1
|
Tong J, Yan J, Zhang Y, Xing X. Novel α-glucosidase Inhibitors Designed as Type 2 Diabetes Drugs by QSAR, Molecular Docking and Molecular Dynamics Simulation Methods. Chem Biodivers 2024:e202401674. [PMID: 39271631 DOI: 10.1002/cbdv.202401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Diabetes mellitus is a globally prevalent disease of significant concern. Alpha-glucosidase has emerged as a prominent target for the treatment of type 2 diabetes. In this study, 39 α-glucosidase inhibitors (AGIs) of tetrahydrobenzo[b]thiophene-2-ylurea derivatives to establish a stable and valid Topomer CoMFA model, with a cross-validation coefficient (q2) of 0.766 and a non-cross-validation coefficient (r2) of 0.960. Subsequently, the ZINC15 database was used to screen the fragments, based on which 13 novel inhibitor molecules with theoretically potentially high activity were designed. Molecular docking and molecular dynamics simulations to understand the binding status of the inhibitor molecules to the target proteins showed that amino acids ASP215, GLN279 and ARG442 may form hydrogen bonds with the ligands and therefore enhance the inhibitory effect of the small molecules. Additionally, MM/PBSA calculations indicate that the newly designed molecules exhibit more stable binding modes. These molecules also demonstrate favorable ADMET properties with potential as AGIs. The findings would provide valuable guidance and a theoretical foundation for the design and development of novel AGIs.
Collapse
Affiliation(s)
- Jianbo Tong
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Jing Yan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Yakun Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Xiaoyu Xing
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| |
Collapse
|
2
|
Singh A, Singh K, Sharma A, Kaur U, Kaur K, Mohinder Singh Bedi P. Recent Developments in 1,2,3-Triazole Based α-Glucosidase Inhibitors: Design Strategies, Structure-Activity Relationship and Mechanistic Insights. Chem Biodivers 2024; 21:e202401109. [PMID: 38951966 DOI: 10.1002/cbdv.202401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life-threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α-Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α-glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α-glucosidase inhibitors. The 1,2,3-Triazole nucleus is energetically used by various research groups around the globe for the development of α-glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α-glucosidase inhibitors developed by employing 1,2,3-triazole scaffold with special focus on design strategies, structure-activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α-glucosidase inhibitors with desired properties and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan, 140413, India
| | - Kamaljit Kaur
- Hershey Dental Group, Hershey, Pennsylvania, 17033, USA
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
3
|
Kaya S, Tatar-Yılmaz G, Aktar BSK, Emre EEO. Discovery of New Dual-Target Agents Against PPAR-γ and α-Glucosidase Enzymes with Molecular Modeling Methods: Molecular Docking, Molecular Dynamic Simulations, and MM/PBSA Analysis. Protein J 2024; 43:577-591. [PMID: 38642318 DOI: 10.1007/s10930-024-10196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
Type 2 diabetes mellitus (T2DM) has become a serious public health problem both in our country and worldwide, being the most prevalent type of diabetes. The combined use of drugs in the treatment of T2DM leads to serious side effects, including gastrointestinal problems, liver toxicity, hypoglycemia, and treatment costs. Hence, there has been a growing emphasis on drugs that demonstrate dual interactions. Several studies have suggested that dual-target agents for peroxisome proliferator-activated receptor-γ (PPAR-γ) and alpha-glucosidase (α-glucosidase) could be a potent approach for treating patients with diabetes. We aim to develop new antidiabetic agents that target PPAR-γ and α-glucosidase enzymes using molecular modeling techniques. These compounds show dual interactions, are more effective, and have fewer side effects. The molecular docking method was employed to investigate the enzyme-ligand interaction mechanisms of 159 newly designed compounds with target enzymes. Additionally, we evaluated the ADME properties and pharmacokinetic suitability of these compounds based on Lipinski and Veber's rules. Compound 70, which exhibited favorable ADME properties, demonstrated more effective binding energy with both PPAR-γ and α-glucosidase enzymes (-12,16 kcal/mol, -10.07 kcal/mol) compared to the reference compounds of Acetohexamide (-9.31 kcal/mol, -7.48 kcal/mol) and Glibenclamide (-11.12 kcal/mol, -8.66 kcal/mol). Further, analyses of MM/PBSA binding free energy and molecular dynamics (MD) simulations were conducted for target enzymes with compound 70, which exhibited the most favorable binding affinities with both enzymes. Based on this information, our study aims to contribute to the development of new dual-target antidiabetic agents with improved efficacy, reduced side effects, and enhanced reliability for diabetes treatment.
Collapse
Affiliation(s)
- Süleyman Kaya
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Gizem Tatar-Yılmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - Bedriye Seda Kurşun Aktar
- Department of Hair Care and Beauty Services, Yeşilyurt Vocational School, Malatya Turgut Özal University, 44900, Malatya, Turkey
| | - Emine Elçin Oruç Emre
- Department of Chemistry, Faculty of Art and Sciences, Gaziantep University, Gaziantep, 27310, Turkey
| |
Collapse
|
4
|
Mhetre UV, Haval NB, Bondle GM, Rathod SS, Choudhari PB, Kumari J, Sriram D, Haval KP. Design, synthesis and molecular docking study of novel triazole-quinazolinone hybrids as antimalarial and antitubercular agents. Bioorg Med Chem Lett 2024; 108:129800. [PMID: 38763480 DOI: 10.1016/j.bmcl.2024.129800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
In a quest to discover new antimalarial and antitubercular drugs, we have designed and synthesized a series of novel triazole-quinazolinone hybrids. The in vitro screening of the triazole-quinazolinone hybrid entities against the plasmodium species P. falciparum offered potent antimalarial molecules 6c, 6d, 6f, 6g, 6j & 6k owing comparable activity to the reference drugs. Furthermore, the target compounds were evaluated in vitro against Mycobacterium tuberculosis (MTB) H37Rv strain. Among the screened compounds, 6c, 6d and 6l were found to be the most active molecules with a MIC values of 19.57-40.68 μM. The cytotoxicity of the most active compounds was studied against RAW 264.7 cell line by MTT assay and no toxicity was observed. The computational study including drug likeness and ADMET profiling, DFT, and molecular docking study was done to explore the features of target molecules. The compounds 6a, 6g, and 6k exhibited highest binding affinity of -10.3 kcal/mol with docked molecular targets from M. tuberculosis. Molecular docking study indicates that all the molecules are binding to the falcipain 2 protease (PDB: 6SSZ) of the P. falciparum. Our findings indicated that these new triazole-quinazolinone hybrids may be considered hit molecules for further optimization studies.
Collapse
Affiliation(s)
- Udhav V Mhetre
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Nitin B Haval
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
| | - Giribala M Bondle
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
| | - Sanket S Rathod
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, MS, India
| | - Prafulla B Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, MS, India
| | - Jyothi Kumari
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Kishan P Haval
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India.
| |
Collapse
|
5
|
Gamal MA, Fahim SH, Giovannuzzi S, Fouad MA, Bonardi A, Gratteri P, Supuran CT, Hassan GS. Probing benzenesulfonamide-thiazolidinone hybrids as multitarget directed ligands for efficient control of type 2 diabetes mellitus through targeting the enzymes: α-glucosidase and carbonic anhydrase II. Eur J Med Chem 2024; 271:116434. [PMID: 38653067 DOI: 10.1016/j.ejmech.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by improper expression/function of a number of key enzymes that can be regarded as targets for anti-diabetic drug design. Herein, we report the design, synthesis, and biological assessment of two series of thiazolidinone-based sulfonamides 4a-l and 5a-c as multitarget directed ligands (MTDLs) with potential anti-diabetic activity through targeting the enzymes: α-glucosidase and human carbonic anhydrase (hCA) II. The synthesized sulfonamides were evaluated for their inhibitory activity against α-glucosidase where most of the compounds showed good to potent activities. Compounds 4d and 4e showed potent inhibitory activities (IC50 = 0.440 and 0.3456 μM), comparable with that of the positive control (acarbose; IC50 = 0.420 μM). All the synthesized derivatives were also tested for their inhibitory activities against hCA I, II, IX, and XII. They exhibited different levels of inhibition against these isoforms. Compound 4d outstood as the most potent one against hCA II with Ki equals to 7.0 nM, more potent than the reference standard (acetazolamide; Ki = 12.0 nM). In silico studies for the most active compounds within the active sites of α-glucosidase and hCA II revealed good binding modes that can explain their biological activities. MM-GBSA refinements and molecular dynamic simulations were performed on the top-ranking docking pose of the most potent compound 4d to confirm the formation of stable complex with both targets. Compound 4d was screened for its in vivo antihyperglycemic efficacy by using the oral glucose tolerance test. Compound 4d decreased blood glucose level to 217 mg/dl, better than the standard acarbose (234 mg/dl). Hence, this revealed its synergistic mode of action on post prandial hyperglycemia and hepatic gluconeogenesis. Thus, these benzenesulfonamide thiazolidinone hybrids could be considered as promising multi-target candidates for the treatment of type II diabetes mellitus.
