1
|
Zhang N, Sun Q, Li J, Li J, Tang L, Zhao Q, Pu Y, Liang G, He B, Gao W, Chen J. A lipid/PLGA nanocomplex to reshape tumor immune microenvironment for colon cancer therapy. Regen Biomater 2024; 11:rbae036. [PMID: 38628547 PMCID: PMC11018539 DOI: 10.1093/rb/rbae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024] Open
Abstract
Immune checkpoint blockade therapy provides a new strategy for tumor treatment; however, the insufficient infiltration of cytotoxic T cells and immunosuppression in tumor microenvironment lead to unsatisfied effects. Herein, we reported a lipid/PLGA nanocomplex (RDCM) co-loaded with the photosensitizer Ce6 and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1MT to improve immunotherapy of colon cancer. Arginine-glycine-aspartic acid (RGD) as the targeting moiety was conjugated on 1,2-distearoyl-snglycero-3-phosphoethanolamine lipid via polyethylene glycol (PEG), and programmed cell death-ligand 1 (PD-L1) peptide inhibitor DPPA (sequence: CPLGVRGK-GGG-d(NYSKPTDRQYHF)) was immobilized on the terminal group of PEG via matrix metalloproteinase 2 sensitive peptide linker. The Ce6 and 1MT were encapsulated in PLGA nanoparticles. The drug loaded nanoparticles were composited with RGD and DPPA modified lipid and lecithin to form lipid/PLGA nanocomplexes. When the nanocomplexes were delivered to tumor, DPPA was released by the cleavage of a matrix metalloproteinase 2-sensitive peptide linker for PD-L1 binding. RGD facilitated the cellular internalization of nanocomplexes via avβ3 integrin. Strong immunogenic cell death was induced by 1O2 generated from Ce6 irradiation under 660 nm laser. 1MT inhibited the activity of IDO and reduced the inhibition of cytotoxic T cells caused by kynurenine accumulation in the tumor microenvironment. The RDCM facilitated the maturation of dendritic cells, inhibited the activity of IDO, and markedly recruited the proportion of tumor-infiltrating cytotoxic T cells in CT26 tumor-bearing mice, triggering a robust immunological memory effect, thus effectively preventing tumor metastasis. The results indicated that the RDCM with dual IDO and PD-L1 inhibition effects is a promising platform for targeted photoimmunotherapy of colon cancer.
Collapse
Affiliation(s)
- Nan Zhang
- Henan Academy of Sciences, Zhengzhou 450046, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qiqi Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Junhua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Quan Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | | | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jianlin Chen
- School of Laboratory Medicine, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
2
|
Shah S, Famta P, Tiwari V, Kotha AK, Kashikar R, Chougule MB, Chung YH, Steinmetz NF, Uddin M, Singh SB, Srivastava S. Instigation of the epoch of nanovaccines in cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1870. [PMID: 36410742 PMCID: PMC10182210 DOI: 10.1002/wnan.1870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Cancer is an unprecedented proliferation of cells leading to abnormalities in differentiation and maturation. Treatment of primary and metastatic cancer is challenging. In addition to surgery, chemotherapy and radiation therapies have been conventionally used; however, they suffer from severe toxicity and non-specificity. Immunotherapy, the science of programming the body's own defense system against cancer has gained tremendous attention in the last few decades. However, partial immunogenic stimulation, premature degradation and inability to activate dendritic and helper T cells has resulted in limited clinical success. The era of nanomedicine has brought about several breakthroughs in various pharmaceutical and biomedical fields. Hereby, we review and discuss the interplay of tumor microenvironment (TME) and the immunological cascade and how they can be employed to develop nanoparticle-based cancer vaccines and immunotherapies. Nanoparticles composed of lipids, polymers and inorganic materials contain useful properties suitable for vaccine development. Proteinaceous vaccines derived from mammalian viruses, bacteriophages and plant viruses also have unique advantages due to their immunomodulation capabilities. This review accounts for all such considerations. Additionally, we explore how attributes of nanotechnology can be utilized to develop successful nanomedicine-based vaccines for cancer therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering, & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, INDIA
| | - Arun K Kotha
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Rama Kashikar
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Young Hun Chung
