1
|
Wang K, Zhong F, Zhang ZD, Li HQ, Tian S. Recent advances in the development of P2Y 14R inhibitors: a patent and literature review (2018-present). Expert Opin Ther Pat 2024; 34:611-625. [PMID: 38889204 DOI: 10.1080/13543776.2024.2369634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION The P2Y14 receptor (P2Y14R), a member of the G protein-coupled receptor family, is activated by extracellular nucleotides. Due to its involvement in inflammatory, immunological and other associated processes, P2Y14R has emerged as a promising therapeutic target. Despite lacking a determined three-dimensional crystal structure, the homology modeling technique based on closely related P2Y receptors' crystallography has been extensively utilized for developing active compounds targeting P2Y14R. Recent discoveries have unveiled numerous highly effective and subtype-specific P2Y14R inhibitors. This study presents an overview of the latest advancements in P2Y14R inhibitors. AREAS COVERED This review presents an overview of the advancements in P2Y14R inhibitor research over the past five years, encompassing new patents, journal articles, and highlighting the therapeutic prospects inherent in these compounds. EXPERT OPINION The recent revelation of the vast potential of P2Y14R inhibitors has led to the development of novel compounds that exhibit promising capabilities for the treatment of sterile inflammation of the kidney, potentially diabetes, and asthma. Despite being a relatively nascent class of compounds, certain members have already exhibited their capacity to surmount specific challenges posed by conventional P2Y14R inhibitors. Targeting P2Y14R through small molecules may present a promising therapeutic strategy for effectively managing diverse inflammatory diseases.
Collapse
Affiliation(s)
- Kai Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fen Zhong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhou-Dong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Huan-Qiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Wang YH, Liu CX, Zhang YH, Yang YL, Zhao Y, Han L, Wang QQ, Xiao W, Hu QH, Ding ZH, Zhou MZ, Jiang C. Discovery of a Series of 4-Amide-thiophene-2-carboxyl Derivatives as Highly Potent P2Y 14 Receptor Antagonists for Inflammatory Bowel Disease Treatment. J Med Chem 2024; 67:11989-12011. [PMID: 38959216 DOI: 10.1021/acs.jmedchem.4c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The P2Y14 receptor has been proven to be a potential target for IBD. Herein, we designed and synthesized a series of 4-amide-thiophene-2-carboxyl derivatives as novel potent P2Y14 receptor antagonists based on the scaffold hopping strategy. The optimized compound 39 (5-((5-fluoropyridin-2-yl)oxy)-4-(4-methylbenzamido)thiophene-2-carboxylic acid) exhibited subnanomolar antagonistic activity (IC50: 0.40 nM). Moreover, compound 39 demonstrated notably improved solubility, liver microsomal stability, and oral bioavailability. Fluorescent ligand binding assay confirmed that 39 has the binding ability to the P2Y14 receptor, and molecular dynamics (MD) simulations revealed the formation of a unique intramolecular hydrogen bond (IMHB) in the binding conformation. In the experimental colitis mouse model, compound 39 showed a remarkable anti-IBD effect even at low doses. Compound 39, with a potent anti-IBD effect and favorable druggability, can be a promising candidate for further research. In addition, this work lays a strong foundation for the development of P2Y14 receptor antagonists and the therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Yu-Hang Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Chun-Xiao Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yi-Han Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Ya-Lian Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yan Zhao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lu Han
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Qian-Qian Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Wen Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Qing-Hua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zhen-Hua Ding
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Meng-Ze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Cheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
3
|
Akbar H, Jarosinski KW. Temporal Dynamics of Purinergic Receptor Expression in the Lungs of Marek's Disease (MD) Virus-Infected Chickens Resistant or Susceptible to MD. Viruses 2024; 16:1130. [PMID: 39066292 PMCID: PMC11281646 DOI: 10.3390/v16071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease virus (MDV) is an economic concern for the poultry industry due to its poorly understood pathophysiology. Purinergic receptors (PRs) are potential therapeutic targets for viral infections, including herpesviruses, prompting our investigation into their role in MDV pathogenesis. The current study is part of an experimental series analyzing the expression of PRs during MDV infection. To address the early or short-acting P2 PR responses during natural MDV infection, we performed an "exposure" experiment where age-matched chickens were exposed to experimentally infected shedders to initiate natural infection. In addition, select non-PR regulatory gene responses were measured. Two groups of naïve contact chickens (n = 5/breed/time point) from MD-resistant (White Leghorns: WL) and -susceptible (Pure Columbian) chicken lines were housed separately with experimentally infected PC (×PC) and WL (×WL) chickens for 6 or 24 h. Whole lung lavage cells (WLLC) were collected, RNA was extracted, and RT-qPCR assays were used to measure specific PR responses. In addition, other potentially important markers in pathophysiology were measured. Our study revealed that WL chickens exhibited higher P1 PR expression during natural infection. WL chickens also showed higher expression of P1A3 and P2X3 at 6 and 24 h when exposed to PC-infected chickens. P2X5 and P2Y1 showed higher expression at 6 h, while P2Y5 showed higher expression at 6 and 24 h; regardless of the chicken line, PC chickens exhibited higher expression of P2X2, P2Y8, P2Y10, P2Y13, and P2Y14 when exposed to either group of infected chickens. In addition, MDV infection altered the expression of DDX5 in both WL and PC groups exposed to PC-infected birds only. However, irrespective of the source of exposure, BCL2 and ANGPTL4 showed higher expression in both WL and PC. The expression of STAT1A and STAT5A was influenced by time and breed, with major changes observed in STAT5A. CAT and SOD1 expression significantly increased in both WL and PC birds, regardless of the source of infection. GPX1 and GPX2 expression also increased in both WL and PC, although overall lower expression was observed in PC chickens at 24 h compared to 6 h. Our data suggest systemic changes in the host during early infection, indicated by the altered expression of PRs, DDX5, BCL2, ANGPTL4, and other regulatory genes during early MDV infection. The relative expression of these responses in PC and WL chickens suggests they may play a key role in their response to natural MDV infection in the lungs and long-term pathogenesis and survival.