Collapse
Affiliation(s)
- Mona A Gamal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt
| | - Samar H Fahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt.
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Newgiza University, New Giza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| |
Collapse
|
6
|
Yang R, Cheng W, Huang M, Xu T, Zhang M, Liu J, Qin S, Guo Y. Novel membrane-targeting isoxanthohumol-amine conjugates for combating methicillin-resistant Staphylococcus aureus (MRSA) infections. Eur J Med Chem 2024; 268:116274. [PMID: 38408389 DOI: 10.1016/j.ejmech.2024.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Here, a series of novel isoxanthohumol-amine conjugates were synthesized as antibacterials. After bioactivity evaluation, a compound E2 was obtained, which showed excellent antibacterial activity against S. aureus and clinical MRSA isolates (MICs = 0.25-1 μg/mL), superior to vancomycin, and with negligible hemolysis and good membrane selectivity. Additionally, E2 exhibited fast bacterial killing, less susceptible to resistance, relatively low cytotoxicity, and good plasma stability. Mechanism investigation revealed that E2 can disrupt bacterial membranes by specifically binding to phosphatidylglycerol on the bacterial membrane, thus causing elevated intracellular ROS and leakage of DNA and proteins, and ultimately killing bacteria. Noticeably, E2 displayed a good in vivo safety profile and better in vivo therapeutic efficacy than the same dose of vancomycin, allowing it to be a potential antibacterial to conquer MRSA infections.
Collapse
Affiliation(s)
- Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Meijuan Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China
| | - Miaomiao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China.
| |
Collapse
|
7
|
Hernández-Vázquez E, Martínez-Caballero S, Aldana-Torres D, Estrada-Soto S, Nieto-Camacho A. Discovery of dual-action phenolic 4-arylidene-isoquinolinones with antioxidant and α-glucosidase inhibition activities. RSC Med Chem 2024; 15:519-538. [PMID: 38389895 PMCID: PMC10880897 DOI: 10.1039/d3md00585b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/25/2023] [Indexed: 02/24/2024] Open
Abstract
A multicomponent-derived synthesis of arylidene isoquinolinones decorated with phenolic moieties is described. The series demonstrated good DPPH trapping and, in the case of sinapic acid-containing analogs, excellent activity against lipoperoxidation; EPR also demonstrated that one derivative scavenged hydroxyl radicals. In addition, some compounds showed excellent inhibition of α-glucosidase activity and, according to both Lineweaver-Burk plots and molecular docking, they act as non-competitive or mixed inhibitors. In vitro assay also demonstrated that two compounds significantly reduced the plasma glucose levels after sucrose administration. In summary, the studied isoquinolinones become novel compounds with dual action (antioxidant and α-glucosidase inhibition) against diabetes and related metabolic diseases, whose optimization would lead to more potent candidates.
Collapse
Affiliation(s)
- Eduardo Hernández-Vázquez
- Instituto de Química, UNAM, Circuito Exterior S.N Ciudad Universitaria, Coyoacán México CDMX 04510 Mexico
| | - Siseth Martínez-Caballero
- Instituto de Química, UNAM, Circuito Exterior S.N Ciudad Universitaria, Coyoacán México CDMX 04510 Mexico
| | - Diana Aldana-Torres
- Facultad de Farmacia, UAEM Av. Universidad 1001, Col. Chamilpa Cuernavaca Morelos 62209 Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, UAEM Av. Universidad 1001, Col. Chamilpa Cuernavaca Morelos 62209 Mexico
| | - Antonio Nieto-Camacho
- Instituto de Química, UNAM, Circuito Exterior S.N Ciudad Universitaria, Coyoacán México CDMX 04510 Mexico
| |
Collapse
|
8
|
Ait Lahcen M, Adardour M, Mortada S, Oubahmane M, Hmaimou S, Loughzail M, Hdoufane I, Lahmidi S, Faouzi MEA, Cherqaoui D, Mague JT, Baouid A. Synthesis, characterization, X-ray, α-glucosidase inhibition and molecular docking study of new triazolic systems based on 1,5-benzodiazepine via 1,3-dipolar cycloaddition reactions. J Biomol Struct Dyn 2024; 42:1985-1998. [PMID: 37098807 DOI: 10.1080/07391102.2023.2203263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/09/2023] [Indexed: 04/27/2023]
Abstract
We report in this work a synthesis of novel triazolo[1,5]benzodiazepine derivatives by the 1,3-dipolar cycloaddition reaction of N-aryl-C-ethoxycarbonylnitrilimines with 1,5-benzodiazepines. All the structures of the new compounds were determined from their NMR (1H and 13C) and HRMS. Then, X-ray crystallography analysis of compound 4d confirmed the stereochemistry of cycloadducts. The compounds 1, 4a-d, 5a-d, 6c, 7 and 8 were evaluated for their in vitro anti-diabetic activity against α-glucosidase. The compounds 1, 4d, 5a and 5b showed potential inhibitory activities compared to standard acarbose. Additionally, an in silico docking study was conducted to look into the active binding mode of the synthesized compounds within the target enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Marouane Ait Lahcen
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Adardour
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Salma Mortada
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Mehdi Oubahmane
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Samir Hmaimou
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Loughzail
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Ismail Hdoufane
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Sanae Lahmidi
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Driss Cherqaoui
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Abdesselam Baouid
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
9
|
Hu C, Liang B, Sun J, Li J, Xiong Z, Wang SH, Xuetao X. Synthesis and biological evaluation of indole derivatives containing thiazolidine-2,4-dione as α-glucosidase inhibitors with antidiabetic activity. Eur J Med Chem 2024; 264:115957. [PMID: 38029465 DOI: 10.1016/j.ejmech.2023.115957] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
In order to develop potential α-glucosidase inhibitors with antidiabetic activity, twenty-six indole derivatives containing thiazolidine-2,4-dione were synthesized. All compounds presented potential α-glucosidase inhibitory activities with IC50 values ranging from 2.35 ± 0.11 to 24.36 ± 0.79 μM, respectively compared to acarbose (IC50 = 575.02 ± 10.11 μM). Especially, compound IT4 displayed the strongest α-glucosidase inhibitory activity (IC50 = 2.35 ± 0.11 μM). The inhibition mechanism of compound IT4 on α-glucosidase was clarified by the investigation of kinetics studies, fluorescence quenching, CD spectra, 3D fluorescence spectra, and molecular docking. In vivo antidiabetic experiments demonstrated that oral administration of compound IT4 would suppress fasting blood glucose level and ameliorate their glucose tolerance and dyslipidemia in diabetic mice.
Collapse
Affiliation(s)
- Chunmei Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Bingwen Liang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Jinping Sun
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Jiangyi Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Zhuang Xiong
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Xu Xuetao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
10
|
Mehra A. Targeting Diabetes with Azole-derived Medicinal Agents. Med Chem 2024; 20:855-875. [PMID: 38840402 DOI: 10.2174/0115734064289990240524055002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 06/07/2024]
Abstract
Azoles have long been regarded as an ideal scaffold for the development of numerous innovative therapeutic agents as well as other incredibly adaptable and beneficial chemicals with prospective uses in a variety of fields, including materials, energetics (explosophores), and catalysis (azole organocatalytic arbitration). Azoles exhibit promising pharmacological activities, including antimicrobial, antidiabetic, antiviral, antidepressant, antihistaminic, antitumor, antioxidant, antiallergic, antihelmintic, and antihypertensive activity. According to a database analysis of U.S. FDAapproved medications, 59% of specific medications are connected to small molecules that have heterocycles having nitrogen atoms. The azole moiety has impressive electron abundance. Azoles promptly attach to various receptors as well as enzymes in the physiological environment via distinct specialized interactions, contributing to their anti-diabetic potential. This review encompasses the recent research progress on potent azole-derived antidiabetic agents that can be used as an alternative for the management of type-2 diabetes.
