1
|
Guo J, Zhu Y, Zhi J, Lou Q, Bai R, He Y. Antioxidants in Anti-Alzheimer's Disease Drug Discovery. Ageing Res Rev 2025:102707. [PMID: 40021094 DOI: 10.1016/j.arr.2025.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Oxidative stress is widely recognized as a key contributor to the pathogenesis of Alzheimer's disease (AD). While not the sole factor, it is closely linked to critical pathological features, such as the formation of senile plaques and neurofibrillary tangles. The development of agents with antioxidant properties has become an area of growing interest in AD research. Between 2015 and 2024, several antioxidant-targeted drugs for AD progressed to clinical trials, with increasing attention to the evaluation of antioxidant properties during their development. Oxidative stress plays a pivotal role in linking various AD hypotheses, underscoring its importance in understanding the disease mechanisms. Despite this, comprehensive reviews addressing advancements in AD drug development from the perspective of antioxidant capacity remain limited, hindering the design of novel compounds. This review aims to explore the mechanistic relationship between oxidative stress and AD, summarize methods for assessing antioxidant capacity, and provide an overview of antioxidant compounds with anti-AD properties reported over the past decade. The goal is to offer strategies for identifying effective antioxidant-based therapies for AD and to deepen our understanding of the role of oxidative stress in AD pathology.
Collapse
Affiliation(s)
- Jianan Guo
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, PR China, 321000; Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, PR China, 321000; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, PR China, 321000.
| | - Yalan Zhu
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, PR China, 321000
| | - Jia Zhi
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China, 311121
| | - Qiuwen Lou
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, PR China, 321000; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, PR China, 321000
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China, 311121.
| | - Yiling He
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, PR China, 321000.
| |
Collapse
|
2
|
Rullo M, La Spada G, Stefanachi A, Macchia E, Pisani L, Leonetti F. Playing Around the Coumarin Core in the Discovery of Multimodal Compounds Directed at Alzheimer's-Related Targets: A Recent Literature Overview. Molecules 2025; 30:891. [PMID: 40005200 PMCID: PMC11857976 DOI: 10.3390/molecules30040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) causes a great socioeconomic burden because of its increasing prevalence and the lack of effective therapies. The multifactorial nature of AD prompts researchers to search for new strategies for discovering disease-modifying therapeutics. To this extent, the multitarget approach holds the potential of synergic or cooperative activities arising from compounds that are properly designed to address two or more pathogenetic mechanisms. As a privileged and nature-friendly scaffold, coumarin has successfully been enrolled as the heterocyclic core in the design of multipotent anti-Alzheimer's agents. Herein, we comprehensively summarize the most recent literature (2018-2023), covering the rational design and the discovery of coumarin-containing multitarget directed ligands (MTDLs) whose anti-AD profile encompassed at least two different biological activities relevant for disease onset and progression. To enhance the clarity of presentation, synthetic coumarin-based MTDLs are categorized into four clusters based on their substitution pattern and reported bioactivities: (i) mono-, (ii) di-, and (iii) polysubstituted coumarins directed at protein targets, and (iv) coumarins directed at protein targets with additional metal-chelating features. Before discussing multimodal coumarins, the rationale for addressing each biological target is briefly presented.
Collapse
Affiliation(s)
| | | | | | | | - Leonardo Pisani
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (M.R.); (G.L.S.); (A.S.); (E.M.); (F.L.)
