1
|
Wang R, Hua S, Xing Y, Wang R, Wang H, Jiang T, Yu F. Organic dye-based photosensitizers for fluorescence imaging-guided cancer phototheranostics. Coord Chem Rev 2024; 513:215866. [DOI: 10.1016/j.ccr.2024.215866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
|
2
|
Li D, Cai S, Wang P, Cheng H, Cheng B, Zhang Y, Liu G. Innovative Design Strategies Advance Biomedical Applications of Phthalocyanines. Adv Healthc Mater 2023; 12:e2300263. [PMID: 37039069 DOI: 10.1002/adhm.202300263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Owing to their long absorption wavelengths, high molar absorptivity, and tunable photosensitivity, phthalocyanines have been widely used in photodynamic therapy (PDT). However, phthalocyanines still face the drawbacks of poor targeting, "always-on" photosensitizing properties, and unsatisfactory therapeutic efficiency, which limit their wide applications in biomedical fields. Thus, new design strategies such as modification of targeting molecules, formation of nanoparticles, and activating photosensitizers are developed to improve the above defects. Notably, recent studies have shown that novel phthalocyanines are not only used in fluorescence imaging and PDT, but also in photoacoustic imaging, photothermal imaging, sonodynamic therapy, and photothermal therapy. This review focuses on recent design strategies, applications in biomedicine, and clinical development of phthalocyanines, providing ideas and references for the design and application of phthalocyanine, so as to promote their future transformation into clinical applications.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shundong Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Peiyu Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bingwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
3
|
Jin GQ, Wang JX, Lu J, Zhang H, Yao Y, Ning Y, Lu H, Gao S, Zhang JL. Two birds one stone: β-fluoropyrrolyl-cysteine S NAr chemistry enabling functional porphyrin bioconjugation. Chem Sci 2023; 14:2070-2081. [PMID: 36845938 PMCID: PMC9944650 DOI: 10.1039/d2sc06209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Bioconjugation, a synthetic tool that endows small molecules with biocompatibility and target specificity through covalent attachment of a biomolecule, holds promise for next-generation diagnosis or therapy. Besides the establishment of chemical bonding, such chemical modification concurrently allows alteration of the physicochemical properties of small molecules, but this has been paid less attention in designing novel bioconjugates. Here, we report a "two birds one stone" methodology for irreversible porphyrin bioconjugation based on β-fluoropyrrolyl-cysteine SNAr chemistry, in which the β-fluorine of porphyrin is selectively replaced by a cysteine in either peptides or proteins to generate novel β-peptidyl/proteic porphyrins. Notably, due to the distinct electronic nature between fluorine and sulfur, such replacement makes the Q band red-shift to the near-infrared region (NIR, >700 nm). This facilitates intersystem crossing (ISC) to enhance the triplet population and thus singlet oxygen production. This new methodology features water tolerance, a fast reaction time (15 min), good chemo-selectivity, and broad substrate scope, including various peptides and proteins under mild conditions. To demonstrate its potential, we applied porphyrin β-bioconjugates in several scenarios, including (1) cytosolic delivery of functional proteins, (2) metabolic glycan labeling, (3) caspase-3 detection, and (4) tumor-targeting phototheranostics.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jing-Xiang Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jianhua Lu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Hang Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Yuhang Yao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China .,Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China.,Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology Guangzhou 510641 China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China .,Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| |
Collapse
|
4
|
Li X, Hsu JC, Son MH, Ha LN, Cai W. Cancer photodynamic therapy with chlorin e6-loaded, goat milk-derived extracellular vesicles: [ 18F]FDG lights up the way. Eur J Nucl Med Mol Imaging 2023; 50:247-250. [PMID: 36357594 PMCID: PMC9822859 DOI: 10.1007/s00259-022-06031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaoyan Li
- Departments of Radiology and Medical Physics, University of WI - Madison, Madison, WI, USA