Collapse
Affiliation(s)
| | - Keith W. Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA;
| |
Collapse
|
4
|
Liu W, Mao S, Wang Y, Wang M, Li M, Sun M, Yao Y, Song C, Duan Y. Discovery of N-Substituted Acetamide Derivatives as Promising P2Y 14R Antagonists Using Molecular Hybridization Based on Crystallographic Overlay. J Med Chem 2024; 67:10233-10247. [PMID: 38874515 DOI: 10.1021/acs.jmedchem.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
P2Y14 receptor (P2Y14R) is activated by uridine 5'-diphosphate-glucose, which is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2Y14R antagonists and the crystallographic overlap study between the reported P2Y14R antagonist compounds 6 and 9, a series of N-substituted-acetamide derivatives were designed, synthesized, and identified as novel and potent P2Y14R antagonists. The most potent antagonist, compound I-17 (N-(1H-benzo[d]imidazol-6-yl)-2-(4-bromophenoxy)acetamide, IC50 = 0.6 nM) without zwitterionic character, showed strong binding ability to P2Y14R, high selectivity, moderate oral bioactivity, and improved pharmacokinetic profiles. In vitro and in vivo evaluation demonstrated that compound I-17 had satisfactory inhibitory activity on the inflammatory response of monosodium urate (MSU)-induced acute gouty arthritis. I-17 decreased inflammatory factor release and cell pyroptosis through the NOD-like receptor family pyrin domain-containing 3 (NLRP3)/gasdermin D (GSDMD) signaling pathway. Thus, compound I-17, with potent P2Y14R antagonistic activity, in vitro and in vivo efficacy, and favorable bioavailability (F = 75%), could be a promising lead compound for acute gouty arthritis.
Collapse
Affiliation(s)
- Wenjin Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Shuqiang Mao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yuyang Wang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Mingzhu Wang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Mengyu Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Moran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yongfang Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| |
Collapse
|
5
|
Guo Y, Mao T, Fang Y, Wang H, Yu J, Zhu Y, Shen S, Zhou M, Li H, Hu Q. Comprehensive insights into potential roles of purinergic P2 receptors on diseases: Signaling pathways involved and potential therapeutics. J Adv Res 2024:S2090-1232(24)00123-1. [PMID: 38565403 DOI: 10.1016/j.jare.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Purinergic P2 receptors, which can be divided into ionotropic P2X receptors and metabotropic P2Y receptors, mediate cellular signal transduction of purine or pyrimidine nucleoside triphosphates and diphosphate. Based on the wide expression of purinergic P2 receptors in tissues and organs, their significance in homeostatic maintenance, metabolism, nociceptive transmission, and other physiological processes is becoming increasingly evident, suggesting that targeting purinergic P2 receptors to regulate biological functions and signal transmission holds significant promise for disease treatment. AIM OF REVIEW This review highlights the detailed mechanisms by which purinergic P2 receptors engage in physiological and pathological progress, as well as providing prospective strategies for discovering clinical drug candidates. KEY SCIENTIFIC CONCEPTS OF REVIEW The purinergic P2 receptors regulate complex signaling and molecular mechanisms in nervous system, digestive system, immune system and as a result, controlling physical health states and disease progression. There has been a significant rise in research and development focused on purinergic P2 receptors, contributing to an increased number of drug candidates in clinical trials. A few influential pioneers have laid the foundation for advancements in the evaluation, development, and of novel purinergic P2 receptors modulators, including agonists, antagonists, pharmaceutical compositions and combination strategies, despite the different scaffolds of these drug candidates. These advancements hold great potential for improving therapeutic outcomes by specifically targeting purinergic P2 receptors.