| | | |
Collapse
|
3
|
Singh R, Panghal A, Jadhav K, Thakur A, Verma RK, Singh C, Goyal M, Kumar J, Namdeo AG. Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer's Disease. Mol Neurobiol 2024; 61:10916-10940. [PMID: 38809370 DOI: 10.1007/s12035-024-04256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Changes in the transition metal homeostasis in the brain are closely linked with Alzheimer's disease (AD), including intraneuronal iron accumulation and extracellular copper and zinc pooling in the amyloid plague. The brain copper, zinc, and iron surplus are commonly acknowledged characteristics of AD, despite disagreements among some. This has led to the theory that oxidative stress resulting from abnormal homeostasis of these transition metals may be a causative explanation behind AD. In the nervous system, the interaction of metals with proteins appears to be an essential variable in the development or suppression of neurodegeneration. Chelation treatment may be an option for treating neurodegeneration induced by transition metal ion dyshomeostasis. Some clinicians even recommend using chelating agents as an adjunct therapy for AD. The current review also looks at the therapeutic strategies that have been attempted, primarily with metal-chelating drugs. Metal buildup in the nervous system, as reported in the AD, could be the result of compensatory mechanisms designed to improve metal availability for physiological functions.
Collapse
Affiliation(s)
- Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institutes of Nano Science and Technology (INST), Sector 81. Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Krishna Jadhav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, ICFAI University, Baddi, Distt. Solan, Himachal Pradesh, 174103, India
| | - Rahul Kumar Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Charan Singh
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India.
| | - Ajay G Namdeo
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| |
Collapse
|
4
|
Sadeghian S, Zare F, Khoshneviszadeh M, Hafshejani AF, Salahshour F, Khodabakhshloo A, Saghaie L, Goshtasbi G, Sarikhani Z, Poustforoosh A, Sabet R, Sadeghpour H. Synthesis, biological evaluation, molecular docking, MD simulation and DFT analysis of new 3-hydroxypyridine-4-one derivatives as anti-tyrosinase and antioxidant agents. Heliyon 2024; 10:e35281. [PMID: 39170370 PMCID: PMC11336475 DOI: 10.1016/j.heliyon.2024.e35281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
In the present study, ten new substituted 3-hydroxypyridine-4-one derivatives were synthesized in a four-step method, and their chemical structures were confirmed using various spectroscopic techniques. Subsequently, the inhibitory activities of these derivatives against tyrosinase enzyme and their antioxidant activities were evaluated. Amongest the synthesized compounds, 6b bearing a 4-OH-3-OCH3 substitution was found to be a promising tyrosinase inhibitor with an IC50 value of 25.82 μM, which is comparable to the activity of kojic acid as control drug. Kinetic study indicated that compound 6b is a competitive inhibitor of tyrosinase enzyme, which was confirmed by molecular docking results. The molecular docking study and MD simulation showed that compound 6b was properly placed within the tyrosinase binding pocket and interacted with key residues, which is consistent with its biological activity. The DFT analysis demonstrated that compound 6b is kinetically more stable than the other compounds. In addition, compounds 6a and 6b exhibited the best antioxidant activities. The findings indicate that compound 6b could be a promising lead for further studies.
Collapse
Affiliation(s)
- Sara Sadeghian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arian Fathi Hafshejani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhang Salahshour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmadreza Khodabakhshloo
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghazal Goshtasbi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sarikhani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Lv Y, Fan M, He J, Song X, Guo J, Gao B, Zhang J, Zhang C, Xie Y. Discovery of novel benzimidazole derivatives as selective and reversible monoamine oxidase B inhibitors for Parkinson's disease treatment. Eur J Med Chem 2024; 274:116566. [PMID: 38838545 DOI: 10.1016/j.ejmech.