Collapse
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab) 144411, India
| |
Collapse
|
11
|
Vasanthan RJ, Pradhan S, Thangamuthu MD. Emerging Aspects of Triazole in Organic Synthesis: Exploring its Potential as a Gelator. Curr Org Synth 2024; 21:456-512. [PMID: 36221871 DOI: 10.2174/1570179420666221010094531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) - commonly known as the "click reaction" - serves as the most effective and highly reliable tool for facile construction of simple to complex designs at the molecular level. It relates to the formation of carbon heteroatomic systems by joining or clicking small molecular pieces together with the help of various organic reactions such as cycloaddition, conjugate addition, ring-opening, etc. Such dynamic strategy results in the generation of triazole and its derivatives from azides and alkynes with three nitrogen atoms in the five-membered aromatic azole ring that often forms gel-assembled structures having gelating properties. These scaffolds have led to prominent applications in designing advanced soft materials, 3D printing, ion sensing, drug delivery, photonics, separation, and purification. In this review, we mainly emphasize the different mechanistic aspects of triazole formation, which includes the synthesis of sugar-based and non-sugar-based triazoles, and their gel applications reported in the literature for the past ten years, as well as the upcoming scope in different branches of applied sciences.
Collapse
Affiliation(s)
- Rabecca Jenifer Vasanthan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Sheersha Pradhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Mohan Das Thangamuthu
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| |
Collapse
|
12
|
Abdul Rahman SM, Bhatti JS, Thareja S, Monga V. Current development of 1,2,3-triazole derived potential antimalarial scaffolds: Structure- activity relationship (SAR) and bioactive compounds. Eur J Med Chem 2023; 259:115699. [PMID: 37542987 DOI: 10.1016/j.ejmech.2023.115699] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Malaria is among one of the most devastating and deadliest parasitic disease in the world claiming millions of lives every year around the globe. It is a mosquito-borne infectious disease caused by various species of the parasitic protozoan of the genus Plasmodium. The indiscriminate exploitation of the clinically used antimalarial drugs led to the development of various drug-resistant and multidrug-resistant strains of plasmodium which severely reduces the therapeutic effectiveness of most frontline medicines. Therefore, there is urgent need to develop novel structural classes of antimalarial agents acting with unique mechanism of action(s). In this context, design and development of hybrid molecules containing pharmacophoric features of different lead molecules in a single entity represents a unique strategy for the development of next-generation antimalarial drugs. Research efforts by the scientific community over the past few years has led to the identification and development of several heterocyclic small molecules as antimalarial agents with high potency, less toxicity and desired efficacy. Triazole derivatives have become indispensable units in the medicinal chemistry due to their diverse spectrum of biological profiles and many triazole based hybrids and conjugates have demonstrated potential in vitro and in vivo antimalarial activities. The manuscript compiled recent developments in the medicinal chemistry of triazole based small heterocyclic molecules as antimalarial agents and discusses various reported biologically active compounds to lay the groundwork for the rationale design and discovery of triazole based antimalarial compounds. The article emphasised on biological activities, structure activity relationships, and molecular docking studies of various triazole based hybrids with heterocycles such as quinoline, artemisinins, naphthyl, naphthoquinone, etc. as potential antimalarial agents which could act on the dual stage and multi stage of the parasitic life cycle.
Collapse
Affiliation(s)
- S Maheen Abdul Rahman
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
13
|
Nguyen DV, Hengphasatporn K, Danova A, Suroengrit A, Boonyasuppayakorn S, Fujiki R, Shigeta Y, Rungrotmongkol T, Chavasiri W. Structure-yeast α-glucosidase inhibitory activity relationship of 9-O-berberrubine carboxylates. Sci Rep 2023; 13:18865. [PMID: 37914757 PMCID: PMC10620162 DOI: 10.1038/s41598-023-45116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Thirty-five 9-O-berberrubine carboxylate derivatives were synthesized and evaluated for yeast α-glucosidase inhibitory activity. All compounds demonstrated better inhibitory activities than the parent compounds berberine (BBR) and berberrubine (BBRB), and a positive control, acarbose. The structure-activity correlation study indicated that most of the substituents on the benzoate moiety such as methoxy, hydroxy, methylenedioxy, benzyloxy, halogen, trifluoromethyl, nitro and alkyl can contribute to the activities except multi-methoxy, fluoro and cyano. In addition, replacing benzoate with naphthoate, cinnamate, piperate or diphenylacetate also led to an increase in inhibitory activities except with phenyl acetate. 9, 26, 27, 28 and 33 exhibited the most potent α-glucosidase inhibitory activities with the IC50 values in the range of 1.61-2.67 μM. Kinetic study revealed that 9, 26, 28 and 33 interacted with the enzyme via competitive mode. These four compounds were also proved to be not cytotoxic at their IC50 values. The competitive inhibition mechanism of these four compounds against yeast α-glucosidase was investigated using molecular docking and molecular dynamics simulations. The binding free energy calculations suggest that 26 exhibited the strongest binding affinity, and its binding stability is supported by hydrophobic interactions with D68, F157, F158 and F177. Therefore, 9, 26, 28 and 33 would be promising candidates for further studies of antidiabetic activity.
Collapse
Affiliation(s)
- Duy Vu Nguyen
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ade Danova
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Organic Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| | - Aphinya Suroengrit
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Applied Medical Virology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siwaporn Boonyasuppayakorn
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Applied Medical Virology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Bioinformatics and Computational Biology Program, Graduated School, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Biocatalyst and Sustainable Biotechnology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Warinthorn Chavasiri
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Rizvi F, Ahmed R, Bashir MA, Ullah S, Zafar H, Atia-Tul-Wahab, Siddiqui H, Choudhary MI. Synthesis, density functional theory and kinetic studies of aminopyridine based α-glucosidase inhibitors. Future Med Chem 2023; 15:1757-1772. [PMID: 37842772 DOI: 10.4155/fmc-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Aims: The current study aimed to develop new thiourea derivatives as potential α-glucosidase inhibitors for the management of hyperglycemia in patients of Type 2 diabetes, with a focus on identifying safer and more effective antidiabetic agents. Materials & methods: New thiourea derivatives (1-16) were synthesized through single-step chemical transformation and evaluated for in vitro α-glucosidase inhibition. Kinetic studies identified the mode of inhibition, free energy and type of interactions were analyzed through density functional theory and molecular docking. Results & conclusion: Compound 5 was identified as the most potent, noncompetitive and noncytotoxic inhibitor of α-glucosidase enzyme with a half-maximal inhibitory concentration of 24.62 ± 0.94 μM. Computational studies reinforce experimental results, demonstrating significant enzyme interactions via hydrophobic and π-π stacking forces.
Collapse
Affiliation(s)
- Fazila Rizvi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Raheel Ahmed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Arslan Bashir
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Saeed Ullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Biochemistry, King Abdul Aziz University, Jeddah, 21452, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, University of Airlangga, Komplek Campus C, Surabaya, 60115, Indonesia
| |
Collapse
|
15
|
Sharma A, Dubey R, Bhupal R, Patel P, Verma SK, Kaya S, Asati V. An insight on medicinal attributes of 1,2,3- and 1,2,4-triazole derivatives as alpha-amylase and alpha-glucosidase inhibitors. Mol Divers 2023:10.1007/s11030-023-10728-1. [PMID: 37733243 DOI: 10.1007/s11030-023-10728-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023]
Abstract
Diabetes Mellitus (DM) is the globe's common leading disease which is caused by high consumption of glucose. DM compiles groups of metabolic disorders which are characterized by inadequate secretion of insulin from pancreas, resulting in hyperglycemia condition. Many enzymes play a vital role in the metabolism of carbohydrate known as α-amylase and α-glucosidase which is calcium metalloenzyme that leads to breakdown of complex polysaccharides into glucose. To tackle this problem, search for newer antidiabetic drugs is the utmost need for the treatment and/or management of increasing diabetic burden. The inhibition of α-amylase and α-glucosidase is one of the effective therapeutic approaches for the development of antidiabetic therapeutics. The exhaustive literature survey has shown the importance of medicinally privileged triazole specifically 1,2,3-triazol and 1,2,4-triazoles scaffold tethered, fused and/or clubbed with other heterocyclic rings structures as promising agents for designing and development of novel antidiabetic therapeutics. Molecular hybrids namely pyridazine-triazole, pyrazoline-triazole, benzothiazole-triazole, benzimidazole-triazole, curcumin-triazole, (bis)coumarin-triazole, acridine-9-carboxamide linked triazole, quinazolinone-triazole, xanthone-triazole, thiazolo-triazole, thiosemicarbazide-triazole, and indole clubbed-triazole are few examples which have shown promising antidiabetic activity by inhibiting α-amylase and/or α-glucosidase. The present review summarizes the structure-activity relationship (SAR), enzyme inhibitory activity including IC50 values, percentage inhibition, kinetic studies, molecular docking studies, and patents filed of the both scaffolds as alpha-amylase and alpha-glucosidase inhibitors, which may be used for further development of potent inhibitors against both enzymes.