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of WI - Madison, Madison, WI, USA
| | - Mai Hong Son
- Department of Nuclear Medicine, Hospital 108, Hanoi, Vietnam
| | - Le Ngoc Ha
- Department of Nuclear Medicine, Hospital 108, Hanoi, Vietnam
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of WI - Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Yang DC, Yang XZ, Luo CM, Wen LF, Liu JY, Lin Z. A promising strategy for synergistic cancer therapy by integrating a photosensitizer into a hypoxia-activated prodrug. Eur J Med Chem 2022; 243:114749. [PMID: 36115207 DOI: 10.1016/j.ejmech.2022.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022]
Abstract
Herein, we fabricate a multifunctional molecular prodrug BAC where the chemotherapeutical agent camptothecin (CPT) is linked with a boron dipyrromethene (BODIPY)-based photosensitizer by an azobenzene chain which is sensitive to over-expressed azoreductase in hypoxic tumor cells. This prodrug was further loaded into biodegradable monomethoxy poly(ethylene glycol)-b-poly(caprolactone) (mPEG-b-PCL) to improve its solubility and tumor accumulation. The formed BAC nanoparticles (BAC NPs) can destroy aerobic tumor cells with relatively short distance from blood vessels by photodynamic therapy (PDT) under illumination. The PDT action inevitably leads to consumption of O2, and subsequently acute hypoxia which can induce cleavage of azobenzene linkage to boost release of CPT killing the other hypoxic interior tumor cells survived from PDT. Both in vitro and in vivo studies have verified that BAC NPs possess remarkable antitumor activity by a synergistic action of PDT and chemotherapy.
Collapse
Affiliation(s)
- De-Chao Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiao-Zhen Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Cheng-Miao Luo
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lin-Feng Wen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350108, China; Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, 350108, China; State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Zhonghui Lin
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
6
|
Tam LKB, He L, Ng DKP, Cheung PCK, Lo P. A Tumor‐Targeting Dual‐Stimuli‐Activatable Photodynamic Molecular Beacon for Precise Photodynamic Therapy. Chemistry 2022; 28:e202201652. [DOI: 10.1002/chem.202201652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Leo K. B. Tam
- Department of Chemistry The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Lin He
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| | - Dennis K. P. Ng
- Department of Chemistry The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Peter C. K. Cheung
- School of Life Sciences The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Pui‐Chi Lo
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| |
Collapse
|
7
|
Akkoç B, Samsunlu T, Işık Ş, Özçeşmeci M, Atmaca GY, Erdoğmuş A, Serhatlı M, Hamuryudan E. Pegylated metal-free and zinc(II) phthalocyanines: synthesis, photophysicochemical properties and in vitro photodynamic activities against head, neck and colon cancer cell lines. Dalton Trans 2022; 51:10136-10147. [PMID: 35734907 DOI: 10.1039/d2dt00704e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a series of peripherally and non-peripherally tetra-substituted metal-free and zinc(II) phthalocyanines were successfully prepared in good yields by cyclotetramerization of the phthalonitrile derivative bearing a tetraethylene glycol methyl ether group at 3- and 4- positions. All newly synthesized compounds were characterized using spectroscopic methods, such as FT-IR, NMR, mass and UV-Vis spectroscopy. To determine the therapeutic potential of the synthesized phthalocyanines, the effects of the substitution pattern (peripheral and non-peripheral) and central metal atom on the photophysicochemical properties were investigated. When comparing their singlet oxygen generation capabilities (ΦΔ), metallo-phthalocyanine derivatives with zinc (0.73 for 1b and 0.70 for 2b) showed higher singlet oxygen yield than metal-free derivatives (0.21 for 1a and 0.12 for 2a) in DMSO. The photodynamic therapy activities of the water-soluble phthalocyanines were tested via in vitro studies using the A253, FaDu (head and neck cancer cell lines), and HT29 (colon cancer) cell lines. The strongest photodynamic activity was found in 1b and 2b molecules with a metal core among the four molecules studied. The results suggested that the non-peripherally tetra-substituted 1b molecule was regarded as a suitable photodynamic therapy agent due to its light cytotoxicity and secondary impact induced by ROS production.