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. The development of novel scaffolds for human monoamine oxidase B (hMAO-B) inhibitors with reversible properties represents an important strategy to improve the efficacy and safety for PD treatment. In the current work, we have devised and assessed two innovative derivative series serving as hMAO-B inhibitors. These series have utilized benzimidazole as a scaffold and strategically incorporated a primary amide group, which is recognized as a pivotal pharmacophore in subsequent activity screening and reversible mode of action. Among these compounds, 16d has emerged as the most potent hMAO-B inhibitor with an IC50 value of 67.3 nM, comparable to safinamide (IC50 = 42.6 nM) in vitro. Besides, 16d demonstrated good selectivity towards hMAO-B isoenzyme with a selectivity index over 387. Importantly, in line with the design purpose, 16d inhibited hMAO-B in a competitive and reversible manner (Ki = 82.50 nM). Moreover, 16d exhibited a good safety profile in both cellular and acute toxicity assays in mice. It also displayed ideal pharmacokinetic properties and blood-brain barrier permeability in vivo, essential prerequisites for central nervous system medicines. In the MPTP-induced PD mouse model, 16d significantly alleviated the motor impairment, especially muscle relaxation and motor coordination. Therefore, 16d, serving as a lead compound, holds instructive significance for subsequent investigations regarding its application in the treatment of PD.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiayan He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoxin Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bianbian Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingqi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - YuanYuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
6
|
Fan M, Song X, Lu L, He J, Shen Y, Zhang C, Wang F, Xie Y. Comprehensive safety evaluation of a novel multitargeting compound XYY-CP1106: A candidate for Alzheimer's disease. Biomed Pharmacother 2024; 176:116786. [PMID: 38805971 DOI: 10.1016/j.biopha.2024.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Multitargeting has become a promising strategy for the development of anti-Alzheimer's disease (AD) drugs, considering the complexity of molecular mechanisms in AD pathology. In most pre-clinical studies, the effectiveness of these multi-targeted anti-AD drugs has been demonstrated but comprehensive safety assessments are lacking. Here, the safety evaluation of a novel multi-targeted candidate in AD (XYY-CP1106), characterized by its dual-property of iron chelation and monoamine oxidase B inhibition, was conducted by multifaceted analysis. Acute toxicity in mice was conducted to investigate the safety of oral administration and the maximum tolerated dose of the agent. In vitro Ames analysis, CHL chromosomal aberration analysis, and bone marrow micronucleus analysis were executed to evaluate the genotoxicity. A teratogenesis investigation in pregnant mice were meticulously performed to evaluate the teratogenesis of XYY-CP1106. Furthermore, a 90-day long-term toxicity analysis in rats was investigated to evaluate the cumulative toxicity after long-term administration. Strikingly, no toxic phenomena were found in all investigations, demonstrating relatively high safety profile of the candidate compound. The securing of safety heightened the translational significance of XYY-CP1106 as a novel multi-targeted anti-AD candidate, supporting the rationality of multitargeting strategy in the designs of smart anti-AD drugs.
Collapse
Affiliation(s)
- Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoxin Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liwen Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiayan He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yikai Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Fang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
7
|
Gucký A, Hamuľaková S. Targeting Biometals in Alzheimer's Disease with Metal Chelating Agents Including Coumarin Derivatives. CNS Drugs 2024; 38:507-532. [PMID: 38829443 PMCID: PMC11182807 DOI: 10.1007/s40263-024-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Numerous physiological processes happening in the human body, including cerebral development and function, require the participation of biometal ions such as iron, copper, and zinc. Their dyshomeostasis may, however, contribute to the onset of Alzheimer's disease (AD) and potentially other neurodegenerative diseases. Chelation of biometal ions is therefore a therapeutic strategy against AD. This review provides a survey of natural and synthetic chelating agents that are or could potentially be used to target the metal hypothesis of AD. Since metal dyshomeostasis is not the only pathological aspect of AD, and the nature of this disorder is very complex and multifactiorial, the most efficient therapeutics should target as many neurotoxic factors as possible. Various coumarin derivatives match this description and apart from being able to chelate metal ions, they exhibit the capacity to inhibit cholinesterases (ChEs) and monoamine oxidase B (MAO-B) while also possessing antioxidant, anti-inflammatory, and numerous other beneficial effects. Compounds based on the coumarin scaffold therefore represent a desirable class of anti-AD therapeutics.