Collapse
Affiliation(s)
- Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Ritu Bhupal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Savas Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
16
|
Yousefnejad F, Mohammadi-Moghadam-Goozali M, Sayahi MH, Halimi M, Moazzam A, Mohammadi-Khanaposhtani M, Mojtabavi S, Asadi M, Faramarzi MA, Larijani B, Amanlou M, Mahdavi M. Design, synthesis, in vitro, and in silico evaluations of benzo[d]imidazole-amide-1,2,3-triazole-N-arylacetamide hybrids as new antidiabetic agents targeting α-glucosidase. Sci Rep 2023; 13:12397. [PMID: 37524733 PMCID: PMC10390517 DOI: 10.1038/s41598-023-39424-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
α-Glucosidase as a carbohydrate-hydrolase enzyme is a crucial therapeutic target for type 2 diabetes. In this work, benzo[d]imidazole-amide containing 1,2,3-triazole-N-arylacetamide derivatives 8a-n were synthesized and evaluated for their inhibitory activity against α-glucosidase. In vitro α-glucosidase inhibition assay demonstrated that more than half of the title compounds with IC50 values in the range of 49.0-668.5 μM were more potent than standard inhibitor acarbose (IC50 = 750.0 µM). The most promising inhibitor was N-2-methylphenylacetamid derivative 8c. Kinetic study revealed that compound 8c (Ki = 40.0 µM) is a competitive inhibitor against α-glucosidase. Significantly, molecular docking and molecular dynamics studies on the most potent compound showed that this compound with a proper binding energy interacted with important amino acids of the α-glucosidase active site. Study on cytotoxicity of the most potent compounds 8c, 8e, and 8g demonstrated that these compounds did not show cytotoxic activity against the cancer and normal cell lines MCF-7 and HDF, respectively. Furthermore, the ADMET study predicted that compound 8c is likely to be orally active and non-cytotoxic.
Collapse
Affiliation(s)
- Faeze Yousefnejad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Halimi
- Department of Biology, Islamic Azad University, Babol Branch, Babol, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Moghadam Farid S, Iraji A, Mojtabavi S, Ghasemi M, Faramarzi MA, Mahdavi M, Barazandeh Tehrani M, Akbarzadeh T, Saeedi M. Quinazolinone-1,2,3-triazole-acetamide conjugates as potent α-glucosidase inhibitors: synthesis, enzyme inhibition, kinetic analysis, and molecular docking study. RSC Med Chem 2023; 14:520-533. [PMID: 36970140 PMCID: PMC10033893 DOI: 10.1039/d2md00297c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
In this study, new hybrids of quinazolinone-1,2,3-triazole-acetamide were designed, synthesized, and screened for their α-glucosidase inhibitory activity. The results obtained from the in vitro screening indicated that all analogs exhibited significant inhibitory activity against α-glucosidase (IC50 values ranging from 4.8-140.2 μM) in comparison to acarbose (IC50 = 750.0 μM). The limited structure-activity relationships suggested the variation in the inhibitory activities of the compounds affected by different substitutions on the aryl moiety. The enzyme kinetic studies of the most potent compound 9c, revealed that it inhibited α-glucosidase in a competitive mode with a K i value of 4.8 μM. In addition, molecular docking studies investigated the structural perturbation and behavior of all derivatives inside the α-glucosidase active site. Next, molecular dynamic simulations of the most potent compound 9c, were performed to study the behavior of the 9c-complex during the time. The results showed that these compounds can be considered as potential antidiabetic agents.
Collapse
Affiliation(s)
- Sara Moghadam Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences Shiraz Iran
- Central Research Laboratory, Shiraz University of Medical Sciences Shiraz Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences P.O. Box 14155-6451 Tehran 1417614411 Iran
| | - Mehrnaz Ghasemi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences P.O. Box 14155-6451 Tehran 1417614411 Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Mina Saeedi
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences Tehran Iran
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
18
|
Mushtaq A, Azam U, Mehreen S, Naseer MM. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur J Med Chem 2023; 249:115119. [PMID: 36680985 DOI: 10.1016/j.ejmech.2023.115119] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. It is a well-recognized multifactorial health problem contributes significantly to high mortality rates by causing serious health complications mainly related to cardiovascular diseases, kidney damage and neuropathy. The inhibition of α-glucosidase (enzyme that catalyses starch hydrolysis in the intestine) is an effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes. However, the presently approved drugs/inhibitors such as acarbose, miglitol and voglibose have several undesirable gastrointestinal side effects impeding their applications. Therefore, search for novel and more effective inhibitors with reduced side effects and less cost remains a fascinating area of research. In this context, a large variety of α-glucosidase inhibitors have been identified in recent years that demands attention from drug development community. This review is therefore an effort to summarize and highlight the promising α-glucosidase inhibitors especially those which are primarily based on aromatic heterocyclic scaffolds such as coumarin, imidazole, isatin, pyrimidine, quinazoline, triazine, thiazole etc, having improved safety and pharmacological profiles.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saba Mehreen
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
19
|
Lin J, Xiao D, Lu L, Liang B, Xiong Z, Xu X. New β-carboline derivatives as potential α-glucosidase inhibitor: Synthesis and biological activity evaluation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
20
|
Shah BM, Modi P, Trivedi P. Recent Investigation on Synthetic ‘Triazoles’ Scaffold as Potential Pharmacological Agents: A Comprehensive Survey. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
21
|
Rehman NU, Ullah S, Alam T, Halim SA, Mohanta TK, Khan A, Anwar MU, Csuk R, Avula SK, Al-Harrasi A. Discovery of New Boswellic Acid Hybrid 1 H-1,2,3-Triazoles for Diabetic Management: In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:229. [PMID: 37259377 PMCID: PMC9960759 DOI: 10.3390/ph16020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 07/25/2023] Open
Abstract
A series of 24 new 1H-1,2,3-triazole hybrids of 3-O-acetyl-11-keto-β-boswellic acid (β-AKBA (1)) and 11-keto-β-boswellic acid (β-KBA (2)) was designed and synthesized by employing "click" chemistry in a highly efficient manner. The 1,3-dipolar cycloaddition reaction between β-AKBA-propargyl ester intermediate 3 or β-KBA-propargyl ester intermediate 4 with substituted aromatic azides 5a-5k in the presence of copper iodide (CuI) and Hünig's base furnished the desired products-1H-1,2,3-triazole hybrids of β-AKBA (6a-6k) and β-KBA (7a-7k)-in high yields. All new synthesized compounds were characterized by 1H-, 13C-NMR spectroscopy, and HR-ESI-MS spectrometry. Furthermore, their α-glucosidase-inhibitory activity was evaluated in vitro. Interestingly, the results obtained from the α-glucosidase-inhibitory assay revealed that all the synthesized derivatives are highly potent inhibitors, with IC50 values ranging from 0.22 to 5.32 µM. Among all the compounds, 6f, 7h, 6j, 6h, 6g, 6c, 6k, 7g, and 7k exhibited exceptional inhibitory potency and were found to be several times more potent than the parent compounds 1 and 2, as well as standard acarbose. Kinetic studies of compounds 6g and 7h exhibited competitive and mixed types of inhibition, with ki values of 0.84 ± 0.007 and 1.18 ± 0.0012 µM, respectively. Molecular docking was carried out to investigate the binding modes of these compounds with α-glucosidase. The molecular docking interactions indicated that that all compounds are well fitted in the active site of α-glucosidase, where His280, Gln279, Asp215, His351, Arg442, and Arg315 mainly stabilize the binding of these compounds. The current study demonstrates the usefulness of incorporating a 1H-1,2,3-triazole moiety into the medicinally fascinating boswellic acids skeleton.