Collapse
Affiliation(s)
- Yanshuo Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Jiayue Yu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Qinghua Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
6
|
Li Y, Li Y, Zhu Y, Ji W, Wang Y, Dong X, Zhao X, Wang T, Tian S, Hu Q, Li H, Zhou M. Structure-based virtual screening for discovery of paederosidic acid from Paederia scandens as novel P2Y 14R antagonist. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154851. [PMID: 37149963 DOI: 10.1016/j.phymed.2023.154851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND The activation of P2Y14 receptor (P2Y14R) promotes osteoclast formation and causes neuropathic pain, exhibiting possible link to osteoarthritis (OA). Given lack of P2Y14R antagonist, the present study aims to search a novel P2Y14R antagonist with low toxicity and high activity from natural products as a possible drug candidate in treatment of OA. METHODS The role of P2Y14R on OA was verified using P2Y14R knockout (KO) rats. Molecular docking virtual screening strategy and activity test in P2Y14R stably-expressed HEK293 cells were used to screen target compound from natural product library. The MM/GBSA free energy calculation/decomposition technique was used to determine the principal interaction mechanism. Next, the binding of target compound to P2Y14R was examined using cellular thermal shift assay and drug affinity responsive target stability test. Finally, the therapeutic effect of target compound was performed in monosodium iodoacetate (MIA)-induced OA mouse model. To verify whether the effect of target compound was attributed to P2Y14R, we establish the osteoarthritis model in P2Y14R KO mice to perform pharmacodynamic evaluation. Importantly, to investigate the potential mechanism by which target compound attenuate OA, expressions of the major transcription factors involved in osteoclast differentiation were detected by western blot, while markers of nerve damage in dorsal root ganglion (DRG) were evaluated by RT-qPCR and immunofluorescence techniques. RESULTS Deficiency of P2Y14R alleviated pain behavior and cartilage destruction in MIA-induced OA rats. 14 natural compounds were screened by Glide docking-based virtual screening, among which paederosidic acid exhibited the highest antagonistic activity to P2Y14R with IC50 of 8.287 μM. As a bioactive component extracted from Paederia scandens, paederosidic acid directly interacted with P2Y14R to enhance the thermostability and decrease the protease sensitivity of target protein, which significantly inhibited receptor activator for nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis. More importantly, paederosidic acid suppressed osteoclast formation by downregulating expressions of NFAT2 and ATP6V0D2, as well as relieved neuropathic pain by decreasing expressions of CGRP, CSF1 and galanin in DRG. CONCLUSIONS Paederosidic acid targeted P2Y14R to improve OA through alleviating osteoclast formation and neuropathic pain, which provided an available strategy for developing novel drug leads for treatment of OA.
Collapse
Affiliation(s)
- Yuxin Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yehong Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Wen Ji
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yaxuan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Xinli Dong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Zhao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Wang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215006, China.
| | - Qinghua Hu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Mengze Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
7
|
Akbar H, Fasick JJ, Ponnuraj N, Jarosinski KW. Purinergic signaling during Marek's disease in chickens. Sci Rep 2023; 13:2044. [PMID: 36739336 PMCID: PMC9899245 DOI: 10.1038/s41598-023-29210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Purinergic receptors (PRs) have been reported as potential therapeutic targets for many viral infections including herpesviruses, which urges the investigation into their role in Marek's disease (MD), a herpesvirus induced cancer in chickens that is an important pathogen for the poultry industry. MD is caused by MD virus (MDV) that has a similar viral life cycle as human varicella zoster virus in that it is shed from infected epithelial skin cells and enters the host through the respiratory route. In this report, PR responses during natural MDV infection and disease progression was examined in MD-resistant white Leghorns (WL) and MD-susceptible Pure Columbian (PC) chickens during natural infection. Whole lung lavage cells (WLLC) and liver tissue samples were collected from chickens infected but showing no clinical signs of MD (Infected) or presenting with clinical disease (Diseased). RNA was extracted followed by RT-qPCR analysis with gene specific primers against members of the P1, P2X, and P2Y PR families. Differential expression (p < 0.05) was observed in breed and disease conditions. Some PRs showed tissue specific expression (P1A1, P2X1, and P2X6 in WLLC) whereas others responded to MDV infection only in MD-susceptible (PC) chickens (P1A2A, P2X1, P2X5, P2X7). P2Y PRs had differential expression in both chicken lines in response to MDV infection and MD progression. This study is the first to our knowledge to examine PR responses during MDV infection and disease progression. These results suggest PR signaling may an important area of research for MDV replication and MD.
