modification of complex molecules and the ability to rapidly synthesize numerous sulfinyl bioisosteres of various drugs highlights the utility of this protocol.
Collapse
Affiliation(s)
- Yifan Li
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China
| | - Weigang Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China.
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China.
| | - Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Yi Pan
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China
| | - Qing Wang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea.
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| | - Yi Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China.
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China.
| |
Collapse
|
5
|
Wu B, Lu R, Wu C, Yuan T, Liu B, Wang X, Fang C, Mi Z, Bin Dolmanan S, Tjiu WW, Zhang M, Wang B, Aabdin Z, Zhang S, Hou Y, Zhao B, Xi S, Leow WR, Wang Z, Lum Y. Pt/IrO x enables selective electrochemical C-H chlorination at high current. Nat Commun 2025; 16:166. [PMID: 39746984 PMCID: PMC11696171 DOI: 10.1038/s41467-024-55283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Employing electrochemistry for the selective functionalization of liquid alkanes allows for sustainable and efficient production of high-value chemicals. However, the large potentials required for C(sp3)-H bond functionalization and low water solubility of such alkanes make it challenging. Here we discover that a Pt/IrOx electrocatalyst with optimized Cl binding energy enables selective generation of Cl free radicals for C-H chlorination of alkanes. For instance, we achieve monochlorination of cyclohexane with a current up to 5 A, Faradaic efficiency (FE) up to 95% and stable performance over 100 h in aqueous KCl electrolyte. We further demonstrate that our system can directly utilize concentrated seawater derived from a solar evaporation reverse osmosis process, achieving a FE of 93.8% towards chlorocyclohexane at a current of 1 A. By coupling to a photovoltaic module, we showcase solar-driven production of chlorocyclohexane using concentrated seawater in a membrane electrode assembly cell without any external bias. Our findings constitute a sustainable pathway towards renewable energy driven chemicals manufacture using abundant feedstock at industrially relevant rates.
Collapse
Affiliation(s)
- Bo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ruihu Lu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Chao Wu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Tenghui Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Bin Liu
- Department of Chemical and Environmental Engineering, Yale University, West Haven, CT, USA
| | - Xi Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Chenyi Fang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Ziyu Mi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Surani Bin Dolmanan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Weng Weei Tjiu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Bingqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Zainul Aabdin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Yi Hou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Bote Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wan Ru Leow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| |
Collapse
|
6
|
Yuan N, Chen S, Liu Y, Chen M. C(sp 2)-Arylsulfones Directly from Arylsulfonyl Chlorides with Boronic Acids by Photoactivation of Boosted EDA Complexes. Chemistry 2025; 31:e202403487. [PMID: 39434238 DOI: 10.1002/chem.202403487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Directly with arylsulfonyl chlorides, a green and efficient deborylativesulfonylation of aryl(alkenyl)boronic acids has been developed to access both diarylsulfones and vinylarylsulfones in moderate to excellent yields at room temperature under visible-light irradiation. This protocol features broad C(sp2)-arylsulfone applicability, simple operation, accessibility of raw materials and ease of scale-up. The key to the success of this photoredox transformation is introducing catalytic amounts of additives, naphthalen-2-ols, thus boosting the formed electron donor-acceptor (EDA) complexes, which can dramatically improve not only the reaction efficiency but also the selectivity. This strategy was inspired and derived from specific substrates, representing a rare paradigm of how to exploit a more general reaction system. Moreover, extensive control experiments provide insights into the proposed mechanism.
Collapse
Affiliation(s)
- Nianting Yuan
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Sen Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yuanxin Liu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Min Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| |
Collapse
|
7
|
Xie Y, Lin M, Wei Z, Cai Z, He L, Du G. Organocatalytic SuFEx click reactions of SO 2F 2. Org Biomol Chem 2024. [PMID: 39714122 DOI: 10.1039/d4ob01844c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An organocatalytic method for the SuFEx click reaction of gaseous SO2F2 is described. Different organic bases such as DBU, TBD, triethylamine and Hünig's base can efficiently catalyze the SuFEx of SO2F2 with various phenols to produce aryl fluorosulfates in 61-97% yields. Under the same conditions, pyridone, pyrazolone and amines can also react with SO2F2 to afford the corresponding heteroaryl fluorosulfates or sulfamoyl fluorides in good yields. In this process, molecular sieves absorb the acidic HF efficiently, avoiding the use of stoichiometric amounts of organosilicon reagents and excess bases.
Collapse
Affiliation(s)
- Yu Xie
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Muze Lin
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Zhihang Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Guangfen Du
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| |
Collapse
|
8
|
Li ZQ, Alturaifi TM, Cao Y, Joannou MV, Liu P, Engle KM. Hemilabile and Redox-Active Quinone Ligands Unlock sp 3-Rich Couplings in Nickel-Catalyzed Olefin Carbosulfenylation. Angew Chem Int Ed Engl 2024; 63:e202411870. [PMID: 39222319 DOI: 10.1002/anie.202411870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
A three-component coupling approach toward structurally complex dialkylsulfides is described via the nickel-catalyzed 1,2-carbosulfenylation of unactivated alkenes with organoboron nucleophiles and alkylsulfenamide (N-S) electrophiles. Efficient catalytic turnover is facilitated using a tailored N-S electrophile containing an N-methyl methanesulfonamide leaving group, allowing catalyst loadings as low as 1 mol %. Regioselectivity is controlled by a collection of monodentate, weakly coordinating native directing groups, including sulfonamides, amides, sulfinamides, phosphoramides, and carbamates. Key to the development of this transformation is the identification of quinones as a family of hemilabile and redox-active ligands that tune the steric and electronic properties of the metal throughout the catalytic cycle. Density functional theory (DFT) results show that the duroquinone (DQ) ligand adopts different coordination modes in different stages of the Ni-catalyzed 1,2-carbosulfenylation-binding as an η6 capping ligand to stabilize the precatalyst/resting state and prevent catalyst decomposition, binding as an X-type redox-active durosemiquinone radical anion to promote alkene migratory insertion with a less distorted square planar Ni(II) center, and binding as an L-type ligand to promote N-S oxidative addition at a relatively more electron-rich Ni(I) center.
Collapse
Affiliation(s)
- Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Turki M Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, USA
| | - Yilin Cao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Matthew V Joannou
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
9
|
Mallick M, Pal K, Das D, Biswas S, Das S, Sureshkumar D. Visible Light-Induced Photocatalyst-Free Diastereoselective Iodosulfonylation of Cyclopropenes in Water. J Org Chem 2024; 89:18218-18226. [PMID: 39626207 DOI: 10.1021/acs.joc.4c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
This study presents a greener approach to the visible-light-induced micellar-catalyzed diastereoselective iodosulfonylation of cyclopropenes in a water medium. Remarkably, this process operates without a photocatalyst. Instead, it utilizes an electron-donor-acceptor complex formed between sulfonyl chloride and sodium iodide. This method is highly efficient and broadly applicable for both aromatic and aliphatic sulfonyl chlorides. Furthermore, this protocol enables the transformation of iodosulfonated cyclopropanes into sulfonated cyclopropenes, highlighting its substantial value as a versatile and powerful tool in synthetic chemistry.
Collapse
Affiliation(s)
- Manasi Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India
| | - Koustav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India
| | - Debabrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India
| | - Sourabh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India
| | - Subrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India
| |
Collapse
|
10
|
Wang LC, Wu XF. Carbonylation Reactions at Carbon-Centered Radicals with an Adjacent Heteroatom. Angew Chem Int Ed Engl 2024; 63:e202413374. [PMID: 39248444 DOI: 10.1002/anie.202413374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Heteroatoms are essential to living organisms and present in almost all molecules with medicinal usage. The catalytic functionalization at the carbon-centered radical with an adjacent heteroatom provides an effective way to value added moiety while retaining the unique physicochemical and pharmacological properties of heteroatoms, which can promote the development of pharmaceutical and fine chemical production. Carbonylative transformation was discovered nearly a century ago which is an efficient method for the synthesis of carbonyl-containing molecules with potent applications in both industry and academia. Despite numerous advances in new reaction development, carbonylative transformation involving adjacent heteroatom carbon radical remain a subject that deserves to be discussed. In this minireview, we systematically summarized and discussed the recent advances in carbonylative transformations involving carbon-centered radicals with an adjacent heteroatom, including oxygen (O), nitrogen (N), phosphorus (P), silicon (Si), sulfur (S), boron (B), fluorine (F), and chlorine (Cl). The related reaction mechanism was also discussed.