- Departments of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Departments of Bioengineering, NanoEngineering, Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mohammad Uddin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| |
Collapse
|
3
|
Zhang Y, Zhao P, Chen X, Xu C, Guo J, Qu X, Hu X, Gao H, Huang P, Zhang J. Near Infrared-Activatable Methylene Blue Polypeptide Codelivery of the NO Prodrug via π-π Stacking for Cascade Reactive Oxygen Species Amplification-Mediated Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12750-12765. [PMID: 36852940 DOI: 10.1021/acsami.2c21280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The application of photodynamic therapy (PDT) has attracted remarkable interest in cancer treatment because of the advantages of noninvasiveness and spatiotemporal selectivity. However, the PDT efficiency is considerably limited by photosensitizer (PS) quenching and severe hypoxia in solid tumors. Herein, a kind of near infrared (NIR)-activatable methylene blue (MB) peptide nanocarrier was developed for codelivery of nitric oxide (NO) prodrug JSK, expecting a cascade of reactive oxygen species (ROS) amplification-mediated antitumor PDT. In detail, MB was conjugated to water-soluble polyethylene glycol-polylysine (PEG-PLL) through NIR-photocleavable 10-N-carbamoyl bonds, and the subsequent amphiphilic conjugates (mPEG-PLL-MB) self-assembled into nanoparticles (NPs), which allowed JSK codelivery via π-π stacking interactions. MB in quenched state in mPEG-PLL-MB/JSK NPs could be photoactivated by NIR light locoregionally in a controlled manner due to the photocleavage of carbamoyl bonds. Apart from ROS production, assembly disturbance and even disintegration of mPEG-PLL-MB/JSK occurred along with MB activation that subsequently freed JSK, which was further triggered by intracellularly overexpressed glutathione (GSH) and glutathione S-transferase (GST) to sustain the release of NO. NO then served as a hypoxia relief agent through inhibition of cellular respiration to economize O2, cooperating with MB activation and GSH depletion, which synergistically enabled a cascade of ROS amplification to augment PDT for mitochondrial apoptosis-mediated tumor inhibition in vitro and in vivo. Therefore, this pioneering strategy of cascade amplification of ROS addressed the key issues of PS inactivation, hypoxia resistance, and ROS neutralization in a three-pronged approach, which hold great promise in efficient antitumor PDT.
Collapse
Affiliation(s)
- Yu Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Peng Zhao
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Xiaoai Chen
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Chang Xu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Jingzhe Guo
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Xiuli Hu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Hui Gao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
4
|
Wang Z, Liu Z, Wang S, Bing X, Ji X, He D, Han M, Wei Y, Wang C, Xia Q, Yang J, Gao J, Yin X, Wang Z, Shang Z, Xu J, Xin T, Liu Q. Implantation of hydrogel-liposome nanoplatform inhibits glioblastoma relapse by inducing ferroptosis. Asian J Pharm Sci 2023. [DOI: 10.1016/j.ajps.2023.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
5
|
Chen W, Wu Y, Deng J, Yang Z, Chen J, Tan Q, Guo M, Jin Y. Phospholipid-Membrane-Based Nanovesicles Acting as Vaccines for Tumor Immunotherapy: Classification, Mechanisms and Applications. Pharmaceutics 2022; 14:pharmaceutics14112446. [PMID: 36432636 PMCID: PMC9698496 DOI: 10.3390/pharmaceutics14112446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Membrane vesicles, a group of nano- or microsized vesicles, can be internalized or interact with the recipient cells, depending on their parental cells, size, structure and content. Membrane vesicles fuse with the target cell membrane, or they bind to the receptors on the cell surface, to transfer special effects. Based on versatile features, they can modulate the functions of immune cells and therefore influence immune responses. In the field of tumor therapeutic applications, phospholipid-membrane-based nanovesicles attract increased interest. Academic institutions and industrial companies are putting in effort to design, modify and apply membrane vesicles as potential tumor vaccines contributing to tumor immunotherapy. This review focuses on the currently most-used types of membrane vesicles (including liposomes, bacterial membrane vesicles, tumor- and dendritic-cell-derived extracellular vesicles) acting as tumor vaccines, and describes the classification, mechanism and application of these nanovesicles.