Collapse
Affiliation(s)
- Najeeb Ur Rehman
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saeed Ullah
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Tanveer Alam
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sobia Ahsan Halim
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Tapan Kumar Mohanta
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ajmal Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad U. Anwar
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Satya Kumar Avula
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
22
|
Recent developments in synthetic α-glucosidase inhibitors: A comprehensive review with structural and molecular insight. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
23
|
Wang KM, Ge YX, Zhang J, Chen YT, Zhang NY, Gu JS, Fang L, Zhang XL, Zhang J, Jiang CS. New cycloalkyl[b]thiophenylnicotinamide-based α-glucosidase inhibitors as promising anti-diabetic agents: Synthesis, in silico study, in vitro and in vivo evaluations. Bioorg Med Chem Lett 2023; 79:129069. [PMID: 36395995 DOI: 10.1016/j.bmcl.2022.129069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
In the present study, a series of cycloalkyl[b]thiophenylnicotinamide derivatives against α-glucosidase were synthesized, and evaluated for their in vitro and in vivo anti-diabetic potential. Most of the synthetic analogues exhibited superior α-glucosidase inhibitory effects than the standard drug acarbose (IC50 = 258.5 μM), in which compound 11b with cyclohexyl[b]thiophene core demonstrated the highest activity with an IC50 value of 9.9 μM and showed higher selectivity towards α-glucosidase over α-amylase by 7.4-fold. Fluorescence quenching experiment confirmed the direct binding of 11b with α-glucosidase, kinetics study revealed that 11b was a mixed-type inhibitor, and its binding mode was analyzed using molecular docking. Moreover, analogs compounds 6a-9b, 11b, 12b did not show in vitro cytotoxicity against LO2 and HepG2 cells. Finally, compound 11b exhibited in vivo hypoglycemic activity by reducing the blood glucose levels in sucrose-loaded rats.
Collapse
Affiliation(s)
- Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yong-Xi Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Zhang
- Shandong Boyuan Pharmaceutical & Chemical Co., Ltd., Shouguang 262725, China
| | - Yi-Tong Chen
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jin-Song Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xin-Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
24
|
Deswal L, Verma V, Kirar JS, Kumar D, Deswal Y, Kumar A, Bhatia M. Benzimidazole-1,2,3-triazole-piperazine hybrids: design, synthesis, antidiabetic evaluation and molecular modelling studies. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Chu J, Yang R, Cheng W, Cui L, Pan H, Liu J, Guo Y. Semisynthesis, biological activities, and mechanism studies of Mannich base analogues of magnolol/honokiol as potential α-glucosidase inhibitors. Bioorg Med Chem 2022; 75:117070. [PMID: 36327695 DOI: 10.1016/j.bmc.2022.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Magnolol and honokiol, derived from a Magnolia officinalis Rehd. et Wils, are a class of natural biphenolic lignans. Currently, the discovery of new α-glucosidase inhibitors from natural analogues is of interest. Here, four series of thirty new Mannich base analogues of magnolol/honokiol were prepared and evaluated for their α-glucosidase inhibitory activities. Among these Mannich base analogues of magnolol/honokiol, 3k and 3l exhibited more potent inhibitory effects on α-glucosidase than the reference drug acarbose, and their IC50 values were 14.94 ± 0.17 µM and 13.78 ± 1.42 µM, respectively. Some interesting structure-activity relationships (SARs) were also analyzed. The enzyme inhibition kinetics indicated that 3k and 3l were noncompetitive inhibitors. This result was in agreement with molecular docking studies, where the binding sites of 3k and 3l to α-glucosidase were different from that of the competitive inhibitor acarbose to α-glucosidase. Moverover, compounds 3k and 3l exhibited low toxicity to normal cells (LO2). Thus, analogues 3k and 3l could be deeply developed for the discovery of natural products based antidiabetic candidates.
Collapse
Affiliation(s)
- Junyan Chu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Ruige Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Liping Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Hanchen Pan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China.
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
26
|
Mohammadi‐Khanaposhtani M, Noori M, Valizadeh Y, Dastyafteh N, Ghomi MK, Mojtabavi S, Faramarzi MA, Hosseini S, Biglar M, Larijani B, Rastegar H, Hamedifar H, Mirzazadeh R, Mahdavi M. Synthesis, α‐glucosidase Inhibition,
in silico
Pharmacokinetic, and Docking Studies Of Thieno[2,3‐b]Quinoline‐Acetamide Derivatives as New Anti‐Diabetic Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202104482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maryam Mohammadi‐Khanaposhtani
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Milad Noori
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Yousef Valizadeh
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Hossein Rastegar
- Cosmetic products research center, Iranian food and drug administration, MOHE Tehran Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center Alborz University of Medical Sciences Karaj Iran
| | | | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
27
|
Xanthone sulfonamide derivatives-A novel series of α-glucosidase inhibitors with different inhibitory types. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Kumar P, Singh R, Kumar A, Toropova AP, Toropov AA, Devi M, Lal S, Sindhu J, Singh D. Identifications of good and bad structural fragments of hydrazone/2,5-disubstituted-1,3,4-oxadiazole hybrids with correlation intensity index and consensus modelling using Monte Carlo based QSAR studies, their molecular docking and ADME analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:677-700. [PMID: 36093620 DOI: 10.1080/1062936x.2022.2120068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The application of QSAR along with other in silico tools like molecular docking, and molecular dynamics provide a lot of promise for finding new treatments for life-threatening diseases like Type 2 diabetes mellitus (T2DM). The present study is an attempt to develop Monte Carlo algorithm-based QSAR models using freely available CORAL software. The experimental data on the α-amylase inhibition by a series of benzothiazole-linked hydrazone/2,5-disubstituted-1,3,4-oxadiazole hybrids were selected as endpoint for the model generation. Initially, a total of eight QSAR models were built using correlation intensity index (CII) as a criterion of predictive potential. The model developed from split 6 using CII was the most reliable because of the highest numerical value of the determination coefficient of the validation set (r2VAL = 0.8739). The important structural fragments responsible for altering the endpoint were also extracted from the best-built model. With the goal of improved prediction quality and lower prediction errors, the validated models were used to build consensus models. Molecular docking was used to know the binding mode and pose of the selected derivatives. Further, to get insight into their metabolism by living beings, ADME studies were investigated using internet freeware, SwissADME.
Collapse
Affiliation(s)
- P Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - R Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - A Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, India
| | - A P Toropova
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - A A Toropov
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - M Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - S Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - J Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - D Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
29
|
Xu T, Meng JR, Cheng W, Liu JZ, Chu J, Zhang Q, Ma N, Bai LP, Guo Y. Discovery of honokiol thioethers containing 1,3,4-oxadiazole moieties as potential α-glucosidase and SARS-CoV-2 entry inhibitors. Bioorg Med Chem 2022; 67:116838. [PMID: 35617790 PMCID: PMC9123836 DOI: 10.1016/j.bmc.2022.116838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
Honokiol, isolated from a traditional Chinese medicine (TCM) Magnolia officinalis, is a biphenolic compound with several biological activities. To improve and broaden its biological activity, herein, two series of honokiol thioethers bearing 1,3,4-oxadiazole moieties were prepared and assessed for their α-glucosidase and SARS-CoV-2 entry inhibitory activities. Among all the honokiol thioethers, compound 7l exhibited the strongest α-glucosidase inhibitory effect with an IC50 value of 18.9 ± 2.3 µM, which was superior to the reference drug acarbose (IC50 = 24.4 ± 0.3 µM). Some interesting results of structure–activity relationships (SARs) have also been discussed. Enzyme kinetic study demonstrated that 7l was a noncompetitive α-glucosidase inhibitor, which was further supported by the results of molecular docking. Moreover, honokiol thioethers 7e, 9a, 9e, and 9r exhibited potent antiviral activity against SARS-CoV-2 pseudovirus entering into HEK-293 T-ACE2h. Especially 9a displayed the strongest inhibitory activity against SARS-CoV-2 pseudovirus entry with an IC50 value of 16.96 ± 2.45 μM, which was lower than the positive control Evans blue (21.98 ± 1.98 μM). Biolayer interferometry (BLI) binding and docking studies suggested that 9a and 9r may effectively block the binding of SARS-CoV-2 to the host ACE2 receptor through dual recognition of SARS-CoV-2 spike RBD and human ACE2. Additionally, the potent honokiol thioethers 7l, 9a, and 9r displayed relatively no cytotoxicity to normal cells (LO2). These findings will provide a theoretical basis for the discovery of honokiol derivatives as potential both α-glucosidase and SARS-CoV-2 entry inhibitors.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau
| | - Jie-Ru Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Jia-Zheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau
| | - Junyan Chu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Qian Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Nannan Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau.