Collapse
Affiliation(s)
- Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| |
Collapse
|
11
|
Zhao X, Di J, Luo D, Verma R, Verma SK, Verma S, Ravindar L, Koshle A, Dewangan HK, Gupta R, Chandra S, Deshpande S, Kamal, Vaishnav Y, Rakesh KP. Thiazole - A promising scaffold for antituberculosis agents and structure-activity relationships studies. Bioorg Chem 2024; 154:108035. [PMID: 39693926 DOI: 10.1016/j.bioorg.2024.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Research on thiazole derivatives has been a popular topic in medicine and one of the most active fields in heterocyclic chemistry. Pharmacological and industrial researchers have been studying thiazole-containing derivatives in great detail because they have a lot of biological uses. These compounds are one of the best examples of a five-membered heterocyclic compound that has a lot of potential and has had a lot of success in recent decades. Investigating viable hybrid designs utilizing thiazole is critical for the development of new anti-tuberculosis medications. This article offers a thorough overview of the latest advancements in thiazole-containing hybrids, offering potential therapeutic applications as anti-TB drugs. We also discussed the structure-activity correlations (SAR) of the powerful thiazole moiety and its several functional groups, along with a few potential molecular targets.
Collapse
Affiliation(s)
- Xuanming Zhao
- Energy Engineering College, Yulin University, Yulin City 71900, China
| | - Jing Di
- Physical Education College, Yulin University, Yulin City 71900, China.
| | - Dingjie Luo
- School of Humanities and Management, Xi'an Traffic Engineering Institute, Xi'an City 710000, China
| | - Rameshwari Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, China
| | - Santosh Kumar Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, China.
| | - Shekhar Verma
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur 495009, Chhattisgarh, India
| | - Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Anubhuti Koshle
- Department of Chemistry, Shri Rawatpura Sarkar University, Raipur 492015, Chhattisgarh, India
| | - Hitesh Kumar Dewangan
- Department of Chemistry, Shri Rawatpura Sarkar University, Raipur 492015, Chhattisgarh, India
| | - Raksha Gupta
- Department of Chemistry, Shri Rawatpura Sarkar University, Raipur 492015, Chhattisgarh, India
| | - Sunita Chandra
- Department of Chemistry, Shri Rawatpura Sarkar University, Raipur 492015, Chhattisgarh, India
| | - Samta Deshpande
- Department of Applied Chemistry, Shri Shankaracharya Technical Campus, Bhilai Durg-490020, Chhattisgarh, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Yogesh Vaishnav
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur 495009, Chhattisgarh, India
| | - Kadalipura P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Zhang ZK, Yuan Y, Peng H, Han Y, Zhang J, Yang J. Synthesis of Sulfinamidines via Iron-Catalyzed Nitrene Transfer Reaction with Sulfenamides. J Org Chem 2024; 89:17609-17614. [PMID: 39557583 DOI: 10.1021/acs.joc.4c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
An iron-catalyzed nitrene transfer reaction for the rapid synthesis of sulfinamidines from readily available sulfenamides is reported. This method features mild conditions, short reaction times, and a broad substrate scope, allowing the preparation of a variety of sulfinamidines in good to excellent yields. The synthetic utility of the sulfinamidine products was further demonstrated through their conversion to other valuable sulfur(VI) compounds, such as sulfondiimidoyl fluorides, sulfinamidiate esters, and sulfonimidamides. Preliminary efforts in the development of an asymmetric variant showed moderate enantioselectivity.
Collapse
Affiliation(s)
- Zhi-Kun Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yin Yuan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Huiling Peng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yidan Han
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
13
|
Rana A, Halder S, Chakraborty R, Debnath U, Jana K, Misra AK. Novel aryl (dithioglycosyl)methane derivatives as anti-proliferative agents. Bioorg Chem 2024; 154:108030. [PMID: 39662341 DOI: 10.1016/j.bioorg.2024.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
In a quest of developing carbohydrate derived anti-cancer agents, novel carbohydrate dithioacetal derivatives have been synthesized and evaluated for their potential as anti-proliferative agents against breast cancer cell lines (MCF-7 and MDA-MB-231) as well as non-cancerous kidney epithelial cell line (NKE). Total 18 compounds have been screened and 3 compounds showed promising anti-proliferative activities against cancer cells with low cytotoxicity to the normal cells using MTT assay. The mode of action of the best active compound has been proposed based on several microscopic studies. A molecular docking study also confirmed the proposed mechanism for the anti-proliferative properties.
Collapse
Affiliation(s)
- Abhijit Rana
- Bose Institute, Department of Chemical Sciences, Block EN-80, Sector - V, Salt Lake, Kolkata 700091, India
| | - Satyajit Halder
- Bose Institute, Department of Chemical Sciences, Block EN-80, Sector - V, Salt Lake, Kolkata 700091, India; Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Rittika Chakraborty
- Bose Institute, Department of Chemical Sciences, Block EN-80, Sector - V, Salt Lake, Kolkata 700091, India
| | - Utsab Debnath
- School of Health Sciences and Technology, UPES, Dehradun 248007, India
| | - Kuladip Jana
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata 700054, India.
| | - Anup Kumar Misra
- Bose Institute, Department of Chemical Sciences, Block EN-80, Sector - V, Salt Lake, Kolkata 700091, India.
| |
Collapse
|
14
|
Kanchrana M, Gamidi RK, Kumari J, Sriram D, Basavoju S. Design, synthesis, anti-mycobacterial activity, molecular docking and ADME analysis of spiroquinoxaline-1,2,4-oxadiazoles via [3 + 2] cycloaddition reaction under ultrasound irradiation. Mol Divers 2024; 28:3979-3991. [PMID: 38261121 DOI: 10.1007/s11030-023-10790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
The development of anti-tuberculosis (anti-TB) drugs has become a challenging task in medicinal chemistry. This is because Mycobacterium tuberculosis (TB), the pathogen that causes tuberculosis, has an increasing number of drug-resistant strains, and existing medication therapies are not very effective. This resistance significantly demands new anti-TB drug profiles. Here, we present the design and synthesis of a number of hybrid compounds with previously known anti-mycobacterial moieties attached to quinoxaline, quinoline, tetrazole, and 1,2,4-oxadiazole scaffolds. A convenient ultrasound methodology was employed to attain spiroquinoxaline-1,2,4-oxadiazoles via [3 + 2] cycloaddition of quinoxaline Schiff bases and aryl nitrile oxides at room temperature. This approach avoids standard heating and column chromatography while producing high yields and shorter reaction times. The target compounds 3a-p were well-characterized, and their in vitro anti-mycobacterial activity (anti-TB) was evaluated. Among the screened compounds, 3i displayed promising activity against the Mycobacterium tuberculosis cell line H37Rv, with an MIC99 value of 0.78 µg/mL. However, three compounds (3f, 3h, and 3o) exhibited potent activity with MIC99 values of 6.25 µg/mL. To further understand the binding interactions, the synthesized compounds were docked against the tuberculosis protein 5OEQ using in silico molecular docking. Moreover, the most active compounds were additionally tested for their cytotoxicity against the RAW 264.7 cell line, and the cytotoxicity of compounds 3f, 3h, 3i, and 3o was 27.3, 28.9, 26.4, and 30.2 µg/mL, respectively. These results revealed that the compounds 3f, 3h, 3i, and 3o were less harmful to humans. Furthermore, the synthesized compounds were tested for ADME qualities, and the results suggest that this series is useful for producing innovative and potent anti-tubercular medicines in the future.
Collapse
Affiliation(s)
- Madhu Kanchrana
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana, 506004, India
| | - Rama Krishna Gamidi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Jyothi Kumari
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, 500078, India
| | - Srinivas Basavoju
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana, 506004, India.
| |
Collapse
|
15
|
Wu R, Li P, Hao B, Fredimoses M, Ge Y, Zhou Y, Tang L, Li Y, Liu H, Janson V, Hu Y, Liu H. Design, synthesis, and biological evaluation of novel 5,7,4'-trimethoxyflavone sulfonamide-based derivatives as highly potent inhibitors of LRPPRC/STAT3/CDK1. Bioorg Chem 2024; 153:107878. [PMID: 39395319 DOI: 10.1016/j.bioorg.2024.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), signal transducer and activator of transcription 3 (STAT3), and cyclin-dependent kinase 1 (CDK1) are promising therapeutic targets for cancer treatment. However, there is a lack of effective inhibitors of LRPPRC, STAT3, and CDK1 in clinic. Our previous study has proved that 5,7,4'-Trimethoxyflavone (TMF) is a novel inhibitor of LRPPRC/STAT3/CDK1. However, the extraction rate of TMF from Tangerine Peel is quite low, and the doses of TMF in cells and mice are rather high. Herein, structural modifications of TMF have led to two series of TMF derivatives including sulfonamide substituted at 3'-position (7a-m) and 3',8-position (11a-m). Among all compounds, 7e, 7k, 11e, and 11g exhibited as effective, broad-spectrum, and potent anticancer agents in vitro. Moreover, 7e, 7k, 11e, and 11g showed better antitumor effects than TMF and clinical used chemotherapy drug capecitabine in vivo with no obvious toxicity. Mechanism studies showed that 11g could bind to LRPPRC, STAT3, and CDK1 to disassociate the LRPPRC-JAK2-STAT3 and JAK2-STAT3-CDK1 complexes, resulting in suppression of JAK2/STAT3 signaling pathway. These findings suggest that 11g may serve as a leading compound for cancer therapy as a triple-target (LRPPRC, STAT3, and CDK1) inhibitor.