Collapse
Affiliation(s)
- Wenjuan Chen
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yali Wu
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jingjing Deng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Zimo Yang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Correspondence: ; Tel.: +86-135-5436-1146
| |
Collapse
|
6
|
Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022; 182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
7
|
Yang R, Zhou S, Zhou Q. In vitro naphthylquinoxaline thymidine conjugate and UVA treated cancer cells are effective therapeutic vaccines for tumors in vivo with CpG as the adjuvant. J Adv Res 2022; 35:259-266. [PMID: 35003803 PMCID: PMC8721236 DOI: 10.1016/j.jare.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/23/2022] Open
Abstract
Effective tumor immunotherapy with in vitro NAP-UVA treated cancer cells per se Marked survival improvement with CpG as the specific adjuvant Enhanced tumor specific and infiltrating active T cells by treatment vaccine Validated efficacy on established tumors with increased dosages Potential personalized immunotherapy applications
Introduction Cancer cells induced into immunogenic cell death (ICD) in vitro can be directly used as a whole cell vaccine for tumor immunotherapy with many advantages, especially enacting immediate and intense ‘eat me’ signals to engage immune system. Unfortunately, there have been few successes with in vitro ICD cancer cells as a treatment vaccine. Objective To demonstrate that cancer cells treated in vitro with a new class of potent ICD inducer, naphthylquinoxaline thymidine conjugate (NAP) followed by UVA irradiation would be able to act as an effective tumor immunotherapy directly. Methods The therapeutic potentials of treated cancer cell plus different vaccine adjuvants were assessed by in vivo liver tumor model and in vitro mixed lymphocyte reaction studies. The elicited activated T cells were determined with immunohistochemistry and T cell induced cytotoxicity studies. Results Treatment of established H22 tumor with in vitro NAP and UVA treated cancer cell vaccine led to significantly improved survival. Further mixed lymphocyte reaction study implied that adjuvants alum and CpG would improve the therapeutic potential whereas poly IC would not be as effective. Subsequent in vivo validation of alum and CpG adjuvants indicated that only CpG in NAP and UVA treated cell vaccine resulted in markedly enhanced survival (median at 71 days and 50% tumor-free) as compared with PBS group (14.5 days, 0%) and CpG alone (36 days, 0%). It was revealed that the enhanced efficacy by CpG was specific to NAP and UVA treated cells. Moreover, the effective tumor immunotherapy was achieved through the infiltration of active CD4 and CD8 T cells in tumors and acquisition of cancer cell-specific cytotoxic CD8 T cells. Conclusion In vitro NAP and UVA treated cancer cells plus CpG adjuvant are effective tumor therapeutic vaccines per se.
Collapse
Affiliation(s)
- Rong Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Shanshan Zhou
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Qibing Zhou
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
8
|
Cheng X, Gao J, Ding Y, Lu Y, Wei Q, Cui D, Fan J, Li X, Zhu E, Lu Y, Wu Q, Li L, Huang W. Multi-Functional Liposome: A Powerful Theranostic Nano-Platform Enhancing Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100876. [PMID: 34085415 PMCID: PMC8373168 DOI: 10.1002/advs.202100876] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/11/2021] [Indexed: 05/05/2023]
Abstract
Although photodynamic therapy (PDT) has promising advantages in almost non-invasion, low drug resistance, and low dark toxicity, it still suffers from limitations in the lipophilic nature of most photosensitizers (PSs), short half-life of PS in plasma, poor tissue penetration, and low tumor specificity. To overcome these limitations and enhance PDT, liposomes, as excellent multi-functional nano-carriers for drug delivery, have been extensively studied in multi-functional theranostics, including liposomal PS, targeted drug delivery, controllable drug release, image-guided therapy, and combined therapy. This review provides researchers with a useful reference in liposome-based drug delivery.