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
30
|
El Ashry ESH, Farahat MM, Awad LF, Balbaa M, Yusef H, Badawy ME, Abd Al Moaty MN. New 4-(arylidene)amino-1,2,4-traizole-5-thiol derivatives and their acyclo thioglycosides as α-glucosidase and α-amylase inhibitors: Design, synthesis, and molecular modelling studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132733] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Liu J, Wang FF, Jiang ZM, Liu EH. Identification of antidiabetic components in Uncariae Rammulus Cum Uncis based on phytochemical isolation and spectrum-effect relationship analysis. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:659-669. [PMID: 35261095 DOI: 10.1002/pca.3118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Uncariae Rammulus Cum Uncis (URCU) is a commonly used herbal medicine to treat diabetes. This work is aimed to discover and identify the antidiabetic components from URCU extract. METHODS Column chromatography and recrystallisation were used to separate individual compounds from URCU extract, and the obtained individual compounds were used for determination of α-glucosidase inhibitory activity. Molecular docking was applied to predict the molecular interactions. High-performance liquid chromatography (HPLC) was used for fingerprint analysis of 12 batches of URCU. HPLC fingerprints were assessed by the similarity analysis (SA) and hierarchical clustering analysis (HCA). The spectrum-effect relationship analysis of URCU was assessed by orthogonal partial least squares (OPLS) and bivariate correlation analysis (BCA). RESULTS A total of 10 potential bioactive compounds were isolated and six of them showed potent α-glucosidase inhibitory activity (IC50 = 4.21-166.10 μM). The molecular docking results revealed that the binding energy was consistent with the results of α-glucosidase inhibition activity analysis (-8.55 to -4.84 kcal/mol). The ethanol extracts of the 12 batches of URCU showed inhibitory effect on α-glucosidase in a dose-dependent manner, and the IC50 values ranged from 0.94 μg/mL to 12.57 μg/mL. The spectrum-effect relationship analysis results indicated that 13 peaks might be potential antidiabetic compounds in URCU, including 18 (hyperoside) and 19 (rutin). CONCLUSION A comprehensive connection between URCU chemical components and α-glucosidase inhibitory activity was established for the first time by using a spectrum-effect relationship model, which might be applicable to the quality control of URCU.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Fang-Fang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
32
|
Lin J, Liang QM, Ye YN, Xiao D, Lu L, Li MY, Li JP, Zhang YF, Xiong Z, Feng N, Li C. Synthesis and Biological Evaluation of 5-Fluoro-2-Oxindole Derivatives as Potential α-Glucosidase Inhibitors. Front Chem 2022; 10:928295. [PMID: 35815213 PMCID: PMC9261963 DOI: 10.3389/fchem.2022.928295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
α-Glucosidase inhibitors are known to prevent the digestion of carbohydrates and reduce the impact of carbohydrates on blood glucose. To develop novel α-glucosidase inhibitors, a series of 5-fluoro-2-oxindole derivatives (3a ∼ 3v) were synthesized, and their α-glucosidase inhibitory activities were investigated. Biological assessment results showed that most synthesized compounds presented potential inhibition on α-glucosidase. Among them, compounds 3d, 3f, and 3i exhibited much better inhibitory activity with IC50 values of 49.89 ± 1.16 μM, 35.83 ± 0.98 μM, and 56.87 ± 0.42 μM, respectively, which were about 10 ∼ 15 folds higher than acarbose (IC50 = 569.43 ± 43.72 μM). A kinetic mechanism study revealed that compounds 3d, 3f, and 3i inhibited the α-glucosidase in a reversible and mixed manner. Molecular docking was carried out to simulate the affinity between the compound and α-glucosidase.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhuang Xiong
- *Correspondence: Zhuang Xiong, ; Na Feng, ; Chen Li,
| | - Na Feng
- *Correspondence: Zhuang Xiong, ; Na Feng, ; Chen Li,
| | - Chen Li
- *Correspondence: Zhuang Xiong, ; Na Feng, ; Chen Li,
| |
Collapse
|
33
|
Sykam K, Donempudi S, Basak P. 1,2,
3‐Triazole
rich polymers for flame retardant application: A review. J Appl Polym Sci 2022. [DOI: 10.1002/app.52771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kesavarao Sykam
- Polymers & Functional Materials Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad India
| | - Shailaja Donempudi
- Polymers & Functional Materials Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad India
| | - Pratyay Basak
- Polymers & Functional Materials Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad India
| |
Collapse
|
34
|
Gampa M, Padmaja P, Khalivulla SI, Reddy PN. Synthesis and Antimicrobial and Antioxidant Activities of 1,2,3-Triazole-Tethered Xanthone Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022060173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Fallah Z, Tajbakhsh M, Alikhani M, Larijani B, Faramarzi MA, Hamedifar H, Mohammadi-Khanaposhtani M, Mahdavi M. A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132469] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Chen SQ, Jia J, Hu JY, Wu J, Sun WT, Zheng M, Wang X, Zhu KK, Jiang CS, Yang SP, Zhang J, Wang SB, Cai YS. Iboga-type alkaloids with Indolizidino[8,7-b]Indole scaffold and bisindole alkaloids from Tabernaemontana bufalina Lour. PHYTOCHEMISTRY 2022; 196:113089. [PMID: 35074605 DOI: 10.1016/j.phytochem.2022.113089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Phytochemical investigation on the aerial parts of Tabernaemontana bufalina Lour. (Apocynaceae) led to the identification of four undescribed monoterpenoid indole alkaloids named taberbufamines A-D, an undescribed natural product, and fourteen known indole alkaloids. The structures of the undescribed alkaloids were established by spectroscopic and computational methods, and their absolute configurations were further determined by quantum chemical TDDFT calculations and the experimental ECD spectra. Taberbufamines A and B possessed an uncommon skeleton incorporating an indolizidino [8,7-b]indole motif with a 2-hydroxymethyl-butyl group attached at the pyrrolidine ring. Biosynthetically, Taberbufamines A and B might be derived from iboga-type alkaloid through rearrangement. Vobatensine C showed significant bioactivity against A-549, Bel-7402, and HCT-116 cells with IC50 values of 2.61, 1.19, and 1.74 μM, respectively. Ervahanine A showed antimicrobial activity against Bacillus subtilis, Mycobacterium smegmatis, and Helicobacter pylori with MIC values of 4, 8, and 16 μg/mL, respectively. 19(S)-hydroxyibogamine was shown as butyrylcholinesterase inhibitor (IC50 of 20.06 μM) and α-glycosidase inhibitor (IC50 of 17.18 μM), while tabernamine, ervahanine B, and ervadivaricatine B only showed α-glycosidase inhibitory activities with IC50 values in the range of 0.95-4.61 μM.
