1
|
Roux HFG, Touret F, Rathelot P, Sciò P, Coluccia A, Vanelle P, Roche M. Non-Polio Enterovirus Inhibitors: Scaffolds, Targets, and Potency─What's New? ACS Infect Dis 2025; 11:21-46. [PMID: 39715453 DOI: 10.1021/acsinfecdis.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Enterovirus (EV) is a genus that includes a large diversity of viruses spread around the world. They are the main cause of numerous diseases with seasonal clusters, like hand-foot-mouth disease (HFMD). A vaccine is marketed in China for the prevention of HFMD caused by EV-A71. Despite the need, no antiviral is marketed to date. Therefore, several compounds have been currently evaluated to inhibit non-polio Enterovirus (NPEV), namely direct antiviral agents and host target inhibitor. We propose to make a review of the latest molecules evaluated as NPEV inhibitors and to summarize structure-activity relationships between these inhibitors and their target. We provide access to all recent information on Enterovirus inhibitors, regardless of the species, to facilitate the design of future broad-spectrum drugs.
Collapse
Affiliation(s)
| | - Franck Touret
- Unité des Virus Émergents (UVE: Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille 13284, France
| | - Pascal Rathelot
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, Marseille 13385, France
| | - Pietro Sciò
- Laboratory Affiliated with the Institute Pasteur Italy─Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy─Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Patrice Vanelle
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, Marseille 13385, France
| | - Manon Roche
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, Marseille 13385, France
| |
Collapse
|
2
|
Li X, Zhang J, Xiao Y, Song H, Li Y, Li W, Cao R, Li S, Qin Y, Wang C, Zhong W. Chemoproteomics enables identification of coatomer subunit zeta-1 targeted by a small molecule for enterovirus A71 inhibition. MedComm (Beijing) 2024; 5:e587. [PMID: 38840773 PMCID: PMC11151152 DOI: 10.1002/mco2.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Human enterovirus A71 (EV-A71) is a significant etiological agent responsible for epidemics of hand, foot, and mouth disease (HFMD) in Asia-Pacific regions. There are presently no licensed antivirals against EV-A71, and the druggable target for EV-A71 remains very limited. The phenotypic hit 10,10'-bis(trifluoromethyl) marinopyrrole A derivative, herein termed MPA-CF3, is a novel potent small-molecule inhibitor against EV-A71, but its pharmacological target(s) and antiviral mechanisms are not defined. Here, quantitative chemoproteomics deciphered the antiviral target of MAP-CF3 as host factor coatomer subunit zeta-1 (COPZ1). Mechanistically, MPA-CF3 disrupts the interaction of COPZ1 with the EV-A71 nonstructural protein 2C by destabilizing COPZ1 upon binding. The destruction of this interaction blocks the coatomer-mediated transport of 2C to endoplasmic reticulum, and ultimately inhibits EV-A71 replication. Taken together, our study disclosed that MPA-CF3 can be a structurally novel host-targeting anti-EV-A71 agent, providing a structural basis for developing the COPZ1-targeting broad-spectrum antivirals against enteroviruses. The mechanistic elucidation of MPA-CF3 against EV-A71 may offer an alternative COPZ1-involved therapeutic pathway for enterovirus infection.