Collapse
Affiliation(s)
- Haji Akbar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julia J Fasick
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith W Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
8
|
Wang YH, Zhou MZ, Ye T, Wang PP, Lu R, Wang YL, Liu CX, Xiao W, Li JY, Meng ZB, Xu LL, Hu QH, Jiang C. Discovery of a Series of 5-Amide-1 H-pyrazole-3-carboxyl Derivatives as Potent P2Y 14R Antagonists with Anti-Inflammatory Characters. J Med Chem 2022; 65:15967-15990. [PMID: 36394994 DOI: 10.1021/acs.jmedchem.2c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UDPG/P2Y14R signaling pathway has been considered as a potential therapeutic target for innate immune system diseases. Based on the scaffold hopping strategy, a series of pyrazole analogues were designed and synthesized as novel P2Y14R antagonists with improved physicochemical properties, together with potential anti-inflammatory activities. Additionally, we designed and synthesized a fluorescent probe based on highly selective and potent PPTN to study the affinity of synthesized compounds. The optimized compound 16 (1-(4-fluorobenzyl)-5-(4-methylbenzamido)-1H-pyrazole-3-carboxylic acid, P2Y14R IC50 = 1.93 nM) showed strong binding ability to P2Y14R, high selectivity, notably improved solubility, and more favorable pharmacokinetic profiles. Moreover, compound 16 possessed extremely low cytotoxicity and anti-inflammatory effect in vitro. In an acute peritonitis model, compound 16 could effectively reduce the levels of inflammatory factor IL-6, IL-1β, and TNF-α of mice induced by LPS. Compound 16, with potent in vitro and in vivo efficacy and favorable druggability, can be a promising candidate for further research.
Collapse
Affiliation(s)
- Yu-Hang Wang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Meng-Ze Zhou
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Tao Ye
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ping-Ping Wang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ran Lu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yi-Lin Wang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Chun-Xiao Liu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Wen Xiao
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jia-Yi Li
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zi-Bo Meng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Li-Li Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qing-Hua Hu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Cheng Jiang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
9
|
Díaz-Muñoz M, Hernández-Muñoz R, Butanda-Ochoa A. Structure-activity features of purines and their receptors: implications in cell physiopathology. MOLECULAR BIOMEDICINE 2022; 3:5. [PMID: 35079944 PMCID: PMC8789959 DOI: 10.1186/s43556-022-00068-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
The purine molecular structure consists of fused pyrimidine and imidazole rings. Purines are main pieces that conform the structure of nucleic acids which rule the inheritance processes. Purines also work as metabolic intermediates in different cell functions and as messengers in the signaling pathways throughout cellular communication. Purines, mainly ATP and adenosine (ADO), perform their functional and pharmacological properties because of their structural/chemical characteristics that make them either targets of mutagenesis, mother frameworks for designing molecules with controlled effects (e.g. anti-cancer), or chemical donors (e.g., of methyl groups, which represent a potential chemoprotective action against cancer). Purines functions also come from their effect on specific receptors, channel-linked and G-protein coupled for ATP, and exclusively G-coupled receptors for ADO (also known as ADORAs), which are involved in cell signaling pathways, there, purines work as chemical messengers with autocrine, paracrine, and endocrine actions that regulate cell metabolism and immune response in tumor progression which depends on the receptor types involved in these signals. Purines also have antioxidant and anti-inflammatory properties and participate in the cell energy homeostasis. Therefore, purine physiology is important for a variety of functions relevant to cellular health; thus, when these molecules present a homeostatic imbalance, the stability and survival of the cellular systems become compromised.
Collapse
Affiliation(s)
- Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular Y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria/Circuito Exterior, C.P. 04510, Ciudad de México, México
| | - Armando Butanda-Ochoa
- Departamento de Biología Celular Y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria/Circuito Exterior, C.P. 04510, Ciudad de México, México.