Collapse
Affiliation(s)
- Shun-Qing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jia Jia
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter Pylori Research Centre, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Jing-Yao Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jun Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Wen-Ting Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Mingxin Zheng
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter Pylori Research Centre, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Xi Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Kong-Kai Zhu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Sheng-Ping Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Shou-Bao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - You-Sheng Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
37
|
Design, synthesis, in vitro and in silico studies of naproxen derivatives as dual lipoxygenase and α-glucosidase inhibitors. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Nidhar M, Khanam S, Sonker P, Gupta P, Mahapatra A, Patil S, Yadav BK, Singh RK, Kumar Tewari A. Click inspired novel pyrazole-triazole-persulfonimide & pyrazole-triazole-aryl derivatives; Design, synthesis, DPP-4 inhibitor with potential anti-diabetic agents. Bioorg Chem 2022; 120:105586. [DOI: 10.1016/j.bioorg.2021.105586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023]
|
39
|
Missioui M, Mortada S, Guerrab W, Demirtaş G, Mague JT, Ansar M, El Abbes Faouzi M, Essassi E, Mehdar YT, Aljohani FS, Said MA, Ramli Y. Greener Pastures in Evaluating Antidiabetic Drug for a Quinoxaline Derivative: Synthesis, Characterization, Molecular Docking, in Vitro and HSA/DFT/XRD Studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
40
|
Mohammadi-Khanaposhtani M, Nori M, Valizadeh Y, Javanshir S, Dastyafteh N, Moaazam A, Hosseini S, Larijani B, Adibi H, Biglar M, Hamedifar H, Mahdavi M, Kamci H, Karakus A, Taslimi P. New 4-phenylpiperazine-carbodithioate-N-phenylacetamide hybrids: Synthesis, in vitro and in silico evaluations against cholinesterase and α-glucosidase enzymes. Arch Pharm (Weinheim) 2022; 355:e2100313. [PMID: 35132681 DOI: 10.1002/ardp.202100313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/27/2021] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Abstract
A series of novel 4-phenylpiperazine-carbodithioate-N-phenylacetamide hybrids (6a-n) was designed, synthesized, and evaluated for their in vitro inhibitory activity against the metabolic enzymes, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glucosidase. The obtained results showed that most of the synthesized compounds exhibited high to good anti-AChE and anti-BChE activity in the range of nanomolar concentrations in comparison to tacrine as a positive control. Molecular modeling of the most potent compounds 6e and 6i demonstrated that these compounds interacted with important residues of the AChE and BChE active sites. Moreover, all the newly synthesized compounds 6a-n had significant Ki values against α-glucosidase when compared with the positive control acarbose. Representatively, N-2-fluorophenylacetamide derivative 6l, with a Ki value of 0.98 nM as the most potent compound, was 126 times more potent than acarbose with a Ki value of 123.70 nM. This compound also fitted in the α-glucosidase active site and interacted with key residues. An in silico study of the druglikeness/absorption, distribution, metabolism, and excretion (ADME)/toxicity profile of the selected compounds 6e, 6i, and 6l predicts that these compounds are drug-like and have the appropriate properties in terms of ADME and toxicity.
Collapse
Affiliation(s)
- Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Milad Nori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Valizadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Javanshir
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Moaazam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Adibi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamdi Kamci
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Ahmet Karakus
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| |
Collapse
|
41
|
Anti-α-Glucosidase and Antiglycation Activities of α-Mangostin and New Xanthenone Derivatives: Enzymatic Kinetics and Mechanistic Insights through In Vitro Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020547. [PMID: 35056861 PMCID: PMC8777799 DOI: 10.3390/molecules27020547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus is characterized by chronic hyperglycemia that promotes ROS formation, causing severe oxidative stress. Furthermore, prolonged hyperglycemia leads to glycation reactions with formation of AGEs that contribute to a chronic inflammatory state. This research aims to evaluate the inhibitory activity of α-mangostin and four synthetic xanthenone derivatives against glycation and oxidative processes and on α-glucosidase, an intestinal hydrolase that catalyzes the cleavage of oligosaccharides into glucose molecules, promoting the postprandial glycemic peak. Antiglycation activity was evaluated using the BSA assay, while antioxidant capacity was detected with the ORAC assay. The inhibition of α-glucosidase activity was studied with multispectroscopic methods along with inhibitory kinetic analysis. α-Mangostin and synthetic compounds at 25 µM reduced the production of AGEs, whereas the α-glucosidase activity was inhibited only by the natural compound. α-Mangostin decreased enzymatic activity in a concentration-dependent manner in the micromolar range by a reversible mixed-type antagonism. Circular dichroism revealed a rearrangement of the secondary structure of α-glucosidase with an increase in the contents of α-helix and random coils and a decrease in β-sheet and β-turn components. The data highlighted the anti-α-glucosidase activity of α-mangostin together with its protective effects on protein glycation and oxidation damage.
Collapse
|
42
|
Maulidiyah M, Darmawan A, Wahyu W, Musdalifah A, Salim LOA, Nurdin M. Potential of Usnic Acid Compound from Lichen Genus Usnea sp. as Antidiabetic Agents. J Oleo Sci 2022; 71:127-134. [PMID: 35013035 DOI: 10.5650/jos.ess21211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lichen Usnea sp. is potential as a new natural medicine. This study report isolation of secondary metabolites from lichen Usnea sp. and α-glucosidase inhibitory, which is potential as an antidiabetic agent. Lichen powder was macerated using methanol, separated using column chromatography gravity and thin-layer chromatography. The crystalline was isolated and purified by the recrystallization process for obtaining pure compound. The isolated compound was determined using FTIR and NMR spectroscopy (1H and 13C). The results showed that the isolated compound was yellow needle crystals. Based on the spectra data interpretation, it was obtained usnic acid compound with the molecular formula of C18H16O7. The α-glucosidase inhibitory activity test showed that the usnic acid had activity in inhibiting the α-glucosidase enzyme with an IC50 value of 106.78 µg/mL. The usnic acid from Usnea sp. has a very good impact on the source of natural compounds as an antidiabetic drug in the future.
Collapse
Affiliation(s)
- Maulidiyah Maulidiyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | - Akhmad Darmawan
- Research Center for Chemistry, Indonesian Institute of Sciences
| | - Wahyu Wahyu
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | - Andi Musdalifah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | - La Ode Agus Salim
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | - Muhammad Nurdin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| |
Collapse
|
43
|
FENG Y, NAN H, ZHOU H, XI P, LI B. Mechanism of inhibition of α-glucosidase activity by bavachalcone. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.123421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Haijuan NAN
- Henan Institute of Science and Technology, China
| | - Haoyu ZHOU
- Henan Institute of Science and Technology, China
| | - Penghang XI
- Henan Institute of Science and Technology, China
| | - Bo LI
- Henan Institute of Science and Technology, China
| |
Collapse
|
44
|
Farwa U, Raza MA. Heterocyclic compounds as a magic bullet for diabetes mellitus: a review. RSC Adv 2022; 12:22951-22973. [PMID: 36105949 PMCID: PMC9379558 DOI: 10.1039/d2ra02697j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world. From the last two decades, the use of synthetic agents has risen due to their major involvement in curing of chronic diseases including DM. The core skeleton of drugs has been studied such as thiazolidinone, azole, chalcone, pyrrole and pyrimidine along with their derivatives. Diabetics assays have been performed in consideration of different enzymes such as α-glycosidase, α-amylase, and α-galactosidase against acarbose standard drug. The studied moieties were depicted in both models: in vivo as well as in vitro. Molecular docking of the studied compounds as antidiabetic molecules was performed with the help of Auto Dock and molecular operating environment (MOE) software. Amino acid residues Asp349, Arg312, Arg439, Asn241, Val303, Glu304, Phe158, His103, Lys422 and Thr207 that are present on the active sites of diabetic related enzymes showed interactions with ligand molecules. In this review data were organized for the synthesis of heterocyclic compounds through various routes along with their antidiabetic potential, and further studies such as pharmacokinetic and toxicology studies should be executed before going for clinical trials. Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world.![]()
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | | |
Collapse
|
45
|
Zhang JH, Xie HX, Li Y, Wang KM, Song Z, Zhu KK, Fang L, Zhang J, Jiang CS. Design, synthesis and biological evaluation of novel (E)-2-benzylidene-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)hydrazine-1-carboxamide derivatives as α-glucosidase inhibitors. Bioorg Med Chem Lett 2021; 52:128413. [PMID: 34634473 DOI: 10.1016/j.bmcl.2021.128413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 11/15/2022]
Abstract
In this present study, a series of novel (E)-2-benzylidene-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)hydrazine-1-carboxamide derivatives against α-glucosidase were designed and synthesized, and their biological activities were evaluated in vitro and in vivo. Most of the designed analogues exhibited better inhibitory activity than the marketed acarbose, especially the most potent compound 7 with an IC50 value of 9.26 ± 1.84 μM. The direct binding of 7 and 8 with α-glucosidase was confirmed by fluorescence quenching experiments, and the kinetic and molecular docking studies revealed that 7 and 8 inhibited α-glucosidase in a non-competitive manner. Cytotoxicity bioassay indicated compounds 7 and 8 were non-toxic towards LO2 and HepG2 at 100 μM. Furthermore, both compounds were demonstrated to have in vivo hypoglycemic activity by reducing the blood glucose levels in sucrose-treated rats.