Collapse
Affiliation(s)
- Xiamin Cheng
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jing Gao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yao Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiancheng Wei
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Dezhi Cui
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jiali Fan
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Xiaoman Li
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Ershu Zhu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yongna Lu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| |
Collapse
|
9
|
Abstract
Therapeutic manipulation of the immune system against cancer has revolutionized the treatment of several advanced-stage tumors. While many have benefited from these treatments, the proportion of patients responding to immunotherapies is still low. Nanomedicines have promise to revolutionize tumor treatments through spatiotemporal control of drug activity. Such control of drug function could allow enhanced therapeutic actions of immunotherapies and reduced side effects. However, only a handful of formulations have been able to reach human clinical studies so far, and even fewer systems are being used in the clinic. Among translatable formulations, self-assembled nanomedicines have shown unique and versatile features for dealing with the heterogeneity and malignancy of tumors in the clinic. Such nanomedicines can be designed to promote antitumor immune responses through a series of immunopotentiating functions after being directly injected into tumors, or achieving selective tumor accumulation upon intravenous administration. Thus, tumor-targeted nanomedicines can enhance antitumor immunity by several mechanisms, such as inducing immunogenic damage to cancer cells, altering the tumor immune microenvironment by delivering immunomodulators, or eliminating or reprogramming immunosuppressive cells, enhancing the exposure of tumor-associated antigens to antigen presenting cells, stimulating innate immunity mechanisms, and facilitating the infiltration of antitumor immune cells and their interaction with cancer cells. Moreover, nanomedicines can be engineered to sense intratumoral stimuli for activating specific immune responses or installed with ligands for increasing drug levels in tumors, granting subcellular delivery, and triggering immune signals and proliferation of immune cells. Thus, the ability of nanomedicines to exert immunomodulatory functions selectively in tumor and tumor-associated tissues, such as draining lymph nodes, increases the efficiency of the treatments, while avoiding systemic immunosuppressive toxicities and the exacerbation of adverse immune responses. Moreover, the compartmentalized structure of self-assembled nanomedicines offers the possibility to coload a variety of drugs for controlled pharmacokinetics, enhanced tumor delivery, and synergistic therapeutic output. Also, by integrating imaging functionalities into nanomedicines, it is possible to develop theranostic platforms reporting the immune settings of tumors as well as the effects of nanomedicines on the tumor immune microenvironment. Herein, we critically reviewed significant strategies for developing nanomedicines capable of potentiating antitumor immune responses by surmounting biological barriers and modulating antitumor immune signals. Moreover, the potential of these nanomedicines for developing innovative anticancer treatments by targeting particular cells is discussed. Finally, we present our perspectives on the awaiting challenges and future directions of nanomedicines in the age of immunotherapy.