Collapse
Affiliation(s)
- Rui Wu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Pan Li
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China.
| | - Bingbing Hao
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Mangaladoss Fredimoses
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Yunxiao Ge
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yubing Zhou
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lin Tang
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuanying Li
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hangrui Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Victor Janson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yamei Hu
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Department of Clinical Research and Translational Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Panduranga P, Makam P, Kumar Katari N, Gundla R, Babu Jonnalagadda S, Kumar Tripuramallu B. Molecular Hybrids of Quinoline and Sulfonamide: Design, Synthesis and in Vitro Anticancer Studies. ChemistryOpen 2024:e202400334. [PMID: 39600047 DOI: 10.1002/open.202400334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Molecular hybrids of diversely functionalized quinoline and sulfonamide have been designed. Multistep synthetic strategies have been used for the synthesis. The anti-cancer properties have been evaluated against various cancer cell lines including HCT116, A549, U2OS, CCRF-CEM, Jurkat, MOLT-4, RAMOS, and K562. Non-cancer cell lines MRC-5 and BJ were also included for comparison. When examining the effects on A549, HCT116, and U2OS cells, all tested compounds exhibited limited potency with IC50 values exceeding 50 μM, indicating weak activity against these cell lines. Against the ITK high cells Viz. are Jurkat, CCRF-CEM and MOLT-4, 9 e, 9 p and 9 j found to the maximum potent compounds with IC50 values of 7.43±7.40 μM, 13.19±1.25 μM and 5.57±7.56 μM respectively. Similarly, in the BTK high cells screenings, 9 n and 9 e molecules with an IC50 value of 2.76±0.79 μM and 5.47±1.71 μM against RAMOS and K562 respectively are highly potent. Interestingly, all the molecules have exhibited IC50 value >50 μM against the non-cancer cells (MRC-5 and BJ), which indicates the promising non-cytotoxic nature of the molecules.
Collapse
Affiliation(s)
- Padyala Panduranga
- Department of Chemistry, VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, 522213, India
| | - Parameshwar Makam
- Division of Research and Innovation, Department of Chemistry, Uttaranchal University,Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun Uttarakhand, 248007, India
| | - Naresh Kumar Katari
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, South Africa
| | - Rambabu Gundla
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana, 502329, India
| | - Sreekantha Babu Jonnalagadda
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, South Africa
| | - Bharat Kumar Tripuramallu
- Department of Chemistry, VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, 522213, India
| |
Collapse
|
17
|
Shu D, Fayad E, Abu Ali OA, Qin HL. Discovery of A Synthetic Hub for Regio- and Stereoselective Construction of Triazolyl Vinyl Sulfonyl Fluorides. J Org Chem 2024; 89:16969-16974. [PMID: 39482943 DOI: 10.1021/acs.joc.4c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A new sulfonyl fluoride reagent 1-bromobut-3-ene-1,3-disulfonyl difluoride (BEDF) was developed. This unique reagent possesses two clickable functionalities to be used for both azide-alkyne cycloaddition click and SuFEx click reactions. This new reagent was applied for the regioselective construction of a class of novel triazolyl vinyl sulfonyl fluorides in which the C-4 position 1H-1,2,3-triazoles were functionalized with vinyl sulfonyl fluorides of exclusively E-configuration.
Collapse
Affiliation(s)
- Dengfeng Shu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
18
|
Yu S, Lei J, Xu J, Li X, Zhang B, Xu ZG, Lv ML, Tang DY, Chen ZZ. Copper-Catalyzed Radical Sulfonylation: Divergent Construction of C(sp 3)-Sulfonyl Bonds with Sulfonylhydrazones. J Org Chem 2024; 89:16340-16350. [PMID: 39504540 DOI: 10.1021/acs.joc.4c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Sulfonylhydrazones have been proven to be versatile synthetic intermediates in a panel of transformations. However, radical sulfonylation with sulfonylhydrazone as sulfonyl radical source is relatively rare. Here, we found that sulfonylhydrazone can serve as a new sulfonyl radical precursor to couple various partners such as arylacetic acids, ene-yne-ketones, and para-quinone methides under copper catalysis and microwave irradiation. The reactions of sulfonyl radicals have been successively developed to enable the divergent synthesis of C(sp3)-sulfonyl bonds. In addition, when alkynes and alkenes are used as radical receptors, this method can also promote the formation of C(sp2)-sulfonyl bonds. This finding suggests that sulfonylhydrazone could be regarded as a potentially useful sulfonyl radical in sulfone synthesis.
Collapse
Affiliation(s)
- Shan Yu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jia Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Xue Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Meng-Lan Lv
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Dian-Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
19
|
Jebamani J, Shivalingappa J, Pranesh S, Pasha M, Pawar C. Molecular docking, ADME properties and synthesis of thiophene sulfonamide derivatives. Drug Chem Toxicol 2024:1-20. [PMID: 39538963 DOI: 10.1080/01480545.2024.2417963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/19/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
This study investigates the drug-like properties of target molecules containing thiophene sulfonamide groups (7a-7s) using computational molecular docking techniques. The binding interactions of these derivatives were assessed using protein 2NSD (Enoyl acyl carrier protein reductase InhA, complexed with N-(4-methylbenzoyl)-4-benzylpiperidine, PDB DOI: 10.2210/pdb2NSD/pdb) as the receptor. Molecular docking results revealed notable docking scores for all compounds, ranging from -6 to -12 kcal/mol. Compounds 7e, 7i, and 7f, in particular, demonstrated impressive glide scores (>11 kcal/mol) and were selected for further analysis through molecular dynamics simulations, which provided deeper insights into their dynamic behavior and stability. The drug-like properties of these molecules were evaluated based on Lipinski's Rule of Five and ADME (Absorption, Distribution, Metabolism, and Excretion) criteria and compared with known drugs. Additionally, we synthesized these target molecules (7a-7s) using Suzuki-Miyaura coupling with a nickel catalyst replacing palladium. The chemical structures of the synthesized compounds were confirmed through elemental analysis, LC-MS,1H-NMR, and 13C-NMR spectroscopy.
Collapse
Affiliation(s)
- Jesurajan Jebamani
- Department of Chemistry, SJB Institute of Technology, Visvesvaraya Technological University, Bangalore, India
| | - Jayadev Shivalingappa
- Department of Chemistry, SJB Institute of Technology, Visvesvaraya Technological University, Bangalore, India
| | - Shubha Pranesh
- Department of Chemistry, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysore, India
| | - Mussuvir Pasha
- Department of Studies and Research in Chemistry, Vijayanagara Sri Krishnadevaraya University, Bellary, India
| | - Chandrakant Pawar
- Department of Chemical Technology, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| |
Collapse
|
20
|
Mishra S, Gupta S, Kaur S, Bansal Y, Bansal G. Design, Synthesis and Evaluation of Benzimidazole Derivatives as IL-6 Inhibitors and Their Role in Rheumatoid Arthritis. Chem Biol Drug Des 2024; 104:e70008. [PMID: 39511920 DOI: 10.1111/cbdd.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that plays a major role in the development of Rheumatoid Arthritis (RA). In the present study, benzimidazole and benzene sulfonyl scaffold were identified as pharmacophore by analysis of literature reports and novel small molecule IL-6 inhibitors were designed. These were screened via docking with IL-6 (PDB: 1ALU), then and through Lipinski's rule of 5. Based on docking score, 10 best compounds (4a-4e and 7a-7e) were selected for synthesis and evaluated for IL-6 inhibitory activity in vitro. Compounds 4b and 7b showed the maximum inhibition of IL-6 (87.55% and 82.75%, respectively). These compounds were further explored for anti-arthritic activity in vivo using the Incomplete Freund's Adjuvant Model and by morphological and histopathological studies of the inflamed paw. Compound 4b was significantly more active than compound 7b and both were found to be slightly less active than methotrexate. These findings indicate that a benzimidazole nucleus linked to a benzene sulphonyl moiety may prove to be a useful template for the development of new chemical moieties against RA.