Collapse
Affiliation(s)
- Xiaoyong Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengduChina
- National Engineering Research Center for the Emergence DrugsBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Jin Zhang
- College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Yaxin Xiao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengduChina
| | - Hao Song
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengduChina
| | - Yuexiang Li
- National Engineering Research Center for the Emergence DrugsBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Wei Li
- National Engineering Research Center for the Emergence DrugsBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergence DrugsBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Song Li
- National Engineering Research Center for the Emergence DrugsBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yong Qin
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengduChina
| | - Chu Wang
- College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Wu Zhong
- National Engineering Research Center for the Emergence DrugsBeijing Institute of Pharmacology and ToxicologyBeijingChina
| |
Collapse
|
3
|
Wang S, Pang Z, Fan H, Tong Y. Advances in anti-EV-A71 drug development research. J Adv Res 2024; 56:137-156. [PMID: 37001813 PMCID: PMC10834817 DOI: 10.1016/j.jare.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is capable of causing hand, foot and mouth disease (HFMD), which may lead to neurological sequelae and even death. As EV-A71 is resistant to environmental changes and mutates easily, there is still a lack of effective treatments or globally available vaccines. AIM OF REVIEW For more than 50 years since the HFMD epidemic, related drug research has been conducted. Progress in this area can promote the further application of existing potential drugs and develop more efficient and safe antiviral drugs, and provide useful reference for protecting the younger generation and maintaining public health security. KEY SCIENTIFIC CONCEPTS OF REVIEW At present, researchers have identified hundreds of EV-A71 inhibitors based on screening repurposed drugs, targeted structural design, and rational modification of previously effective drugs as the main development strategies. This review systematically introduces the current potential drugs to inhibit EV-A71 infection, including viral inhibitors targeting key sites such as the viral capsid, RNA-dependent RNA polymerase (RdRp), 2C protein, internal ribosome entry site (IRES), 3C proteinase (3Cpro), and 2A proteinase (2Apro), starting from each stage of the viral life cycle. Meanwhile, the progress of host-targeting antiviral drugs and their development are summarized in terms of regulating host immunity, inhibiting autophagy or apoptosis, and regulating the cellular redox environment. In addition, the current clinical methods for the prevention and treatment of HFMD are summarized and discussed with the aim of providing support and recommendations for the treatment of enterovirus infections including EV-A71.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
4
|
Wang H, Chen F, Wang S, Li Y, Liu T, Li Y, Deng H, Dong J, Pang J, Song D, Zhang D, Yu J, Wang Y. Evaluation and mechanism study of Pien Tze Huang against EV-A71 infection. Front Pharmacol 2023; 14:1251731. [PMID: 37954857 PMCID: PMC10637388 DOI: 10.3389/fphar.2023.1251731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) infection, currently lacks specific preventive and therapeutic interventions. Here, we demonstrated that Pien Tze Huang (PZH) could dose-dependently inhibit EV-A71 replication at the cellular level, resulting in significant reductions in EV-A71 virus protein 1 (VP1) expression and viral yields in Vero and human rhabdomyosarcoma cells. More importantly, we confirmed that PZH could protect mice from EV-A71 infection for the first time, with Ribavirin serving as a positive control. PZH treatment reduced EV-A71 VP1 protein expression, viral yields in infected muscles, and improved muscle pathology. Additionally, we conducted a preliminary mechanism study using quantitative proteomics. The results suggested that the suppression of the PI3K/AKT/mTOR and NF-κB signaling pathways may contribute to the anti-EV-A71 activity of PZH. These findings provide strong evidence supporting the potential therapeutic application of PZH for EV-A71 infection management.
Collapse
Affiliation(s)
- Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fenbei Chen
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shicong Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Liu
- Institute for Drug Control, National Institute for Food and Drug Control, Beijing, China
| | - Yinghong Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongbin Deng
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwen Dong
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Danqing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dousheng Zhang
- Institute for Drug Control, National Institute for Food and Drug Control, Beijing, China
| | - Juan Yu
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, China
| | - Yanxiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Li X, Li Y, Fan S, Cao R, Li X, He X, Li W, Xu L, Cheng T, Li H, Zhong W. Discovery and Optimization of Quinoline Analogues as Novel Potent Antivirals against Enterovirus D68. J Med Chem 2022; 65:14792-14808. [PMID: 36254462 PMCID: PMC9661475 DOI: 10.1021/acs.jmedchem.2c01311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Enterovirus D68 (EV-D68)
is a nonpolio enterovirus that is mainly
transmitted through respiratory routes and poses a potential threat
for large-scale spread. EV-D68 infections mostly cause moderate to
severe respiratory diseases in children and potentially induce neurological
diseases. However, there are no specific antiviral drugs or vaccines
against EV-D68. Herein, through virtual screening and rational design,
a series of novel quinoline analogues as anti-EV-D68 agents targeting
VP1 were identified. Particularly, 19 exhibited potent
antiviral activity with an EC50 value ranging from 0.05
to 0.10 μM against various EV-D68 strains and showed inhibition
of viral replication verified by Western blot, immunofluorescence,
and plaque formation assay. Mechanistic studies indicated that the
anti-EV-D68 agents work mainly by interacting with VP1. The acceptable
bioavailability of 23.9% in rats and significant metabolic stability
in human liver microsome (Clint = 10.8 mL/min/kg, t1/2 = 148 min) indicated that compound 19 with a novel scaffold was worth further investigation.