Collapse
Affiliation(s)
- Berkay Akkoç
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | - Taylan Samsunlu
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | - Şeyma Işık
- Genetic Engineering and Biotechnology Institute GEBI, TUBITAK Marmara Research Center MRC, 41470, Gebze, Kocaeli, Turkey.,Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, 34684, Atasehir, Istanbul, Turkey
| | - Mukaddes Özçeşmeci
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey
| | - Müge Serhatlı
- Genetic Engineering and Biotechnology Institute GEBI, TUBITAK Marmara Research Center MRC, 41470, Gebze, Kocaeli, Turkey
| | - Esin Hamuryudan
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
8
|
Xiong J, Chu JCH, Fong WP, Wong CTT, Ng DKP. Specific Activation of Photosensitizer with Extrinsic Enzyme for Precisive Photodynamic Therapy. J Am Chem Soc 2022; 144:10647-10658. [PMID: 35639988 DOI: 10.1021/jacs.2c04017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delivery of functional proteins into the intracellular space has been a challenging task that could lead to a myriad of therapeutic applications. We report herein a novel bioconjugation strategy for enzyme modification and selective delivery into cancer cells for lock-and-key-type activation of photosensitizers. Using a bifunctional linker containing a bis(bromomethyl)phenyl group and an o-phthalaldehyde moiety, it could induce cyclization of the peptide sequence Ac-NH-CRGDfC-CONH2 through site-specific dibenzylation with the two cysteine residues and further coupling with β-galactosidase via the phthalaldehyde-amine capture reaction. This facile two-step one-pot procedure enabled the preparation of cyclic RGD-modified β-galactosidase readily, which could be internalized selectively into αvβ3 integrin-overexpressed cancer cells. Upon encountering an intrinsically quenched distyryl boron dipyrromethene-based photosensitizer conjugated with a galactose moiety through a self-immolative linker inside the cells, the extrinsic enzyme induced specific cleavage of the β-galactosidic bond followed by self-immolation to release an activated derivative, thereby restoring the photodynamic activities and causing cell death effectively. The high specificity of this extrinsic enzyme-activated photosensitizing system was also demonstrated in vivo using nude mice bearing an αvβ3 integrin-positive U87-MG tumor. The specific activation at the tumor site resulted in lighting up and complete eradication of the tumor upon laser irradiation, while by using the native β-galactosidase, the effects were largely reduced. In contrast to the conventional activation using intrinsic enzymes, this extrinsic enzyme activatable approach can further minimize the nonspecific activation toward precisive photodynamic therapy.
Collapse
Affiliation(s)
- Junlong Xiong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
9
|
Wang ZF, Nong QX, Yu HL, Qin QP, Pan FH, Tan MX, Liang H, Zhang SH. Complexes of Zn(II) with a mixed tryptanthrin derivative and curcumin chelating ligands as new promising anticancer agents. Dalton Trans 2022; 51:5024-5033. [PMID: 35274641 DOI: 10.1039/d1dt04095b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, two novel curcumin (H-Cur)-tryptanthrin metal compounds-[Zn(TA)Cl2], i.e., Zn(TA), and [Zn(TA)(Cur)]Cl, i.e., Zn(TAC)-were synthesized and investigated using 5-(bis-pyridin-2-ylmethyl-amino)-pentanoic acid (6,12-dioxo-6,12-dihydro-indolo[2,1-b]quinazolin-8-yl)-amide (TA) and H-Cur as the targeting and high-activity anticancer chemotherapeutic moieties, respectively. They were then compared with the di-(2-picolyl)amine (PA) Zn(II) complex [Zn(PA)Cl2], i.e., Zn(PA). When compared with Zn(PA) and cisplatin, the IC50 values of Zn(TA) and Zn(TAC) indicated that the compounds had high cytotoxicity against A549/DDP cancer cells, implying that the H-Cur-tryptanthrin Zn(II) compounds have the potential for use as anticancer drugs. We propose the use of synthesized theragnostic H-Cur-tryptanthrin Zn(II) complexes with nuclear-targeting and DNA-damaging capabilities as a simple therapeutic strategy against tumors. The Zn(TA) and Zn(TAC) complexes could be traced via red fluorescence and were found to accumulate in the cell nuclei and induce DNA damage, cell cycle arrest, mitochondrial dysfunction, and cell apoptosis both in vitro and in vivo. In addition, Zn(TAC) exhibited a higher antiproliferative effect on A549/DDP than Zn(TA) and Zn(PA), which was undoubtedly associated with the key roles of the novel tryptanthrin derivative TA and H-Cur in the Zn(TAC) complex.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| | - Qun-Xue Nong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hua-Lian Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China. .,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Feng-Hua Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Ming-Xiong Tan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Shu-Hua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| |