| |
Collapse
|
10
|
Zhao Y, Chen X, He C, Gao G, Chen Z, Du J. Discovery of bilirubin as novel P2X7R antagonist with anti-tumor activity. Bioorg Med Chem Lett 2021; 51:128361. [PMID: 34543755 DOI: 10.1016/j.bmcl.2021.128361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/04/2023]
Abstract
As a unique ligand gated ion channel in the P2-receptor family, P2X7R is highly expressed in various tumors. The activated P2X7R facilitates tumor growth and metastasis. Hypoxia, inflammation and necrosis in the tumor microenvironment (TME) cause a large amount of adenosine triphosphate (ATP) accumulated in the TME. High concentration of ATP can abnormally activate P2X7R, which induces pore formation and further facilitates the Ca2+ ion influx and non-specific substance intake. Therefore, inhibition of P2X7R activation can be applied as a potential anti-tumor therapy strategy. However, there is currently no FDA approved drugs for this target for anti-tumor treatment. In this study, we identified bilirubin as novel P2X7R antagonist by using structure based virtual screening combined with cell based assays. Molecular docking studies indicated that bilirubin probably interacted with P2X7R by forming hydrogen-π interactions with residues V173, E174 and K311. The compound bilirubin inhibited the P2X7R gated EB intake by cancer cells. Meanwhile, bilirubin was capable to inhibit the cell proliferation and migration of P2X7R expressed HT29 cells. The phosphorylation of mTOR, STAT3 and GSK3β were significantly decreased when bilirubin was present. Finally, in vivo experiment exhibited the anti-tumor effect of bilirubin in the MC38 bearing mice model, but did not show tissue damage in different organs. In conclusion, bilirubin was identified as a novel P2X7R antagonist and it may have potential for anti-cancer treatment, although various functions of the molecule should be considered.
Collapse
Affiliation(s)
- Yunshuo Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaotong Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjie He
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guanfei Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
11
|
|
12
|
Doyle TM, Braden K, Harada CM, Mufti F, Schafer RM, Salvemini D. Novel Non-Opioid Based Therapeutics for Chronic Neuropathic Pain. MISSOURI MEDICINE 2021; 118:327-333. [PMID: 34373667 PMCID: PMC8343628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chronic neuropathic pain is currently a major health issue in U.S. complicated by the lack of non-opioid analgesic alternatives. Our investigations led to the discovery of major signaling pathways involved in the transition of acute to chronic neuropathic pain and the identification of several targets for therapeutic intervention. Our translational approach has facilitated the advancement of novel medicines for chronic neuropathic pain that are in advanced clinical development and clinical trials.
Collapse
Affiliation(s)
- Timothy M Doyle
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kathryn Braden
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Caron M Harada
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Fatma Mufti
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Rachel M Schafer
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
13
|
Zhao Y, Chen X, Lyu S, Ding Z, Wu Y, Gao Y, Du J. Identification of novel P2X7R antagonists by using structure-based virtual screening and cell-based assays. Chem Biol Drug Des 2021; 98:192-205. [PMID: 33993620 DOI: 10.1111/cbdd.13867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
In the tumor microenvironment, inflammation and necrosis cause the accumulations of ATP extracellularly, and high concentrations of ATP can activate P2X7 receptors (P2X7R), which leads to the influx of Na+ , K+ , or Ca2+ into cells and trigger the downstream signaling pathways. P2X7R is a relatively unique ligand-gated ion channel, which is over-expressed in most tumor cells. The activated P2X7R facilitates the tumor growth, invasion, and metastasis. Inhibition of the P2X7R activation can be applied as a potential anti-tumor therapy strategy. There are currently no anti-tumor agents against P2X7R, though several P2X7R antagonists for indications such as anti-inflammatory and anti-depression were reported. In this study, we combined homology modeling (HM), virtual screening, and EB intake assay to characterize the structural features of P2X7R and identify several novel antagonists, which were chemically different from any other known P2X7R antagonists. The identified antagonists could effectively prevent the pore opening of P2X7R with IC50 values ranging from 29.14 to 35.34 μM. HM model showed the area between ATP-binding pocket, and allosteric sides were hydrophobic and suitable for small molecule interaction. Molecular docking indicated a universal binding mode, of which residues R294 and K311 were used as hydrogen bond donors to participate in antagonist interactions. The binding mode can potentially be utilized for inhibitor optimization for increased affinity, and the identified antagonists can be further tested for anti-cancer activity or may serve as chemical agents to study P2X7R related functions.