Collapse
Affiliation(s)
- Shivam Mishra
- Drug Design and Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Saurabh Gupta
- Drug Design and Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Sukhvir Kaur
- Drug Design and Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Yogita Bansal
- Drug Design and Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Gulshan Bansal
- Drug Design and Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
21
|
Shahhamzehei N, Abdelfatah S, Schwarzer-Sperber HS, Sutter K, Yücer R, Bringmann G, Schwarzer R, Efferth T. Identification of nitrile-containing isoquinoline-related natural product derivatives as coronavirus entry inhibitors in silico and in vitro. Biomed Pharmacother 2024; 180:117517. [PMID: 39357326 DOI: 10.1016/j.biopha.2024.117517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of infections and deaths worldwide since its emergence in Wuhan, China, in late 2019. Natural product inhibitors targeting the interaction between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and human angiotensin-converting enzyme 2 (ACE2), crucial for viral attachment and cellular entry, are of significant interest as potential antiviral agents. In this study a library of nitrile- and sulfur-containing natural product derived compounds were used for virtual drug screening against the RBD of the SARS-CoV-2 spike protein. The top 18 compounds from docking were tested for their efficacy to inhibit virus entry. In vitro experiments revealed that compounds 9, 14, and 15 inhibited SARS-CoV-2 pseudovirus and live virus entry in HEK-ACE2 and Vero E6 host cells at low micromolar IC50 values. Cell viability assays showed these compounds exerted low cytotoxicity towards MRC5, Vero E6, and HEK-ACE2 cell lines. Microscale thermophoresis revealed all three compounds strongly bound to the RBDs of SARS-CoV-2, SARS-CoV-2 XBB, SARS-CoV-1, MERS-CoV, and HCoV-HKU1, with their Kd values increasing as RBD sequence similarity decreased. Molecular docking studies indicated compounds 9, 14, and 15 bound to the SARS-CoV-2 spike protein RBD and interacted with hotspot amino acid residues required for the RBD-ACE2 interaction and cellular infection. These three nitrile-containing candidates, particularly compound 15, should be considered for further development as potential pan-coronavirus entry inhibitors.
Collapse
Affiliation(s)
- Nasim Shahhamzehei
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Hannah S Schwarzer-Sperber
- Institute for the Research on HIV and AIDS-Associated Diseases (HIV-AAD), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for the Research on HIV and AIDS-Associated Diseases (HIV-AAD), University Hospital Essen, University Duisburg-Essen, Essen, Germany; Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Roland Schwarzer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| |
Collapse
|
22
|
Wei MK, Zhang ZX, Ding M, Willis MC. Friedel-Crafts Reactivity with Sulfondiimidoyl Fluorides for the Synthesis of Heteroaryl Sulfondiimines. Angew Chem Int Ed Engl 2024:e202416638. [PMID: 39392677 DOI: 10.1002/anie.202416638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Sulfur functional groups are ubiquitous in molecules used in the pharmaceutical and agrochemical industries, and within these collections sulfones hold a prominent position. The double aza-analogues of sulfones, sulfondiimines, offer significant potential in discovery chemistry but to date their applications have been limited by the lack of convenient synthetic routes. The existing methods mainly rely on imination of low-valent-sulfur intermediates, or the combination of pre-formed organometallic reagents and electrophilic S(VI)-functionalities. Herein, we describe a Friedel-Crafts-type reaction of sulfondiimidoyl fluorides with (hetero)aryls. This new SuFEx reactivity benefits from broad functional group tolerance, mild reaction conditions, and does not require the use of pre-formed organometallic reagents. The efficient use of unprotected indoles and pyrroles, as well as furan, thiophene and carbocyclic aromatics, further demonstrates the advantages of these reactions. We show that the reactivity of the sulfondiimidoyl fluorides can be tuned by switching the N-substituents, allowing an expansion of the range of coupling partners. The utility of the transformation is exemplified by the synthesis of the sulfondiimine analogue of the HIV-I reverse transcriptase-inhibitor L-737,126.
Collapse
Affiliation(s)
- Ming-Kai Wei
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ze-Xin Zhang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Mingyan Ding
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Michael C Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
23
|
Khalifa A, Anwar MM, Alshareef WA, El-Gebaly EA, Elseginy SA, Abdelwahed SH. Design, Synthesis, and Antimicrobial Evaluation of New Thiopyrimidine-Benzenesulfonamide Compounds. Molecules 2024; 29:4778. [PMID: 39407706 PMCID: PMC11477697 DOI: 10.3390/molecules29194778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Bacterial infection poses a serious threat to human life due to the rapidly growing resistance of bacteria to antibacterial drugs, which is a significant public health issue. This study was focused on the design and synthesis of a new series of 25 analogues bearing a 5-cyano-6-oxo-4-substituted phenyl-1,6-dihydropyrimidine scaffold hybridized with different substituted benzenesulfonamides through the thioacetamide linker M1-25. The antimicrobial activity of the new molecules was studied against various Gram-positive, Gram-negative, and fungal strains. All the tested compounds showed promising broad-spectrum antimicrobial efficacy, especially against K. pneumoniae and P. aeruginosa. Furthermore, the most promising compounds, 6M, 19M, 20M, and 25M, were subjected to minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. In addition, the antivirulence activity of the compounds was also examined using multiple biofilm assays. The new compounds promisingly revealed the suppression of microbial biofilm formation in the examined K. pneumoniae and P. aeruginosa microbial isolates. Additionally, in silico ADMET studies were conducted to determine their oral bioavailability, drug-likeness characteristics, and human toxicity risks. It is suggested that new pyrimidine-benzenesulfonamide derivatives may serve as model compounds for the further optimization and development of new antimicrobial and antisepsis candidates.
Collapse
Affiliation(s)
- Abdalrahman Khalifa
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA;
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo P.O. Box 12622, Egypt;
| | - Walaa A. Alshareef
- Microbiology and Immunology Department, Faculty of Pharmacy, O6U, Giza P.O. Box 12585, Egypt; (W.A.A.); (E.A.E.-G.)
| | - Eman A. El-Gebaly
- Microbiology and Immunology Department, Faculty of Pharmacy, O6U, Giza P.O. Box 12585, Egypt; (W.A.A.); (E.A.E.-G.)
| | - Samia A. Elseginy
- Green Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt;
| | - Sameh H. Abdelwahed
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA;
| |
Collapse
|
24
|
Chillal AS, Bhawale RT, Sharma S, Kshirsagar UA. Electrochemical Regioselective C(sp 2)-H Bond Chalcogenation of Pyrazolo[1,5- a]pyrimidines via Radical Cross-Coupling at Room Temperature. J Org Chem 2024; 89:14496-14504. [PMID: 39283698 DOI: 10.1021/acs.joc.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, we disclose an electrochemical approach for the C(sp2)-H chalcogenation of pyrazolo[1,5-a]pyrimidines. This technique offers an oxidant and catalyst-free protocol for achieving regioselective chalcogenation of pyrazolo[1,5-a]pyrimidines. The procedure uses only 0.5 equiv. of diaryl chalcogenides which underscores the atom economy of the protocol. Key attributes of this methodology include mild reaction conditions, short reaction time, utilization of cheap electrode materials, and eco-friendly reaction conditions. Cyclic voltammetry studies and radical quenching experiments revealed a radical cross-coupling pathway for the reaction mechanism.
Collapse
Affiliation(s)
- Abhinay S Chillal
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Rajesh T Bhawale
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Umesh A Kshirsagar
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| |
Collapse
|
25
|
Desai J, Patel B, Panchal N, Gite A, Darji B, Viswanathan K, Trivedi J, Vyas P, Pawar V, Giri P, S S, Sharma R, Jain M, Iyer P, Kumar S. Discovery of aminopiperidine based potent & novel topoisomerase inhibitor with broad spectrum anti-bacterial activity. Bioorg Med Chem Lett 2024; 111:129911. [PMID: 39067715 DOI: 10.1016/j.bmcl.2024.129911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Bacterial DNA gyrase and topoisomerase IV inhibition has emerged as a promising strategy for the cure of infections caused by antibiotic-resistant bacteria. The Novel Bacterial Topoisomerase Inhibitors (NBTIs) bind to a different site from that of the quinolones with novel mechanism of action. This evades the existing target-mediated bacterial resistance associated with quinolones. This article presents our efforts to identify in vitro potent and broad-spectrum antibacterial agent 4l.
Collapse
Affiliation(s)
- Jigar Desai
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India.
| | - Bhaumin Patel
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| | - Nandini Panchal
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| | - Archana Gite
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| | - Brijesh Darji
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| | - Kasinath Viswanathan
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| | - Jinal Trivedi
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| | - Purvi Vyas
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| | - Vishwanath Pawar
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| | - Poonam Giri
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| | - Sachchidanand S
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| | - Rajiv Sharma
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| | - Mukul Jain
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| | - Pravin Iyer
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| | - Sanjay Kumar
- Zydus Research Centre, Sarkhej Bavla NH No 8A, Moraiya, Ahmedabad 382213, Gujarat, India
| |
Collapse
|
26
|
Yang LJ, Han Z, Gu YC, Shao CL, Wang CY. New Sulfurated Butyrolactones from the Fungus Penicillium janthinellum. Chem Biodivers 2024:e202401966. [PMID: 39319381 DOI: 10.1002/cbdv.202401966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/26/2024]
Abstract
Deep-sea derived fungi are considered as significant resources to discovery structurally diverse and biologically active natural compounds. In this study, four new sulfurated butyrolactones, penijanthiones A-D (1-4), together with four known analogues (5-8), were isolated from a Mariana Trench-derived fungus Penicillium janthinellum SH0301. Compounds 1-4 were the undescribed examples for natural butyrolactones coupling with a mercaptolactate moiety. Their structures including the absolute configurations of these new compounds were elucidated by comprehensive spectroscopic data, and calculated electronic circular dichroism (ECD). The plausible biosynthetic pathway of sulfur-incorporation of 1-4 was proposed. All of these isolated compounds were evaluated their cytotoxic, antimicrobial and antiviral activities.