Collapse
Affiliation(s)
- Xiaoyuan Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Yuexiang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Xiaojia Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Xiaomeng He
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, P.R. China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| |
Collapse
|
6
|
Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. Overview of Research into mTOR Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165295. [PMID: 36014530 PMCID: PMC9413691 DOI: 10.3390/molecules27165295] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that belongs to the phosphoinositide 3-kinase (PI3K)-related kinase (PIKK) family. The kinase exists in the forms of two complexes, mTORC1 and mTORC2, and it participates in cell growth, proliferation, metabolism, and survival. The kinase activity is closely related to the occurrence and development of multiple human diseases. Inhibitors of mTOR block critical pathways to produce antiviral, anti-inflammatory, antiproliferative and other effects, and they have been applied to research in cancer, inflammation, central nervous system diseases and viral infections. Existing mTOR inhibitors are commonly divided into mTOR allosteric inhibitors, ATP-competitive inhibitors and dual binding site inhibitors, according to their sites of action. In addition, there exist several dual-target mTOR inhibitors that target PI3K, histone deacetylases (HDAC) or ataxia telangiectasia mutated and Rad-3 related (ATR) kinases. This review focuses on the structure of mTOR protein and related signaling pathways as well as the structure and characteristics of various mTOR inhibitors. Non-rapalog allosteric inhibitors will open new directions for the development of new therapeutics specifically targeting mTORC1. The applications of ATP-competitive inhibitors in central nervous system diseases, viral infections and inflammation have laid the foundation for expanding the indications of mTOR inhibitors. Both dual-binding site inhibitors and dual-target inhibitors are beneficial in overcoming mTOR inhibitor resistance.
Collapse
Affiliation(s)
- Beibei Mao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| | - Qi Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Dong-Sheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| |
Collapse
|
7
|
Li Y, Liu M, Yan Y, Wang Z, Dai Q, Yang X, Guo X, Li W, Chen X, Cao R, Zhong W. Molnupiravir and Its Active Form, EIDD-1931, Show Potent Antiviral Activity against Enterovirus Infections In Vitro and In Vivo. Viruses 2022; 14:v14061142. [PMID: 35746614 PMCID: PMC9227765 DOI: 10.3390/v14061142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Enterovirus infections can cause hand, foot, and mouth disease (HFDM), aseptic meningitis, encephalitis, myocarditis, and acute flaccid myelitis, leading to death of infants and young children. However, no specific antiviral drug is currently available for the treatment of this type of infection. The Unites States and United Kingdom health authorities recently approved a new antiviral drug, molnupiravir, for the treatment of COVID-19. In this study, we reported that molnupiravir (EIDD-2801) and its active form, EIDD-1931, have broad-spectrum anti-enterovirus potential. Our data showed that EIDD-1931 could significantly reduce the production of EV-A71 progeny virus and the expression of EV-A71 viral protein at non-cytotoxic concentrations. The results of the time-of-addition assay suggest that EIDD-1931 acts at the post-entry step, which is in accordance with its antiviral mechanism. The intraperitoneal administration of EIDD-1931 and EIDD-2801 protected 1-day-old ICR suckling mice from lethal EV-A71 challenge by reducing the viral load in various tissues of the infected mice. The pharmacokinetics analysis indicated that the plasma drug concentration overwhelmed the EC50 for enteroviruses, suggesting the clinical potential of molnupiravir against enteroviruses. Thus, molnupiravir along with its active form, EIDD-1931, may be a promising drug candidate against enterovirus infections.