Collapse
Affiliation(s)
- Yunshuo Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaotong Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Sifan Lyu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhe Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Synthesis, In-vitro evaluation and molecular docking studies of oxoindolin phenylhydrazine carboxamides as potent and selective inhibitors of ectonucleoside triphosphate diphosphohydrolase (NTPDase). Bioorg Chem 2021; 112:104957. [PMID: 34020240 DOI: 10.1016/j.bioorg.2021.104957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022]
Abstract
Members of the ectonucleoside triphosphate diphosphohydrolases (NTPDases) constitute the major family of enzymes responsible for the maintenance of extracellular levels of nucleotides and nucleosides by catalyzing the hydrolysis of nucleoside triphosphate (NTP) and nucleoside diphosphates (NDP) to nucleoside monophosphate (NMP). Although, NTPDase inhibitors can act as potential drug candidates for the treatment of various diseases, there is lack of potent as well as selective inhibitors of NTPDases. The current study describes the synthesis of a number of carboxamide derivatives that were tested on recombinant human (h) NTPDases. The most promising inhibitors were 2h (h-NTPDase1, IC50: 0.12 ± 0.03 µM), 2d (h-NTPDase2, IC50: 0.15 ± 0.01 µM) and 2a (h-NTPDase3, IC50: 0.30 ± 0.04 µM; h-NTPDase8, IC50: 0.16 ± 0.02 µM). Four compounds (2e, 2f, 2g and 2h) were associated with the selective inhibition of h-NTPDase1 while 2b was identified as a selective h-NTPDase3 inhibitor. Considering the importance of NTPDase3 in the regulation of insulin release, the NTPDase3 inhibitors were further investigated to elucidate their role in the insulin release. The obtained data suggested that compound 2a was actively participating in regulating the insulin release without producing any effect on NTPDase3 mRNA. Moreover, the most potent inhibitors were docked within the active site of respective enzyme and the observed interactions were in compliance with in vitro results. Hence, these compounds can be used as pharmacological tool to further investigate the role of NTPDase3 coupled to insulin release.
Collapse
|
15
|
Lu R, Wang Y, Liu C, Zhang Z, Li B, Meng Z, Jiang C, Hu Q. Design, synthesis and evaluation of 3-amide-5-aryl benzoic acid derivatives as novel P2Y 14R antagonists with potential high efficiency against acute gouty arthritis. Eur J Med Chem 2021; 216:113313. [PMID: 33667846 DOI: 10.1016/j.ejmech.2021.113313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 01/26/2023]
Abstract
P2Y14 nucleotide receptor plays important roles in series of physiological and pathologic events especially associated with immune and inflammation. Based on the 3-amide benzoic acid scaffold reported by our group previously, a series of 5-aryl-3-amide benzoic acid derivatives were designed as novel P2Y14 antagonists with improved pharmacokinetic properties. Among which compound 11m showed most potent P2Y14 antagonizing activity with an IC50 value of 2.18 nM, furnishing greatly improved water solubility and bioavailability compared with PPTN. In MSU-induced acute gouty arthritis model in mice, 11m exerted promising in vivo efficacy in alleviating mice paw swelling and inflammatory infiltration. Mechanistically, compound 11m notably blocked pyroptosis of macrophages through inhibiting NLRP3 inflammasome activation. This work may contribute to the identification of potential therapeutic agents to intervene in acute gouty arthritis.
Collapse
Affiliation(s)
- Ran Lu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Yilin Wang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Zhenguo Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Baiyang Li
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Zibo Meng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Cheng Jiang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| |
Collapse
|
16
|
Lovászi M, Branco Haas C, Antonioli L, Pacher P, Haskó G. The role of P2Y receptors in regulating immunity and metabolism. Biochem Pharmacol 2021; 187:114419. [PMID: 33460626 DOI: 10.1016/j.bcp.2021.114419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
P2Y receptors are G protein-coupled receptors whose physiological agonists are the nucleotides ATP, ADP, UTP, UDP and UDP-glucose. Eight P2Y receptors have been cloned in humans: P2Y1R, P2Y2R, P2Y4R, P2Y6R, P2Y11R, P2Y12R, P2Y13R and P2Y14R. P2Y receptors are expressed in lymphoid tissues such as thymus, spleen and bone marrow where they are expressed on lymphocytes, macrophages, dendritic cells, neutrophils, eosinophils, mast cells, and platelets. P2Y receptors regulate many aspects of immune cell function, including phagocytosis and killing of pathogens, antigen presentation, chemotaxis, degranulation, cytokine production, and lymphocyte activation. Consequently, P2Y receptors shape the course of a wide range of infectious, autoimmune, and inflammatory diseases. P2Y12R ligands have already found their way into the therapeutic arena, and we envision additional ligands as future drugs for the treatment of diseases caused by or associated with immune dysregulation.