Collapse
Affiliation(s)
- Lu-Jia Yang
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, School of Medi cine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, People's Republic of China
| | - Zhuang Han
- Institute of Deep-sea Science and Engineering, Chinese Academy of Science, Sanya, 572000, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Chang-Lun Shao
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, School of Medi cine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, People's Republic of China
| | - Chang-Yun Wang
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, School of Medi cine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, People's Republic of China
| |
Collapse
|
27
|
Singh S, Chakrabortty G, Tiwari K, Dagar N, Raha Roy S. Shining light for organophotocatalysed site-selective sulfonylation of anilides. Org Biomol Chem 2024; 22:7690-7695. [PMID: 39222056 DOI: 10.1039/d4ob01169d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The site-selective sulfonylation of C(sp2)-H bonds of anilide and quinoline amide derivatives has been developed using organophotocatalysis. This mild and sustainable protocol, which operates at room temperature, precludes the requirement for any metal-based catalyst or photocatalyst and oxidant, which are the challenges associated with existing methodologies. Furthermore, the generation of aryl sulfonyl radicals from commercially available aryl sulfonyl chlorides has been achieved through the use of Rose Bengal as an organophotocatalyst, an approach that was previously unexplored. The detailed mechanistic investigation unveiled the underlying mechanism for site-selective sulfonylation at both the proximal and distal positions, thereby establishing a straightforward approach for building valuable aryl sulfone scaffolds.
Collapse
Affiliation(s)
- Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Gopal Chakrabortty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Kajal Tiwari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
28
|
Barakat K, Ragheb MA, Soliman MH, Abdelmoniem AM, Abdelhamid IA. Novel thiazole-based cyanoacrylamide derivatives: DNA cleavage, DNA/BSA binding properties and their anticancer behaviour against colon and breast cancer cells. BMC Chem 2024; 18:183. [PMID: 39304938 DOI: 10.1186/s13065-024-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
A novel series of 2-cyano-3-(pyrazol-4-yl)-N-(thiazol-2-yl)acrylamide derivatives (3a-f) were synthesized using Knoevenagel condensation and characterized using various spectral tools. The weak nuclease activity of compounds (3a-f) against pBR322 plasmid DNA was greatly enhanced by irradiation at 365 nm. Compounds 3b and 3c, incorporating thienyl and pyridyl moieties, respectively, exhibited the utmost nuclease activity in degrading pBR322 plasmid DNA through singlet oxygen and superoxide free radicals' species. Furthermore, compounds 3b and 3c affinities towards calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) were investigated using UV-Vis and fluorescence spectroscopic analysis. They revealed good binding characteristics towards CT-DNA with Kb values of 6.68 × 104 M-1 and 1.19 × 104 M-1 for 3b and 3c, respectively. In addition, compounds 3b and 3c ability to release free radicals on radiation were targeted to be used as cytotoxic compounds in vitro for colon (HCT116) and breast cancer (MDA-MB-231) cells. A significant reduction in the cell viability on illumination at 365 nm was observed, with IC50 values of 23 and 25 µM against HCT116 cells, and 30 and 9 µM against MDA-MB-231 cells for compounds 3b and 3c, respectively. In conclusion, compounds 3b and 3c exhibited remarkable DNA cleavage and cytotoxic activity on illumination at 365 nm which might be associated with free radicals' production in addition to having a good affinity for interacting with CT-DNA and BSA.
Collapse
Affiliation(s)
- Karim Barakat
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amr M Abdelmoniem
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
29
|
Dapkekar AB, Satyanarayana G. Electrochemically driven regioselective construction of 4-sulfenyl-isochromenones from o-alkynylbenzoates and diaryl disulfides. Org Biomol Chem 2024; 22:7111-7116. [PMID: 39140309 DOI: 10.1039/d4ob01137f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, we report a convenient and environmentally friendly electrochemical technique that enables the regioselective construction of 4-sulfenyl-1H-isochromen-1-ones using readily available precursors such as o-alkynyl benzoates and diaryl disulfides. This electrochemical process has been accomplished through constant current electrolysis in an undivided cell under external acid, catalyst, oxidant, or metal-free conditions. Owing to this protocol's mild reaction conditions, the products are obtained in good to very good yields, demonstrating a broad substrate scope and functional group tolerance.
Collapse
Affiliation(s)
- Anil Balajirao Dapkekar
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502284, India.
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
30
|
Lional N, Miloserdov FM, Zuilhof H. 2-Methylimidazole-1-(N-tert-octyl)sulfonimidoyl Fluoride: A Bench-Stable Alternative to SOF 4 as Precursor to N,O-Substituted S(VI) Compounds. Angew Chem Int Ed Engl 2024; 63:e202406915. [PMID: 38856007 DOI: 10.1002/anie.202406915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/11/2024]
Abstract
S(VI) compounds with multiple N or O substituents are often difficult to make and several crucial routes, such as multimodal SuFEx (Sulfur (VI) Fluoride Exchange) chemistry, rely on the highly useful but hazardous SOF4 gas. Safety issues and inaccessibility of SOF4 strongly hamper the developments of these organic compounds. Here we describe the synthesis and applications of 2-methylimidazole-1-(N-tert-octyl)sulfonimidoyl fluoride (ImSF), a novel bench-stable analogue of SOF4. ImSF is synthesized on a gram scale via a double fluorination of t-OctNSO. We show ImSF can undergo substitution reactions with phenols and amines, which lead to sulfurimidates and sulfuramidimidates, respectively, the intrinsically chiral analogous of medicinally relevant sulfates and sulfamates in which an S=O moiety is replaced by S=NR unit. Finally we demonstrate that such substitutions can occur enantiospecifically, providing the first entry to chiral sulfurimidates and sulfuramidimidates.
Collapse
Affiliation(s)
- Natassa Lional
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Fedor M Miloserdov
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
31
|
Mottaghi Amlashi D, Mobini S, Shahedi M, Habibi Z, Bavandi H, Yousefi M. Biocatalytic synthesis of oxa(thia)diazole aryl thioethers. Sci Rep 2024; 14:19468. [PMID: 39174618 PMCID: PMC11341560 DOI: 10.1038/s41598-024-70239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
A novel approach for the synthesis of 1,3,4-oxa(thia)diazole aryl thioethers through a biocatalytic strategy has been introduced. By leveraging Myceliophthora thermophila laccase (Novozym 51003) as a catalyst, catechol undergoes oxidation to ortho-quinone, facilitating subsequent 1,4-thia-Michael addition reactions. The method offers efficiency and mild reaction conditions, demonstrating promise for sustainable synthesis pathways in organic chemistry. Using this approach, 13 new derivatives of 2,5-disubstituted-1,3,4-oxa(thia)diazole aryl thioethers, with a yield of 46-94%, were synthesized.
Collapse
Affiliation(s)
- Donya Mottaghi Amlashi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Sepideh Mobini
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Mansour Shahedi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Zohreh Habibi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran.
| | - Hossein Bavandi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Maryam Yousefi
- Avicenna Research Institute, Nanobiotechnology Research Center, ACECR, Tehran, Iran.
| |
Collapse
|
32
|
Kassem AF, Omar MA, Temirak A, El-Shiekh RA, Srour AM. Barbiturate-sulfonate hybrids as potent cholinesterase inhibitors: design, synthesis and molecular modeling studies. Future Med Chem 2024; 16:1615-1631. [PMID: 39011621 PMCID: PMC11370902 DOI: 10.1080/17568919.2024.2366158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: Design and synthesis of a series of 5-benzylidene(thio)barbiturates 3a-r.Methodology: Evaluation of the inhibitory activity of the new chemical entities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using Donepezil as the standard reference.Results & Conclusion: Compound 3r emerged as the most potent AChE inhibitor (IC50 = 9.12 μM), while compound 3q exhibited the highest inhibitory activity against BChE (IC50 = 19.43 μM). Toxicological bioassays confirmed the absence of cytotoxicity for the most potent compounds at the tested doses. Molecular docking analysis demonstrated that the tested derivatives effectively bind to the active sites of both enzymes. Overall, this study sheds light on the potential of barbiturate-sulfonate conjugates as promising drug candidates.