Collapse
Affiliation(s)
- Yuexiang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (M.L.); (Y.Y.); (Z.W.); (Q.D.); (X.Y.); (X.G.); (W.L.)
| | - Miaomiao Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (M.L.); (Y.Y.); (Z.W.); (Q.D.); (X.Y.); (X.G.); (W.L.)
| | - Yunzheng Yan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (M.L.); (Y.Y.); (Z.W.); (Q.D.); (X.Y.); (X.G.); (W.L.)
| | - Zhuang Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (M.L.); (Y.Y.); (Z.W.); (Q.D.); (X.Y.); (X.G.); (W.L.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Qingsong Dai
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (M.L.); (Y.Y.); (Z.W.); (Q.D.); (X.Y.); (X.G.); (W.L.)
| | - Xiaotong Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (M.L.); (Y.Y.); (Z.W.); (Q.D.); (X.Y.); (X.G.); (W.L.)
| | - Xiaojia Guo
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (M.L.); (Y.Y.); (Z.W.); (Q.D.); (X.Y.); (X.G.); (W.L.)
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (M.L.); (Y.Y.); (Z.W.); (Q.D.); (X.Y.); (X.G.); (W.L.)
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (M.L.); (Y.Y.); (Z.W.); (Q.D.); (X.Y.); (X.G.); (W.L.)
- Correspondence: (R.C.); (W.Z.); Tel.: +86-10-66930673 (R.C.); +86-10-66932624 (W.Z.)
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (M.L.); (Y.Y.); (Z.W.); (Q.D.); (X.Y.); (X.G.); (W.L.)
- Correspondence: (R.C.); (W.Z.); Tel.: +86-10-66930673 (R.C.); +86-10-66932624 (W.Z.)
| |
Collapse
|
8
|
Wang J, Hu Y, Zheng M. Enterovirus A71 antivirals: Past, present, and future. Acta Pharm Sin B 2022; 12:1542-1566. [PMID: 35847514 PMCID: PMC9279511 DOI: 10.1016/j.apsb.2021.08.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a significant human pathogen, especially in children. EV-A71 infection is one of the leading causes of hand, foot, and mouth diseases (HFMD), and can lead to neurological complications such as acute flaccid myelitis (AFM) in severe cases. Although three EV-A71 vaccines are available in China, they are not broadly protective and have reduced efficacy against emerging strains. There is currently no approved antiviral for EV-A71. Significant progress has been made in developing antivirals against EV-A71 by targeting both viral proteins and host factors. However, viral capsid inhibitors and protease inhibitors failed in clinical trials of human rhinovirus infection due to limited efficacy or side effects. This review discusses major discoveries in EV-A71 antiviral development, analyzes the advantages and limitations of each drug target, and highlights the knowledge gaps that need to be addressed to advance the field forward.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
9
|
Cao B, Zeng M, Zhang Q, Zhang B, Cao Y, Wu Y, Feng W, Zheng X. Amentoflavone Ameliorates Memory Deficits and Abnormal Autophagy in Aβ 25-35-Induced Mice by mTOR Signaling. Neurochem Res 2021; 46:921-934. [PMID: 33492604 DOI: 10.1007/s11064-020-03223-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease in which autophagy plays a crucial role. Amentoflavone is a flavonoid obtained from various plants and has been shown to have AD-resistant neuroprotective effects. This study investigated the role of amentoflavone on memory impairment and abnormal autophagy in amyloid-β25-35 (Aβ25-35)-induced mice to elucidate the mechanisms by which it exerts neuroprotective effects. In this experiment, the AD mouse model was established by intracerebroventricular (ICV) injection of Aβ25-35 peptides, and amentoflavone was administered orally for 4 weeks. Behavioral changes in mice and pathological changes in the hippocampus were observed, and levels of inflammation, oxidative stress, and autophagy in the brain were detected and analyzed. PC-12 and APPswe-N2a cells were used in vitro to further investigate the effect of amentoflavone on the level of intracellular autophagy. Molecular docking was used to determine the action sites of amentoflavone. The results showed that amentoflavone improved memory function, eased anxiety symptoms in Aβ25-35-induced mice, and reduced atrophic degeneration of neurons in the hippocampus. Moreover, amentoflavone lessened the oxidative stress and inflammation in the brains of mice. Through in vivo and in vitro experiments, we found that amentoflavone may enhance autophagy, by way of binding to the ATP site of the mTOR protein kinase domain. Amentoflavone not only interacted with mTOR, but also improved Aβ25-35-induced cognitive dysfunction in mice by enhancing autophagy, attenuating levels of inflammation and oxidative stress, and reducing apoptosis in brain cells.