Collapse
Affiliation(s)
- Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Kinoh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Ahmad MZ, Ahmad J, Haque A, Alasmary MY, Abdel-Wahab BA, Akhter S. Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Expert Rev Vaccines 2020; 19:1053-1071. [DOI: 10.1080/14760584.2020.1858058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Anzarul Haque
- Department of Pharmacognosy, Prince Sattam Bin Abdulaziz University College of Pharmacy, Alkharj Al-Kharj, Kingdom of Saudi Arabia
| | - Mohammed Yahia Alasmary
- Department of Internal Medicine, College of Medicine, Najran University Hospital, Najran, Kingdom of Saudi Arabia
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine Assiut University, Assiut, Egypt
| | - Sohail Akhter
- Center for Molecular Biophysics (CBM), CNRS UPR4301; LE STUDIUM Loire Valley Institute for Advanced Studies, Orleans, France
| |
Collapse
|
11
|
Uthaman S, Kim Y, Lee JY, Pillarisetti S, Huh KM, Park IK. Self-Quenched Polysaccharide Nanoparticles with a Reactive Oxygen Species-Sensitive Cascade for Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28004-28013. [PMID: 32501678 DOI: 10.1021/acsami.0c06311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tumor microenvironment (TME)-responsive nanocarrier systems that keep the photosensitizer (PS) inactive during systemic circulation and then efficiently release or activate the PS in response to unique TME conditions have attracted much attention. Herein, we report novel TME-responsive, self-quenched polysaccharide nanoparticles (NPs) with a reactive oxygen species (ROS)-sensitive cascade. The PS, pheophorbide A (PhA), was conjugated to a water-soluble glycol chitosan (GC) through an ROS-sensitive thioketal (TK) linker. The amphiphilic GC-TK-PhA conjugates could arrange themselves into NPs and remain photoinactive due to their self-quenching effects. Upon reaching the ROS-rich hypoxic core of the tumor tissue, the NPs release the PS in a photoactive form by efficient, ROS-sensitive TK bond cleavage, thus generating potent phototoxic effects. Following near-infrared irradiation, the increase in locoregional ROS levels further accelerates the release and activation of PS. These cascade reactions caused a significant reduction in the tumor volume, demonstrating good antitumor potential.
Collapse
Affiliation(s)
- Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Yugyeong Kim
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ji Young Lee
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea
| |
Collapse
|
12
|
Zhang Y, Yang S, Yang Y, Liu T. Resveratrol induces immunogenic cell death of human and murine ovarian carcinoma cells. Infect Agent Cancer 2019; 14:27. [PMID: 31636696 PMCID: PMC6798484 DOI: 10.1186/s13027-019-0247-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose This study aimed to clarify whether immunogenic cell death (ICD) contributed to the anti-tumor action of resveratrol against ovarian carcinoma. Methods Resveratrol suppressed cell proliferation and induced apoptosis in ovarian carcinoma cells. In addition, resveratrol treatment stimulated cell surface exposure of calreticulin, HMGB1 secretion and ATP release. Results Vaccination with resveratrol-pretreated ID8 cells significantly inhibited growth of subsequent inoculated xenograft tumor. Direct administration with resveratrol suppressed tumor progression accompanied with compromised cell proliferation and enhanced cell apoptosis. We further characterized increases of both mature dendritic cells and cytotoxic T cells in xenograft tumor in response to resveratrol treatment, which also inhibited TGF-β production and stimulated both IL12p7 and IFN-γ secretion. Most importantly, we demonstrated that combination with PD-1 antibody greatly inhibited tumor growth, while depletion of CD8+ T cells by neutralizing antibody restored xenograft progression. Conclusion Our data suggested resveratrol exerted anti-tumor action against ovarian cancer via both apoptosis and ICD pathways.
Collapse
Affiliation(s)
- Yanke Zhang
- The Affiliated Hospital of Medical School of Ningbo University, No.247 Renmin Road, Jiangbei District, Ningbo, 315020 Zhejiang China
| | - Sufen Yang
- The Affiliated Hospital of Medical School of Ningbo University, No.247 Renmin Road, Jiangbei District, Ningbo, 315020 Zhejiang China
| | - Yang Yang
- The Affiliated Hospital of Medical School of Ningbo University, No.247 Renmin Road, Jiangbei District, Ningbo, 315020 Zhejiang China
| | - Teng Liu
- The Affiliated Hospital of Medical School of Ningbo University, No.247 Renmin Road, Jiangbei District, Ningbo, 315020 Zhejiang China
| |
Collapse
|