Collapse
|
10
|
Tam LKB, Yu L, Wong RCH, Fong WP, Ng DKP, Lo PC. Dual Cathepsin B and Glutathione-Activated Dimeric and Trimeric Phthalocyanine-Based Photodynamic Molecular Beacons for Targeted Photodynamic Therapy. J Med Chem 2021; 64:17455-17467. [PMID: 34846143 DOI: 10.1021/acs.jmedchem.1c01634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two dual stimuli-activated photosensitizers were developed, in which two or three glutathione (GSH)-responsive 2,4-dinitrobenzenesulfonate (DNBS)-substituted zinc(II) phthalocyanine units were connected via one or two cathepsin B-cleavable Gly-Phe-Leu-Gly peptide linker(s). These dimeric and trimeric phthalocyanines were fully quenched in the native form due to the photoinduced electron transfer to the DNBS substituents and the self-quenching of the phthalocyanine units. In the presence of GSH and cathepsin B, or upon internalization into A549 and HepG2 cancer cells, these probes were activated through the release of free phthalocyanine units. The intracellular fluorescence intensity was increased upon post-incubation with GSH ester or reduced upon pre-treatment with a cathepsin B inhibitor. Upon light irradiation, these photosensitizers became highly cytotoxic with IC50 values of 0.21-0.39 μM. The photocytotoxicity was also dependent on the intracellular GSH and cathepsin B levels. The results showed that these conjugates could serve as smart photosensitizers for targeted photodynamic therapy.
Collapse
Affiliation(s)
- Leo K B Tam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ligang Yu
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Roy C H Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
Chu JCH, Shao C, Ha SYY, Fong WP, Wong CTT, Ng DKP. One-pot peptide cyclisation and surface modification of photosensitiser-loaded red blood cells for targeted photodynamic therapy. Biomater Sci 2021; 9:7832-7837. [PMID: 34726672 DOI: 10.1039/d1bm01306h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein a one-pot approach to cyclise a tumour-targeting peptide and conjugate it on the surface of red blood cells loaded with a boron dipyrromethene-based photosensitiser using a bifunctional linker consisting of a bis(bromomethyl)phenyl unit and an ortho-phthalaldehyde unit. This cell-based photosensitiser with surface modification with cyclic RGD peptide moieties can selectively bind against the αvβ3 integrin-overexpressed cancer cells, leading to enhanced photocytotoxicity. The results demonstrate that this facile strategy is effective for live-cell surface modification for a wide range of applications.
Collapse
Affiliation(s)
- Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Chihao Shao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Summer Y Y Ha
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
12
|
Ang MJY, Chan SY, Goh YY, Luo Z, Lau JW, Liu X. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv Drug Deliv Rev 2021; 178:113907. [PMID: 34371084 DOI: 10.1016/j.addr.2021.113907] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer involves a collection of diseases with a common trait - dysregulation in cell proliferation. At present, traditional therapeutic strategies against cancer have limitations in tackling various tumors in clinical settings. These include chemotherapeutic resistance and the inability to overcome intrinsic physiological barriers to drug delivery. Nanomaterials have presented promising strategies for tumor treatment in recent years. Nanotheranostics combine therapeutic and bioimaging functionalities at the single nanoparticle level and have experienced tremendous growth over the past few years. This review highlights recent developments of advanced nanomaterials and nanotheranostics in three main directions: stimulus-responsive nanomaterials, nanocarriers targeting the tumor microenvironment, and emerging nanomaterials that integrate with phototherapies and immunotherapies. We also discuss the cytotoxicity and outlook of next-generation nanomaterials towards clinical implementation.