Collapse
Affiliation(s)
- Asmaa F Kassem
- Department of Chemistry, College of Science & Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj11942, Saudi Arabia
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza12622, Egypt
| | - Mohamed A Omar
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza12622, Egypt
| | - Ahmed Temirak
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza12622, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., 11562, Cairo, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza12622, Egypt
| |
Collapse
|
33
|
Sulzer N, Polterauer D, Hone CA, Kappe CO. Preparation of Sulfonyl Chlorides by Oxidative Chlorination of Thiols and Disulfides using HNO 3/HCl/O 2 in a Flow Reactor. CHEMSUSCHEM 2024; 17:e202400292. [PMID: 38477977 DOI: 10.1002/cssc.202400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
A continuous flow metal-free protocol for the synthesis of sulfonyl chlorides from thiols and disulfides in the presence of nitric acid, hydrochloric acid and oxygen was developed. The influence of the reaction parameters was investigated under batch and flow conditions. Online 19F NMR was successfully implemented to investigate different reaction conditions within a single experiment. The sulfonyl chlorides were isolated (mostly in 70-81 % yield) after performing a simple aqueous washing procedure. In particular, the protocol was successfully operated for >6 hours to convert diphenyl disulfide to its corresponding sulfonyl chloride, achieving a throughput of 3.7 g h-1. The environmental impact of the protocol was assessed and compared to an existing continuous flow protocol using 1,3-dichloro-5,5-dimethylhydantoin (DCH) as reagent. The process mass intensity (PMI) for the newly-developed flow protocol (15) compared favorably to the DCH flow process (20).
Collapse
Affiliation(s)
- Niklas Sulzer
- Center for Continuous Flow Synthesis and Processing (CCLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Dominik Polterauer
- Center for Continuous Flow Synthesis and Processing (CCLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Christopher A Hone
- Center for Continuous Flow Synthesis and Processing (CCLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - C Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CCLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| |
Collapse
|
34
|
Garrido-González JJ, Medrano-Uribe K, Rosso C, Humbrías-Martín J, Dell'Amico L. Photocatalytic Synthesis and Functionalization of Sulfones, Sulfonamides and Sulfoximines. Chemistry 2024; 30:e202401307. [PMID: 39037368 DOI: 10.1002/chem.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 07/23/2024]
Abstract
Sulfur(VI)-based functional groups are popular scaffolds in a wide variety of research fields including synthetic and medicinal chemistry, as well as chemical biology. The growing interest in sulfur(VI)-containing molecules has motivated the scientific community to explore new methods to synthesize and modify them. Here, photocatalysis plays a key role granting access to new types of reactivity under mild reaction conditions. In this Perspective, we present a selection of works reported in the last six years focused on the photocatalytic assembly and reactivity of sulfones, sulfonamides, and sulfoximines. We addressed the key synthetic intermediates for each transformation, while discussing limitations and strength points of the protocols. Future directions of the field are finally presented.
Collapse
Affiliation(s)
- José J Garrido-González
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Katy Medrano-Uribe
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Cristian Rosso
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Jorge Humbrías-Martín
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
35
|
Iazzetti A, Arcadi A, Chiarini M, Fabrizi G, Goggiamani A, Marrone F, Serraiocco A, Zoppoli R. Palladium-Catalyzed Tsuji-Trost-Type Reaction of 3-Indolylmethylacetates with O, and S Soft Nucleophiles. Molecules 2024; 29:3434. [PMID: 39065012 PMCID: PMC11280231 DOI: 10.3390/molecules29143434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The chemical valorization of widespread molecules in renewable sources is a field of research widely investigated in the last decades. In this context, we envisaged that indole-3-carbinol, present in different Cruciferae plants, could be a readily available building block for the synthesis of various classes of indoles through a palladium-catalyzed Tsuji-Trost-type reaction with O and S soft nucleophiles. The regiochemical outcome of this high-yielding functionalization shows that the nucleophilic substitution occurs only at the benzylic position. Interestingly, with this protocol, the sulfonyl unit could be appended to the indole nucleus, providing convenient access to new classes of molecules with potential bioactivity.
Collapse
Affiliation(s)
- Antonia Iazzetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L. go Francesco Vito 1, 00168 Rome, RM, Italy
- Policlinico Universitario ‘A. Gemelli’ Foundation-IRCCS, 00168 Rome, RM, Italy
| | - Antonio Arcadi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L’Aquila, Via Vetoio, 67100 Coppito, AQ, Italy;
| | - Marco Chiarini
- Dipartimento di Bioscienze e Tecnologie Agro-Alimentari e Ambientali, Università di Teramo, Via R. Balzarini, 64100 Teramo, TE, Italy;
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Antonella Goggiamani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Federico Marrone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Andrea Serraiocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Roberta Zoppoli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| |
Collapse
|
36
|
Pincekova L, Merot A, Schäfer G, Willis MC. Sandmeyer Chlorosulfonylation of (Hetero)Aromatic Amines Using DABSO as an SO 2 Surrogate. Org Lett 2024; 26:5951-5955. [PMID: 38988316 PMCID: PMC11267597 DOI: 10.1021/acs.orglett.4c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Sulfonyl chlorides not only play a crucial role in protecting group chemistry but also are important starting materials in the synthesis of sulfonamides, which are in-demand motifs in drug discovery chemistry. Despite their importance, the number of different synthetic approaches to sulfonyl chlorides is limited, and most of them rely on traditional oxidative chlorination chemistry from thiol precursors. In this report, we disclose a novel Sandmeyer-type sulfonyl chloride synthesis from feedstock anilines and DABSO, used as a stable SO2 surrogate, in the presence of HCl and a Cu catalyst. The method works on a wide range of anilines and allows for the isolation of the sulfonyl chloride after aqueous workup or its direct conversion into the sulfonamide by simple addition of an amine after the completion of the Sandmeyer reaction. The scalability of this method was demonstrated on a 20 g scale, and the corresponding heterocyclic sulfonyl chloride was isolated in 80% yield and excellent purity.
Collapse
Affiliation(s)
- Lucia Pincekova
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Aurélien Merot
- Chemistry
Process R&D, Idorsia Pharmaceuticals
Ltd., Hegenheimermattweg
91, CH-4123 Allschwil, Switzerland
| | - Gabriel Schäfer
- Chemistry
Process R&D, Idorsia Pharmaceuticals
Ltd., Hegenheimermattweg
91, CH-4123 Allschwil, Switzerland
| | - Michael C. Willis
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
37
|
Gong C, Huang J, Cai L, Yuan Y, Pu T, Huang M, Wu SH, Wang L. Visible-Light-Promoted Thiolation of Benzyl Chlorides with Thiosulfonates via a Photoactive Electron Donor-Acceptor Complex. J Org Chem 2024; 89:9450-9461. [PMID: 38867507 DOI: 10.1021/acs.joc.4c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Visible-light-promoted thiolation of benzyl chlorides with thiosulfonates is disclosed via an electron donor-acceptor complex strategy. In addition to efficiently delivering a series of arylbenzylsulfide compounds, versatile thioglycosides were also successfully constructed by applying the metal- and photocatalyst-free protocol. Preliminary mechanistic studies suggest that a radical-radical coupling process was involved in this transformation.
Collapse
Affiliation(s)
- Chao Gong
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Jialun Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Liuyan Cai
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Yilong Yuan
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Tonglv Pu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Mingjie Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| |
Collapse
|
38
|
Maji S, Debnath B, Panda S, Manna T, Maity A, Dayaramani R, Nath R, Khan SA, Akhtar MJ. Anticancer Potential of the S-Heterocyclic Ring Containing Drugs and its Bioactivation to Reactive Metabolites. Chem Biodivers 2024; 21:e202400473. [PMID: 38723201 DOI: 10.1002/cbdv.202400473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Sulfur-containing heterocyclic derivatives have been disclosed for binding with a wide range of cancer-specific protein targets. Various interesting derivatives of sulfur-containing heterocyclics such as benzothiazole, thiazole, thiophene, thiazolidinedione, benzothiophene, and phenothiazine, etc have been shown to inhibit diverse signaling pathways implicated in cancer. Significant progress has also been made in molecular targeted therapy against specific enzymes such as kinase receptors due to potential binding interactions inside the ATP pocket. Sulfur-containing heterocyclic ring metal complexes i. e., benzothiazole, thiazole, thiophene, benzothiophene and phenothiazines are among the most promising active anticancer compounds. However, sulfur heteroaromatic rings, particularly thiophene, are of high structural alert due to their metabolism to reactive metabolites. The mere presence of a structural alert itself does not determine compound toxicity therefore, this review focuses on some specific findings that shed light on factors influencing the toxicity. In the current review, synthetic strategies of introducing the sulfur core ring in the synthesized derivatives are discussed with their structure-activity relationships to enhance our understanding of toxicity mechanisms and develop safer therapeutic options. The sulfur-containing marketed anticancer drugs included in this review direct the synthesis of novel compounds and will help in the development of potent, safer sulfur-based anticancer drugs in near future.