Collapse
Affiliation(s)
- Marianna Lovászi
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | | | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Afzal S, Al-Rashida M, Hameed A, Pelletier J, Sévigny J, Iqbal J. Functionalized Oxoindolin Hydrazine Carbothioamide Derivatives as Highly Potent Inhibitors of Nucleoside Triphosphate Diphosphohydrolases. Front Pharmacol 2020; 11:585876. [PMID: 33328992 PMCID: PMC7734281 DOI: 10.3389/fphar.2020.585876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolases (NTPDases) are ectoenzymes that play an important role in the hydrolysis of nucleoside triphosphate and diphosphate to nucleoside monophosphate. NTPDase1, -2, -3 and -8 are the membrane bound members of this enzyme family that are responsible for regulating the levels of nucleotides in extracellular environment. However, the pathophysiological functions of these enzymes are not fully understood due to lack of potent and selective NTPDase inhibitors. Herein, a series of oxoindolin hydrazine carbothioamide derivatives is synthesized and screened for NTPDase inhibitory activity. Four compounds were identified as selective inhibitors of h-NTPDase1 having IC50 values in lower micromolar range, these include compounds 8b (IC50 = 0.29 ± 0.02 µM), 8e (IC50 = 0.15 ± 0.009 µM), 8f (IC50 = 0.24 ± 0.01 µM) and 8l (IC50 = 0.30 ± 0.03 µM). Similarly, compound 8k (IC50 = 0.16 ± 0.01 µM) was found to be a selective h-NTPDase2 inhibitor. In case of h-NTPDase3, most potent inhibitors were compounds 8c (IC50 = 0.19 ± 0.02 µM) and 8m (IC50 = 0.38 ± 0.03 µM). Since NTPDase3 has been reported to be associated with the regulation of insulin secretion, we evaluated our synthesized NTPDase3 inhibitors for their ability to stimulate insulin secretion in isolated mice islets. Promising results were obtained showing that compound 8m potently stimulated insulin secretion without affecting the NTPDase3 gene expression. Molecular docking studies of the most potent compounds were also carried out to rationalize binding site interactions. Hence, these compounds are useful tools to study the role of NTPDase3 in insulin secretion.
Collapse
Affiliation(s)
- Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Abdul Hameed
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| |
Collapse
|
18
|
Katakura S, Takao T, Arase T, Yoshimasa Y, Tomisato S, Uchida S, Masuda H, Uchida H, Tanaka M, Maruyama T. UDP-glucose, a cellular danger signal, and nucleotide receptor P2Y14 enhance the invasion of human extravillous trophoblast cells. Placenta 2020; 101:194-203. [PMID: 33011563 DOI: 10.1016/j.placenta.2020.09.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
INTRODUCTION P2Y14, one of the P2Y purinergic G-protein coupled receptors, is expressed in a variety of cells and tissues. Its ligand, UDP-glucose (UDPG), is released from damaged and stress-stimulated cells and acts as a danger signal via P2Y14. Thus, P2Y14 plays an important role in immunological defense systems. Here, we aimed to elucidate the expression, localization, and role of P2Y14 in human trophoblasts and the placenta. METHODS Human chorionic villus and placental tissues were subjected to immunostaining for P2Y14 protein and an extravillous trophoblast (EVT) marker, HLA-G. We examined the expression of P2Y14 and the effect of UDPG on cell proliferation and invasion in an EVT cell line, HTR-8/SVneo, using an MTS assay and a Transwell assay, respectively. We tested the effect of UDPG on cell invasion in P2Y14-underexpressing HTR-8/SVneo clones established by the lentiviral introduction of shRNA for P2RY14 mRNA. RESULTS Immunostaining revealed that P2Y14 was exclusively expressed by EVTs. P2RY14 mRNA and P2Y14 protein were expressed in HTR-8/SVneo cells. UDPG did not affect cell proliferation but it did enhance invasion. Inhibition of P2Y14 and decreasing the expression of P2Y14 suppressed UDPG-mediated invasive activity. CONCLUSIONS These results showed that EVT selectively expressed P2Y14 and that P2Y14 was positively involved in UDPG-enhanced EVT invasion. It suggests the possible existence of a danger signal-mediated physiological system at the fetomaternal interface where UDPG released from maternal tissues through destruction by EVT invasion may accelerate EVT invasion, allowing EVTs to undergo successful placentation and vascular remodeling.
Collapse
Affiliation(s)
- Satomi Katakura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoka Takao
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Toru Arase
- Department of Obstetrics and Gynecology, Keiyu Hospital, Yokohama, Japan
| | - Yushi Yoshimasa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Shoko Tomisato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Sayaka Uchida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Uchida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
19
|
Role of UDP-Sugar Receptor P2Y 14 in Murine Osteoblasts. Int J Mol Sci 2020; 21:ijms21082747. [PMID: 32326617 PMCID: PMC7216066 DOI: 10.3390/ijms21082747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
The purinergic (P2) receptor P2Y14 is the only P2 receptor that is stimulated by uridine diphosphate (UDP)-sugars and its role in bone formation is unknown. We confirmed P2Y14 expression in primary murine osteoblasts (CB-Ob) and the C2C12-BMP2 osteoblastic cell line (C2-Ob). UDP-glucose (UDPG) had undiscernible effects on cAMP levels, however, induced dose-dependent elevations in the cytosolic free calcium concentration ([Ca2+]i) in CB-Ob, but not C2-Ob cells. To antagonize the P2Y14 function, we used the P2Y14 inhibitor PPTN or generated CRISPR-Cas9-mediated P2Y14 knockout C2-Ob clones (Y14KO). P2Y14 inhibition facilitated calcium signalling and altered basal cAMP levels in both models of osteoblasts. Importantly, P2Y14 inhibition augmented Ca2+ signalling in response to ATP, ADP and mechanical stimulation. P2Y14 knockout or inhibition reduced osteoblast proliferation and decreased ERK1/2 phosphorylation and increased AMPKα phosphorylation. During in vitro osteogenic differentiation, P2Y14 inhibition modulated the timing of osteogenic gene expression, collagen deposition, and mineralization, but did not significantly affect differentiation status by day 28. Of interest, while P2ry14-/- mice from the International Mouse Phenotyping Consortium were similar to wild-type controls in bone mineral density, their tibia length was significantly increased. We conclude that P2Y14 in osteoblasts reduces cell responsiveness to mechanical stimulation and mechanotransductive signalling and modulates osteoblast differentiation.