Collapse
Affiliation(s)
- Melgious Jin Yan Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, Singapore 138634, Singapore
| | - Yi-Yiing Goh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jun Wei Lau
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
13
|
Yang DC, Wang S, Weng XL, Zhang HX, Liu JY, Lin Z. Singlet Oxygen-Responsive Polymeric Nanomedicine for Light-Controlled Drug Release and Image-Guided Photodynamic-Chemo Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33905-33914. [PMID: 34278780 DOI: 10.1021/acsami.1c09044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coencapsulation of chemotherapeutic agents and photosensitizers into nanocarriers can help to achieve a combination of chemotherapy and photodynamic therapy for superior antitumor effects. However, precise on-demand drug release remains a major challenge. In addition, the loaded photosensitizers usually tend to aggregate, which can significantly weaken their fluorescent signals and photodynamic activities. To address these issues, herein, a smart nanocarrier termed as singlet oxygen-responsive nanoparticle (SOR-NP) was constructed by introducing singlet oxygen (1O2)-sensitive aminoacrylate linkers into amphiphilic mPEG-b-PCL copolymers. Boron dipyrromethene (BDP) and paclitaxel (PTX) as model therapeutic agents were coloaded into an 1O2-responsive nanocarrier for realizing light-controlled drug release and combination cancer treatment. This polymeric nanocarrier could substantially relieve the aggregation of encapsulated BDP due to the presence of a long hydrophobic chain. Therefore, the formed SOR-NPBDP/PTX nanodrug could generate bright fluorescent signals and high levels of 1O2, which could mediate cell death via PDT and rupture aminoacrylate linker simultaneously, leading to collapse of SOR-NPBDP/PTX and subsequent PTX release. The light-triggered drug release and combined anticancer effects of SOR-NPBDP/PTX were validated in HepG2 and MCF-7 cancer cells and H22 tumor-bearing mice. This study provides a promising strategy for tumor-specific drug release and selective photodynamic-chemo combination treatment.
Collapse
Affiliation(s)
- De-Chao Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shuai Wang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiao-Lu Weng
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hong-Xia Zhang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhonghui Lin
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
14
|
Li K, Dong W, Miao Y, Liu Q, Qiu L, Lin J. Dual-targeted 5-aminolevulinic acid derivatives with glutathione depletion function for enhanced photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 215:112107. [PMID: 33401190 DOI: 10.1016/j.jphotobiol.2020.112107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/19/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) is a promising tumor therapy which utilizes reactive oxygen species (ROSs) to cause tumor cells death. 5-aminolevulinic acid (ALA) and two of its esters are FDA-approved photosensitizers. However, their clinical application suffers from their instability and lack of tumor selectivity. In addition, the overexpression of glutathione (GSH) in some tumor cells reduces the PDT efficiency due to the ROS-scavenging ability of GSH. In this work, we present three multifunctional ALA derivates with the characteristics of dual-targeting and GSH depletion to improve the therapeutic effect of ALA-based PDT. The general structure of these compounds consists of an ALA methyl ester (ALA-OMe) moiety that can metabolize to photosensitive protoporphyin IX (PpIX) inside the cells, a biotin group for targeting biotin receptor-positive tumor cells and a disulfide bond-based self-immolative linker which can be activated by GSH to liberate ALA-OMe. Simultaneously, the reaction between the disulfide bond and GSH also depletes intracellular GSH, causing tumor cells more vulnerable to ROSs. All three compounds exhibited high stability under physiological conditions. In vitro experiments demonstrated that the more lipophilic compounds 1 and 2 were much more efficient in inducing PpIX production in biotin receptor-overexpressed HeLa cells as compared with their parent compound (ALA-OMe). And the PpIX generation induced by compounds 1 and 2 was positively correlated with the overexpression of biotin receptor and GSH level in tumor cells. More importantly, the GSH depletion ability of them significantly increased their phototoxicity. Furthermore, in comparison with ALA-OMe, compound 2 showed much higher in vivo efficiency in PpIX production. All the results demonstrate that the combination strategy of dual-targeting and GSH depletion can be used to concurrently enhance the tumor-specificity and anti-tumor efficiency of ALA-based PDT. And this strategy may be used for designing other ALA-based photosensitizers with higher tumor-specificity and better therapeutic effects.