Collapse
Affiliation(s)
- Sumit Maji
- Department of Pharmacy, Bharat Technology, Uluberia-711316, Howrah, West Bengal, India
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Uluberia-711316, Howrah, West Bengal, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Uluberia-711316, Howrah, West Bengal, India
| | - Tanusree Manna
- Department of Pharmacy, Bharat Technology, Uluberia-711316, Howrah, West Bengal, India
| | - Arindam Maity
- JIS University, Agarpara Campus, Kolkata-81, Nilgunj Road, Agarpara, Kolkata-700109, India
| | - Richa Dayaramani
- Silver Oak Institute of Pharmacy and Research, Silver Oak University, Ahmedabad, India
| | - Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Uluberia-711316, Howrah, West Bengal, India
- JIS University, Agarpara Campus, Kolkata-81, Nilgunj Road, Agarpara, Kolkata-700109, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Sultanate of Oman
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Sultanate of Oman
| |
Collapse
|
39
|
El Ati R, Öztaşkın N, Çağan A, Akıncıoğlu A, Demir Y, Göksu S, Touzani R, Gülçin İ. Novel benzene sulfonamides with acetylcholinesterase and carbonic anhydrase inhibitory actions. Arch Pharm (Weinheim) 2024; 357:e2300545. [PMID: 38423951 DOI: 10.1002/ardp.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
A series of benzene sulfonamides 15-26 were synthesized and determined for their in vitro and in silico inhibitory profiles toward acetylcholinesterase (AChE) and carbonic anhydrases (CAs). Commercially available 3,4-dimethoxytoluene was reacted with chlorosulfonic acid to furnish benzene sulfonyl chloride derivatives. The reaction of substituted benzene sulfonyl chloride with some amines also including (±)-α-amino acid methyl esters afforded a series of novel benzene sulfonamides. In this study, the enzyme inhibition abilities of these compounds were evaluated against AChE and CAs. They exhibited a highly potent inhibition ability on AChE and -CAs (Ki values are in the range of 28.11 ± 4.55 nM and 145.52 ± 28.68 nM for AChE, 39.20 ± 2.10 nM to 131.54 ± 12.82 nM for CA I, and 50.96 ± 9.83 nM and 147.94 ± 18.75 nM for CA II). The present newly synthesized novel benzene sulfonamides displayed efficient inhibitory profiles against AChE and CAs, and it is anticipated that they may emerge as lead molecules for some diseases including glaucoma, epilepsy, and Alzheimer's disease.
Collapse
Affiliation(s)
- Rafika El Ati
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed the first, Oujda, Morocco
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| | - Necla Öztaşkın
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| | - Ahmet Çağan
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkiye
| | - Akın Akıncıoğlu
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkiye
- Vocational School, Ağrı İbrahim Çeçen University, Agri, Turkiye
| | - Yeliz Demir
- Department of Pharmacy Services, Ardahan University, Ardahan, Turkiye
| | - Süleyman Göksu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| | - Rachid Touzani
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed the first, Oujda, Morocco
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| |
Collapse
|
40
|
Yin F, Qu L, Chen Y, Luo Z, Kong L, Wang X. Stereoselective Synthesis of β, γ-Fused Bicyclic γ-Ureasultams via an Intramolecular Mannich and aza-Michael Addition Cascade. Chemistry 2024; 30:e202400438. [PMID: 38470414 DOI: 10.1002/chem.202400438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
A novel approach has been developed for the synthesis of bicyclic β, γ-fused bicyclic γ-ureasultams containing two consecutive chiral centers through an intramolecular Mannich and aza-Michael addition cascade of alkenyl sulfamides. The straightforward practical procedure and readily available starting materials enable the synthesis of variously substituted ureasultams. In addition, bicyclic γ-ureasultams is a class of potential biotin analogues.
Collapse
Affiliation(s)
- Fucheng Yin
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Lailiang Qu
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
- Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Yifan Chen
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Zhongwen Luo
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Lingyi Kong
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Xiaobing Wang
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| |
Collapse
|
41
|
Olu-Igbiloba OA, Sitzmann H, Manolikakes G. Merging Cobalt-Catalyzed C-H Activation with the Mannich Reaction: A Modular Approach to α-Substituted N-Sulfonyl Amines. J Org Chem 2024; 89:6903-6914. [PMID: 38698761 DOI: 10.1021/acs.joc.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A three-component synthesis of α-substituted N-sulfonyl amines from aryl aldehydes, primary sulfonamides, and (hetero)arenes is described. This transformation enables a straightforward and modular synthesis of highly substituted sulfonamide scaffolds in good yields. The direct functionalization of C(sp2)-H bonds via cobalt-catalyzed C-H-activation offers an appealing and atom-economical alternative to classical methods for the synthesis of α-arylated amines such as the Petasis or Mannich-type reactions.
Collapse
Affiliation(s)
| | - Helmut Sitzmann
- Department of Chemistry, RPTU Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Georg Manolikakes
- Department of Chemistry, RPTU Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| |
Collapse
|
42
|
Gutiérrez-González A, Karlsson S, Leonori D, Plesniak MP. Mild Strategy for the Preparation of Alkyl Sulfonyl Fluorides from Alkyl Bromides and Alcohols Using Photoredox Catalysis and Flow Chemistry. Org Lett 2024; 26:3972-3976. [PMID: 38663015 DOI: 10.1021/acs.orglett.4c01216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Facile access to sp3-rich scaffolds containing a sulfonyl fluoride group is still limited. Herein, we describe a mild and scalable strategy for the preparation of alkyl sulfonyl fluorides from readily available alkyl bromides and alcohols using photoredox catalysis. This approach is based on halogen atom transfer (XAT), followed by SO2 capture and fluorination. The method features mild conditions enabling fast access to high-value derivatives and has been scaled up to 5 g using a continuous stirred tank reactor cascade.
Collapse
Affiliation(s)
- Alejandro Gutiérrez-González
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Staffan Karlsson
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Mateusz P Plesniak
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| |
Collapse
|
43
|
Lindner H, Amberg WM, Martini T, Fischer DM, Moore E, Carreira EM. Photo- and Cobalt-Catalyzed Synthesis of Heterocycles via Cycloisomerization of Unactivated Olefins. Angew Chem Int Ed Engl 2024; 63:e202319515. [PMID: 38415968 DOI: 10.1002/anie.202319515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
We report a general, intramolecular cycloisomerization of unactivated olefins with pendant nucleophiles. The reaction proceeds under mild conditions and tolerates ethers, esters, protected amines, acetals, pyrazoles, carbamates, and arenes. It is amenable to N-, O-, as well as C-nucleophiles, yielding a number of different heterocycles including, but not limited to, pyrrolidines, piperidines, oxazolidinones, and lactones. Use of both a benzothiazinoquinoxaline as organophotocatalyst and a Co-salen catalyst obviates the need for stoichiometric oxidant or reductant. We showcase the utility of the protocol in late-stage drug diversification and synthesis of several small natural products.
Collapse
Affiliation(s)
- Henry Lindner
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Willi M Amberg
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Tristano Martini
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - David M Fischer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Eléonore Moore
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
44
|
Koyuncu I, Temiz E, Güler EM, Durgun M, Yuksekdag O, Giovannuzzi S, Supuran CT. Effective Anticancer Potential of a New Sulfonamide as a Carbonic Anhydrase IX Inhibitor Against Aggressive Tumors. ChemMedChem 2024; 19:e202300680. [PMID: 38323458 DOI: 10.1002/cmdc.202300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
This study examines efficiency of a newly synthesized sulfonamide derivative 2-bromo-N-(4-sulfamoylphenyl)propanamide (MMH-1) on the inhibition of Carbonic Anhydrase IX (CA IX), which is overexpressed in many solid tumors including breast cancer. The inhibitory potential of MMH-1 compound against its four major isoforms, including cytosolic isoforms hCA I and II, as well as tumor-associated membrane-bound isoforms hCA IX and XII, was evaluated. To this context, the cytotoxic effect of MMH-1 on cancer and normal cells was tested and found to selectively affect MDA-MB-231 cells. MMH-1 reduced cell proliferation by holding cells in the G0/G1 phase (72 %) and slowed the cells' wound healing capacity. MMH-1 inhibited CA IX under both hypoxic and normoxic conditions and altered the morphology of triple negative breast cancer cells. In MDA-MB-231 cells, inhibition of CA IX was accompanied by a decrease in extracellular pH acidity (7.2), disruption of mitochondrial membrane integrity (80 %), an increase in reactive oxygen levels (25 %), and the triggering of apoptosis (40 %). In addition, the caspase cascade (CASP-3, -8, -9) was activated in MDA-MB-231 cells, triggering both the extrinsic and intrinsic apoptotic pathways. The expression of pro-apoptotic regulatory proteins (Bad, Bax, Bid, Bim, Cyt-c, Fas, FasL, TNF-a, TNF-R1, HTRA, SMAC, Casp-3, -8, P21, P27, and P53) was increased, while the expression of anti-apoptotic proteins, apoptosis inhibitor proteins (IAPs), and heat shock proteins (HSPs) (Bcl-2, Bcl-w, cIAP-2, HSP27, HSP60, HSP70, Survivin, Livin, and XIAP) was decreased. These results propose that the MMH-1 compound could triggers apoptosis in MDA-MB-231 cells via the pH/MMP/ROS pathway through the inhibition of CA IX. This compound is thought to have high potential and promising anticancer properties in the treatment of aggressive tumors.