Collapse
Affiliation(s)
- Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hong-Xu Xie
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yue Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhiling Song
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
46
|
Li Y, Zhang JH, Xie HX, Ge YX, Wang KM, Song ZL, Zhu KK, Zhang J, Jiang CS. Discovery of new 2-phenyl-1H-benzo[d]imidazole core-based potent α-glucosidase inhibitors: Synthesis, kinetic study, molecular docking, and in vivo anti-hyperglycemic evaluation. Bioorg Chem 2021; 117:105423. [PMID: 34717239 DOI: 10.1016/j.bioorg.2021.105423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022]
Abstract
In the present study, a series of 2-phenyl-1H-benzo[d]imidazole-based α-glucosidase inhibitors were synthesized and evaluated for their in vitro and in vivo anti-diabetic potential. Screening of an in-house library revealed a moderated α-glucosidase inhibitor, 6a with 3-(1H-benzo[d]imidazol-2-yl)aniline core, and then the structural optimization was performed to obtain more efficient derivatives. Most of these derivatives showed increased activity than 6a, and the most promising inhibitors were found to be compounds 15o and 22d with IC50 values of 2.09 ± 0.04 and 0.71 ± 0.02 µM, respectively. Fluorescence quenching experiment confirmed the direct binding of compounds 15o and 22d with α-glucosidase. Kinetic study revealed that both compounds were non-competitive inhibitors, that was consistent with the result of molecular docking studies where they located at the allosteric site of the enzyme. Cell viability evaluation demonstrated the non-cytotoxicity of 15o and 22d against LO2 cells. Furthermore, the in vivo pharmacodynamic study revealed that compound 15o showed significant hypoglycemic activity and improved oral sucrose tolerance, comparable to the positive control acarbose.
Collapse
Affiliation(s)
- Yue Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hong-Xu Xie
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yong-Xi Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhi-Ling Song
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
47
|
Synthesis and biological evaluation of 1,6-bis-triazole-2,3,4-tri-O-benzyl-α-d-glucopyranosides as a novel α-glucosidase inhibitor in the treatment of Type 2 diabetes. Bioorg Med Chem Lett 2021; 50:128331. [PMID: 34418573 DOI: 10.1016/j.bmcl.2021.128331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 11/21/2022]
Abstract
A novel series of 1,6-bis-triazole-benzyl-α-glucoside derivatives (7a-7ee) were designed, synthesized and evaluated for inhibitory activity against α-glucosidase. Most of the synthesized compounds exhibited good activity with IC50 ranging from 3.73 µM to 53.34 µM and are more potent than the standard drug acarbose (IC50 = 146.25 ± 0.40 µM). SARs study showed the ester and menthol moiety play an important role in the inhibitory activity. The molecular docking model of the potent compounds 7f, 7z, 7cc and 7dd showed good binding energy and interacts well with amino acid residues around the active site of the enzyme, which confirmed the in vitro activity results.
Collapse
|
48
|
Nasli Esfahani A, Iraji A, Alamir A, Moradi S, Asgari MS, Hosseini S, Mojtabavi S, Nasli-Esfahani E, Faramarzi MA, Bandarian F, Larijani B, Hamedifar H, Hajimiri MH, Mahdavi M. Design and synthesis of phenoxymethybenzoimidazole incorporating different aryl thiazole-triazole acetamide derivatives as α-glycosidase inhibitors. Mol Divers 2021; 26:1995-2009. [PMID: 34515954 PMCID: PMC8436581 DOI: 10.1007/s11030-021-10310-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
A novel series of phenoxymethybenzoimidazole derivatives (9a-n) were rationally designed, synthesized, and evaluated for their α-glycosidase inhibitory activity. All tested compounds displayed promising α-glycosidase inhibitory potential with IC50 values in the range of 6.31 to 49.89 μM compared to standard drug acarbose (IC50 = 750.0 ± 10.0 μM). Enzyme kinetic studies on 9c, 9g, and 9m as the most potent compounds revealed that these compounds were uncompetitive inhibitors into α-glycosidase. Docking studies confirmed the important role of benzoimidazole and triazole rings of the synthesized compounds to fit properly into the α-glycosidase active site. This study showed that this scaffold can be considered as a highly potent α-glycosidase inhibitor.
Collapse
Affiliation(s)
- Anita Nasli Esfahani
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Alamir
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Moradi
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mir Hamed Hajimiri
- Nano Alvand Company, Tehran University of Medical Sciences, Avicenna Tech Park, 1439955991, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Secondary Metabolites with α-Glucosidase Inhibitory Activity from Mangrove Endophytic Fungus Talaromyces sp. CY-3. Mar Drugs 2021; 19:md19090492. [PMID: 34564154 PMCID: PMC8465095 DOI: 10.3390/md19090492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Eight new compounds, including two sambutoxin derivatives (1-2), two highly oxygenated cyclopentenones (7-8), four highly oxygenated cyclohexenones (9-12), together with four known sambutoxin derivatives (3-6), were isolated from semimangrove endophytic fungus Talaromyces sp. CY-3, under the guidance of molecular networking. The structures of new isolates were elucidated by analysis of detailed spectroscopic data, ECD spectra, chemical hydrolysis, 13C NMR calculation, and DP4+ analysis. In bioassays, compounds 1-5 displayed better α-glucosidase inhibitory activity than the positive control 1-deoxynojirimycin (IC50 = 80.8 ± 0.3 μM), and the IC50 value was in the range of 12.6 ± 0.9 to 57.3 ± 1.3 μM.
Collapse
|
50
|
Xie HX, Zhang J, Li Y, Zhang JH, Liu SK, Zhang J, Zheng H, Hao GZ, Zhu KK, Jiang CS. Novel tetrahydrobenzo[b]thiophen-2-yl)urea derivatives as novel α-glucosidase inhibitors: Synthesis, kinetics study, molecular docking, and in vivo anti-hyperglycemic evaluation. Bioorg Chem 2021; 115:105236. [PMID: 34411978 DOI: 10.1016/j.bioorg.2021.105236] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
α-Glucosidase inhibitors, which can inhibit the digestion of carbohydrates into glucose, are one of important groups of anti-type 2 diabetic drugs. In the present study, we report our effort on the discovery and optimization of α-glucosidase inhibitors with tetrahydrobenzo[b]thiophen-2-yl)urea core. Screening of an in-house library revealed a moderated α-glucosidase inhibitors, 5a, and then the following structural optimization was performed to obtain more efficient derivatives. Most of these derivatives showed increased inhibitory activity against α-glucosidase than the parental compound 5a (IC50 of 26.71 ± 1.80 μM) and the positive control acarbose (IC50 of 258.53 ± 1.27 μM). Among them, compounds 8r (IC50 = 0.59 ± 0.02 μM) and 8s (IC50 = 0.65 ± 0.03 μM) were the most potent inhibitors, and showed selectivity over α-amylase. The direct binding of both compounds with α-glucosidase was confirmed by fluorescence quenching experiments. Kinetics study revealed that these compounds were non-competitive inhibitors, which was consistent with the molecular docking results that compounds 8r and 8s showed high preference to bind to the allosteric site instead of the active site of α-glucosidase. In addition, compounds 8r and 8s were not toxic (IC50 > 100 μM) towards LO2 and HepG2 cells. Finally, the in vivo anti-hyperglycaemic activity assay results indicated that compounds 8r could significantly decrease the level of plasma glucose and improve glucose tolerance in SD rats treated with sucrose. The present study provided the tetrahydrobenzo[b]thiophen-2-yl)urea chemotype for developing novel α-glucosidase inhibitors against type 2 diabetes.
Collapse
Affiliation(s)
- Hong-Xu Xie
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yue Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jie Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China
| | - Hua Zheng
- Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China
| | - Gui-Zhou Hao
- Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China.
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|