Collapse
Affiliation(s)
- Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Wenyi Dong
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.
| |
Collapse
|
15
|
Horiuchi H, Tajima K, Okutsu T. Triply pH-activatable porphyrin as a candidate photosensitizer for near-infrared photodynamic therapy and diagnosis. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Gomez S, Tsung A, Hu Z. Current Targets and Bioconjugation Strategies in Photodynamic Diagnosis and Therapy of Cancer. Molecules 2020; 25:E4964. [PMID: 33121022 PMCID: PMC7662882 DOI: 10.3390/molecules25214964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Photodynamic diagnosis (PDD) and therapy (PDT) are emerging, non/minimally invasive techniques for cancer diagnosis and treatment. Both techniques require a photosensitizer and light to visualize or destroy cancer cells. However, a limitation of conventional, non-targeted PDT is poor selectivity, causing side effects. The bioconjugation of a photosensitizer to a tumor-targeting molecule, such as an antibody or a ligand peptide, is a way to improve selectivity. The bioconjugation strategy can generate a tumor-targeting photosensitizer conjugate specific for cancer cells, or ideally, for multiple tumor compartments to improve selectivity and efficacy, such as cancer stem cells and tumor neovasculature within the tumor microenvironment. If successful, such targeted photosensitizer conjugates can also be used for specific visualization and detection of cancer cells and/or tumor angiogenesis (an early event in tumorigenesis) with the hope of an early diagnosis of cancer. The purpose of this review is to summarize some current promising target molecules, e.g., tissue factor (also known as CD142), and the currently used bioconjugation strategies in PDT and PDD, with a focus on newly developed protein photosensitizers. These are genetically engineered photosensitizers, with the possibility of generating a fusion protein photosensitizer by recombinant DNA technology for both PDT and PDD without the need of chemical conjugation. We believe that providing an overview of promising targets and bioconjugation strategies will aid in driving research in this field forward towards more effective, less toxic, and non- or minimally invasive treatment and diagnosis options for cancer patients.
Collapse
Affiliation(s)
- Salvador Gomez
- The James-Comprehensive Cancer Center, Division of Surgical Oncology Department of Surgery, College of Medicine, The Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA; (S.G.); (A.T.)
- College of Medicine, The Ohio State University, 370 W 9th Ave, Columbus, OH 43210, USA
| | - Allan Tsung
- The James-Comprehensive Cancer Center, Division of Surgical Oncology Department of Surgery, College of Medicine, The Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA; (S.G.); (A.T.)
| | - Zhiwei Hu
- The James-Comprehensive Cancer Center, Division of Surgical Oncology Department of Surgery, College of Medicine, The Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA; (S.G.); (A.T.)
| |
Collapse
|
17
|
Chu JCH, Yang C, Fong WP, Wong CTT, Ng DKP. Facile one-pot synthesis of cyclic peptide-conjugated photosensitisers for targeted photodynamic therapy. Chem Commun (Camb) 2020; 56:11941-11944. [PMID: 32931540 DOI: 10.1039/d0cc05264g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel synthetic strategy for in situ cyclisation of peptides and conjugation with functional boron dipyrromethenes (BODIPYs) has been developed. Linear peptides with up to 16 amino acid residues can be cyclised effectively and the resulting conjugates can be isolated in higher than 20% yield. One of the conjugates having a cyclic RGD moiety has been studied both in vitro and in vivo. It exhibits high and selective affinity towards the αvβ3-positive cell lines and induces high photocytotoxicity. The conjugate can also selectively localise in and effectively inhibit the growth of αvβ3-overexpressed tumour in vivo.