Collapse
Affiliation(s)
- Bing Cao
- Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Mengnan Zeng
- Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Qinqin Zhang
- Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yangang Cao
- Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yuanyuan Wu
- Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Weisheng Feng
- Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, Zhengzhou, China. .,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.
| |
Collapse
|
10
|
The selective hydrogenation of nitroarenes and alkenes catalyzed by Pd@MOFs: The role of electronic interactions between Pd nanoparticles and MOFs on the reaction. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Hwu JR, Panja A, Jayakumar S, Tsay SC, Tan KT, Huang WC, Hu YC, Leyssen P, Neyts J. Enterovirus Inhibition by Hinged Aromatic Compounds with Polynuclei. Molecules 2020; 25:molecules25173821. [PMID: 32842645 PMCID: PMC7503712 DOI: 10.3390/molecules25173821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
The modern world has no available drugs for the treatment of enteroviruses (EV), which affect millions of people worldwide each year. The EV71 is a major causative disease for hand, foot, and mouth disease; sometimes it is associated with severe central nervous system diseases. Treatment for enteroviral infection is mainly supportive; treatment for aseptic meningitis caused by enteroviruses is also generally symptomatic. Upon the urgent request of new anti-enterovirus drugs, a series of hinged aromatic compounds with polynulei were synthesized through two different chemical pathways. Among these morpholine–furan/thiophene/pyrrole–benzene–pyrazole conjugates, three new agents exhibited inhibitory activity with EC50 = 2.29–6.16 μM toward EV71 strain BrCr in RD cells. Their selectivity index values were reached as high as 33.4. Their structure–activity relationship was deduced that a thiophene derivative with morpholine and trifluorobenzene rings showed the greatest antiviral activity, with EC50 = 2.29 μM.
Collapse
Affiliation(s)
- Jih Ru Hwu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan; (A.P.); (S.J.); (S.-C.T.); (K.-T.T.); (W.-C.H.)
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan;
- Department of Chemistry, National Central University, Jhongli City, Taoyuan 320, Taiwan
- Correspondence: (J.R.H.); (J.N.)
| | - Avijit Panja
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan; (A.P.); (S.J.); (S.-C.T.); (K.-T.T.); (W.-C.H.)
| | - Srinivasan Jayakumar
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan; (A.P.); (S.J.); (S.-C.T.); (K.-T.T.); (W.-C.H.)
| | - Shwu-Chen Tsay
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan; (A.P.); (S.J.); (S.-C.T.); (K.-T.T.); (W.-C.H.)
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan;
- Department of Chemistry, National Central University, Jhongli City, Taoyuan 320, Taiwan
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan; (A.P.); (S.J.); (S.-C.T.); (K.-T.T.); (W.-C.H.)
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Wen-Chieh Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan; (A.P.); (S.J.); (S.-C.T.); (K.-T.T.); (W.-C.H.)
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Yu-Chen Hu
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan;
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Pieter Leyssen
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium;
| | - Johan Neyts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium;
- Correspondence: (J.R.H.); (J.N.)
| |
Collapse
|