Collapse
|
20
|
Discovery of novel and potent P2Y 14R antagonists via structure-based virtual screening for the treatment of acute gouty arthritis. J Adv Res 2020; 23:133-142. [PMID: 32123586 PMCID: PMC7037572 DOI: 10.1016/j.jare.2020.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/23/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
A reliable Glide docking-based virtual screening (VS) pipeline for P2Y14R was developed. Several potent P2Y14R antagonists with novel scaffolds were identified utilizing the VS strategy. P2Y14R inhibitory effect was evaluated by testing cAMP levels in HEK293 cells. Anti-gout activity of screened compound was detected in MSU-treated THP-1 cells. The mechanism of test compound in treating acute gouty arthritis was elucidated.
P2Y14 nucleotide receptor is a Gi protein-coupled receptor, which is widely involved in physiological and pathologic events. Although several P2Y14R antagonists have been developed thus far, few have successfully been developed into a therapeutic drug. In this study, on the basis of two P2Y14R homology models, Glide docking-based virtual screening (VS) strategy was employed for finding potent P2Y14R antagonists with novel chemical architectures. A total of 19 structurally diverse compounds identified by VS and drug-like properties testing were set to experimental testing. 10 of them showed good inhibitory effects against the P2Y14R (IC50 < 50 nM), including four compounds (compounds 8, 10, 18 and 19) with IC50 value below 10 nM. The best VS hit, compound 8 exhibited the best antagonistic activity, with IC50 value of 2.46 nM. More importantly, compound 8 restrained monosodium uric acid (MSU)-induced pyroptosis of THP-1 cells through blocking the activation of Nod-like receptor 3 (NLRP3) inflammasome, which was attributed to its inhibitory effects on P2Y14R-cAMP pathways. The key favorable residues uncovered using MM/GBSA binding free energy calculations/decompositions were detected and discussed. These findings suggest that the compound 8 can be used as a good lead compound for further optimization to obtain more promising P2Y14R antagonists for the treatment of acute gouty arthritis.
Collapse
|
21
|
Zhang Z, Hao K, Li H, Lu R, Liu C, Zhou M, Li B, Meng Z, Hu Q, Jiang C. Design, synthesis and anti-inflammatory evaluation of 3-amide benzoic acid derivatives as novel P2Y14 receptor antagonists. Eur J Med Chem 2019; 181:111564. [DOI: 10.1016/j.ejmech.2019.111564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 01/10/2023]
|
22
|
Bagheri S, Saboury AA, Haertlé T. Adenosine deaminase inhibition. Int J Biol Macromol 2019; 141:1246-1257. [PMID: 31520704 DOI: 10.1016/j.ijbiomac.2019.09.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
Abstract
Adenosine deaminase is a critical enzyme in purine metabolism that regulates intra and extracellular adenosine concentrations by converting it to inosine. Adenosine is an important purine that regulates numerous physiological functions by interacting with its receptors. Adenosine and consequently adenosine deaminase can have pro or anti-inflammatory effects on tissues depending on how much time has passed from the start of the injury. In addition, an increase in adenosine deaminase activity has been reported for various diseases and the significant effect of deaminase inhibition on the clinical course of different diseases has been reported. However, the use of inhibitors is limited to only a few medical indications. Data on the increase of adenosine deaminase activity in different diseases and the impact of its inhibition in various cases have been collected and are discussed in this review. Overall, the evidence shows that many studies have been done to introduce inhibitors, however, in vivo studies have been much less than in vitro, and often have not been expanded for clinical use.
Collapse
Affiliation(s)
- S Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - A A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - T Haertlé
- Institut National de la Recherche Agronomique, Nantes, France
| |
Collapse
|