Collapse
Affiliation(s)
- Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | | | | | | | | |
Collapse
|
18
|
Wong CTT, Chu JCH, Ha SYY, Wong RCH, Dai G, Kwong TT, Wong CH, Ng DKP. Phthalaldehyde-Amine Capture Reactions for Bioconjugation and Immobilization of Phthalocyanines. Org Lett 2020; 22:7098-7102. [PMID: 32806143 DOI: 10.1021/acs.orglett.0c02398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A phthalaldehyde-substituted phthalocyanine has been synthesized that can conjugate with a range of biomolecules, including peptides, monosaccharides, lipids, and DNAs, and be immobilized on the surface of bovine serum album nanoparticles and glass slides using the versatile and efficient phthalaldehyde-amine capture reactions. The light-induced cytotoxic effects of the latter two materials have also been examined against cancer cells and bacteria, respectively, showing that they are highly efficient photosensitizing systems for photodynamic therapy.
Collapse
Affiliation(s)
- Clarence T T Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Summer Y Y Ha
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Roy C H Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Gaole Dai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tsz-Tung Kwong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi-Hang Wong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
19
|
Husain A, Ganesan A, Machacek M, Cerveny L, Kubat P, Ghazal B, Zimcik P, Makhseed S. Dually directional glycosylated phthalocyanines as extracellular red-emitting fluorescent probes. Dalton Trans 2020; 49:9605-9617. [PMID: 32542251 DOI: 10.1039/d0dt01180k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of new non-aggregated phthalocyanines bearing multivalent saccharide moieties on their macrocyclic rims is of great interest. Many characteristics, including water-solubility, non-toxicity and others, can be feasibly obtained by these amphiphiles which can be considered as a key solution for demonstrating highly efficient photoactive materials in water. Herein, a family of five newly prepared dually directional Zn(ii) containing phthalocyanines (PcG1-4) and azaphthalocyanine (AzaPcG1) glycoconjugates is described. The unique spatial arrangement of the glucoside units based on peripherally hexadeca-(PcG1) and nonperipherally octa-(PcG4) macrocycles provides a fully monomeric behaviour along with a high fluorescence (ΦF∼ 0.21) in aqueous solution. These amphiphiles were characterized by low toxicity, and an extremely low cellular uptake was obtained due to the highly polar nature of the glucoside substituents. Accordingly, their potential as suitable photoactive chromophores for red-emitting extracellular fluorescent probes has been confirmed upon the evaluation of paracellular transport using a layer of MDCKII cells with the permeability coefficient fully comparable with an established evaluator of the integrity of the monolayer.
Collapse
Affiliation(s)
- Ali Husain
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ha SYY, Zhou Y, Fong WP, Ng DKP. Multifunctional Molecular Therapeutic Agent for Targeted and Controlled Dual Chemo- and Photodynamic Therapy. J Med Chem 2020; 63:8512-8523. [DOI: 10.1021/acs.jmedchem.0c00893] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Husain A, Ganesan A, Ghazal B, Makhseed S. Multivalent Allyl-Substituted Macrocycles as Nonaggregating Building Blocks. J Org Chem 2020; 85:8055-8061. [PMID: 32466651 DOI: 10.1021/acs.joc.0c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on the concept of dual-directionality, the synthesis of two novel zinc(II)-containing phthalocyanine (Pc-ene1) and azaphthalocyanine (AzaPc-ene1) macrocycles bearing dual directional (up/down) allyl moieties on their rims is reported. Their structural identification, that is, NMR, FT-IR, UV-vis, MALDI-TOF spectral data, single crystal X-ray diffraction, and CHN elemental analyses, along with their nonaggregating behaviors in solvated media and crystalline forms has been confirmed.
Collapse
Affiliation(s)
- Ali Husain
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Asaithampi Ganesan
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Basma Ghazal
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Saad Makhseed
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|