Collapse
Affiliation(s)
- Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey Tel
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey
| | - Eray Metin Güler
- Department of Medical Biochemistry, Faculty of Hamidiye Medicine, University of Health Sciences, Istanbul, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Sanliurfa, Turkey Tel
| | - Ozgür Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey Tel
| | - Simone Giovannuzzi
- Department of Neurofarba, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy Tel
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy Tel
| |
Collapse
|
45
|
Zhai J, Hao C, Wang X, Cao Y, Pan Y, Zhou M, Sun J, Li C. Design, synthesis, and evaluation of dual-target inhibitors for the treatment of Alzheimer's disease. Arch Pharm (Weinheim) 2024; 357:e2300693. [PMID: 38332316 DOI: 10.1002/ardp.202300693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
Aβ1-42 and acetylcholinesterase (AChE) are two key therapeutic targets for Alzheimer's disease (AD). The purpose of this study is to develop a dual-target inhibitor that inhibits both of these targets by fusing the chemical structure of baicalein and donepezil. Among them, we modified the structure of baicalein to arylcoumarin, synthesized three kinds of structural compounds, and evaluated their biological activities. The results showed that compound 3b had the strongest inhibitory effect on AChE (IC50 = 0.05 ± 0.02 µM), which was better than those of donepezil and baicalein. In addition, compound 3b has a strong ability to inhibit the aggregation of Aβ1-42 and protect nerve cells, and it can also penetrate the blood-brain barrier well. Using a zebrafish behavioral analyzer test, it was found that compound 3b can alleviate the behavioral effects of AlCl3-induced zebrafish larval movement retardation, which has a certain guiding significance for simulating the movement disorders of AD patients. In summary, compound 3b is expected to become a multifunctional agent for treating and alleviating the symptoms of AD patients.
Collapse
Affiliation(s)
- Jingfang Zhai
- National Key Laboratory of Advanced Drug Delivery System, Key Lab for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Canhua Hao
- National Key Laboratory of Advanced Drug Delivery System, Key Lab for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojing Wang
- National Key Laboratory of Advanced Drug Delivery System, Key Lab for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuexing Cao
- Jinan Shangcheng Pharmatech. Co. Ltd., Jinan, China
| | - Yinbo Pan
- National Key Laboratory of Advanced Drug Delivery System, Key Lab for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Zhou
- National Key Laboratory of Advanced Drug Delivery System, Key Lab for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Sun
- National Key Laboratory of Advanced Drug Delivery System, Key Lab for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chuanyou Li
- Jiangsu Second Chinese Medicine Hospital & The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
46
|
Monteith JJ, Pearson JW, Rousseaux SAL. Photocatalytic O- to S-Rearrangement of Tertiary Cyclopropanols. Angew Chem Int Ed Engl 2024; 63:e202402912. [PMID: 38418404 DOI: 10.1002/anie.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Despite the importance of heteroatom-substituted cyclopropane derivatives in drug design and organic synthesis, cyclopropanethiols remain critically underexplored. Inspired by the wide use of the Newman-Kwart rearrangement to access valuable thiophenols from phenol feedstocks, we report the development of a photocatalytic approach for efficient ambient temperature aliphatic O- to S-rearrangement on tertiary cyclopropanol derivatives. After demonstrating that a range of cyclopropanethiols-that are difficult to access by other methods-can be obtained with this strategy, we show that these rearranged products can be easily hydrolyzed and further derivatized. We conclude this study with mechanistic findings that enabled an initial extension of this approach toward other classes of aliphatic alcohols.
Collapse
Affiliation(s)
- John J Monteith
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - James W Pearson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
47
|
Hayat C, Subramaniyan V, Alamri MA, Wong LS, Khalid A, Abdalla AN, Afridi SG, Kumarasamy V, Wadood A. Identification of new potent NLRP3 inhibitors by multi-level in-silico approaches. BMC Chem 2024; 18:76. [PMID: 38637900 PMCID: PMC11027297 DOI: 10.1186/s13065-024-01178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Nod-like receptor protein 3 (NLRP-3), is an intracellular sensor that is involved in inflammasome activation, and the aberrant expression of NLRP3 is responsible for diabetes mellitus, its complications, and many other inflammatory diseases. NLRP3 is considered a promising drug target for novel drug design. Here, a pharmacophore model was generated from the most potent inhibitor, and its validation was performed by the Gunner-Henry scoring method. The validated pharmacophore was used to screen selected compounds databases. As a result, 646 compounds were mapped on the pharmacophore model. After applying Lipinski's rule of five, 391 hits were obtained. All the hits were docked into the binding pocket of target protein. Based on docking scores and interactions with binding site residues, six compounds were selected potential hits. To check the stability of these compounds, 100 ns molecular dynamic (MD) simulations were performed. The RMSD, RMSF, DCCM and hydrogen bond analysis showed that all the six compounds formed stable complex with NLRP3. The binding free energy with the MM-PBSA approach suggested that electrostatic force, and van der Waals interactions, played a significant role in the binding pattern of these compounds. Thus, the outcomes of the current study could provide insights into the identification of new potential NLRP3 inflammasome inhibitors against diabetes and its related disorders.
Collapse
Affiliation(s)
- Chandni Hayat
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Mardan, 23200, Pakistan
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, 45142, Jazan, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Mardan, 23200, Pakistan
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
48
|
Bhat MUS, Ganie MA, Kumar S, Rizvi MA, Raheem S, Shah BA. Visible-Light-Mediated Synthesis of Thioesters Using Thiocarboxylic Acid as the Dual Reagent. J Org Chem 2024; 89:4607-4618. [PMID: 38509669 DOI: 10.1021/acs.joc.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We have developed a visible-light-driven method for thioester synthesis that relies on the unique dual role of thiobenzoic acids as one-electron reducing agents and reactants leading to the formation of sulfur radical species. This synthetic process offers a wide scope, accommodating various thioacid and thiol substrates without the need for a photocatalyst.
Collapse
Affiliation(s)
- Muneer-Ul-Shafi Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sourav Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
49
|
Li S, Huang Z, Wang X, Yingxiong H, Niu G, Chen Z, Zhang Z. Catalyst-Free Synthesis of Thiosulfonates and 3-Sulfenylindoles from Sodium Sulfinates in Water. Chemistry 2024:e202400153. [PMID: 38566460 DOI: 10.1002/chem.202400153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
This paper presents a green and efficient aqueous-phase method for the synthesis of thiosulfonates, which has the benefits of no need for catalysts or redox reagents and a short reaction time, providing a method with great economic value for synthesizing thiosulfonates. Furthermore, 3-Sulfenylindoles can be easily synthesized using this method, which expands the potential applications of this reaction.
Collapse
Affiliation(s)
- Shaoke Li
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Zijun Huang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Xin Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Hui Yingxiong
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Guohao Niu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Ziyan Chen
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Zhenlei Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| |
Collapse
|
50
|
Verma SK, Rangappa S, Verma R, Xue F, Verma S, Sharath Kumar KS, Rangappa KS. Sulfur (S Ⅵ)-containing heterocyclic hybrids as antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) and its SAR. Bioorg Chem 2024; 145:107241. [PMID: 38437761 DOI: 10.1016/j.bioorg.2024.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
The discovery of new small molecule-based inhibitors is an attractive field in medicinal chemistry. Structurally diversified heterocyclic derivatives have been investigated to combat multi-drug resistant bacterial infections and they offers several mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming more and more deadly to humans because of its simple method of transmission, quick development of antibiotic resistance, and ability to cause hard-to-treat skin and filmy diseases. The sulfur (SVI) particularly sulfonyl and sulfonamide based heterocyclic moieties, have found to be good anti-MRSA agents. The development of new nontoxic, economical and highly active sulfur (SVI) containing derivatives has become hot research topics in drug discovery research. Presently, more than 150 FDA approved Sulfur (SVI)-based drugs are available in the market, and they are widely used to treat various types of diseases with different therapeutic potential. The present collective data provides the latest advancements in Sulfur (SVI)-hybrid compounds as antibacterial agents against MRSA. It also examines the outcomes of in-vitro and in-vivo investigations, exploring potential mechanisms of action and offering alternative perspectives on the structure-activity relationship (SAR). Sulfur (SVI)-hybrids exhibits synergistic effects with existing drugs to provide antibacterial action against MRSA.
Collapse
Affiliation(s)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, B. G. Nagar 571448, India
| | - Rameshwari Verma
- School of New Energy, Yulin University, Yulin 719000, Shaanxi, PR China.
| | - Fan Xue
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin 719000, PR China
| | - Shekhar Verma
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur 495009, Chhattisgarh, India
| | | | | |
Collapse
|