Collapse
Affiliation(s)
- Adrián Gucký
- Department of Biochemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 040 01, Kosice, Slovak Republic
| | - Slávka Hamuľaková
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 040 01, Kosice, Slovak Republic.
| |
Collapse
|
8
|
Wang L, Zhu X, Wang B, Wang Y, Wang M, Yang S, Su C, Chang J, Zhu B. Design, Synthesis, and Activity Evaluation of Fluorine-Containing Scopolamine Analogues as Potential Antidepressants. J Med Chem 2024; 67:5391-5420. [PMID: 38354305 DOI: 10.1021/acs.jmedchem.3c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
This study aimed to develop novel rapid-acting antidepressants with sustained efficacy and favorable safety profiles. We designed and synthesized a series of fluorine-containing scopolamine analogues and evaluated their antidepressant potential. In vitro cytotoxicity assays showed that most of these compounds exhibited minimal toxicity against neuronal and non-neuronal mammalian cell lines (IC50 > 100 μM). The antidepressant activities of the compounds were evaluated using the tail suspension test, and S-3a was identified as a lead compound with potent and sustained antidepressant effects. Behaviorally, S-3a alleviated depressive symptoms in mice and displayed a higher cognitive safety margin than scopolamine. Toxicological assessments confirmed S-3a's safety, while pharmacokinetics showed a rapid clearance (half-life: 16.6 min). Mechanistically, S-3a antagonized M1 receptors and elevated BDNF levels, suggesting its potential as an antidepressant for further exploration.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xushuo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yijing Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengqi Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shuping Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chenhe Su
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Zhang C, Lu Y, Zhang J, Zang A, Ren J, Zheng Z, Fan M, Xie Y. Novel 3-hydroxypyridin-4(1H)-One derivatives as ferroptosis inhibitors with iron-chelating and reactive oxygen species scavenging activities and therapeutic effect in cisplatin-induced cytotoxicity. Eur J Med Chem 2024; 263:115945. [PMID: 37976709 DOI: 10.1016/j.ejmech.2023.115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Recent advances in understanding the role of iron and ROS in cell death suggest new therapeutic avenues to treat organ damage including acute kidney injury (AKI). Inhibiting ferroptosis was expected to have great potential for the treatment of this disease. Ferroptosis is characterized by iron-dependent lipid peroxidation and currently, a majority of reported ferroptosis inhibitors belong to either radical-trapping antioxidants or iron chelators. However, clinically used iron chelators such as deferoxamine and deferiprone have limited efficacy against ferroptosis (generally with EC50 > 100 μM), despite their proven safety. Herein, we present the rational design of novel ferroptosis inhibitors by incorporating the naturally occurring cinnamic acid scaffold and the 3-hydroxypyridin-4(1H)-one iron-chelating pharmacophore. Through ABTS˙+ radical-scavenging assay, oxygen radical absorbance capacity (ORAC) measurement, Fe3+ affinity evaluation, and anti-erastin-induced HT22 cell ferroptosis assays, we identified compound 9c as the most prospective ferroptosis inhibitor (ABTS˙+, IC50 = 4.35 ± 0.05 μM; ORCA = 23.79 ± 0.56 TE; pFe3+ = 18.59; EC50 = 14.89 ± 0.08 μM, respectively). Notably, 9c dose-dependently alleviated cell death in cisplatin-induced AKI model. Our results provide insight into the development of new ferroptosis inhibitors through rational incorporation of pharmacophores from existing ferroptosis inhibitors, and compound 9c could be a promising lead compound worth further investigation.
Collapse
Affiliation(s)
- Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yi Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jingqi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Anjie Zang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jinhui Ren
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
10
|
Kaur P, Rangra NK. Recent Advancements and SAR Studies of Synthetic Coumarins as MAO-B Inhibitors: An Updated Review. Mini Rev Med Chem 2024; 24:1834-1846. [PMID: 38778598 DOI: 10.2174/0113895575290599240503080025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The oxidative deamination of a wide range of endogenous and exogenous amines is catalyzed by a family of enzymes known as monoamine oxidases (MAOs), which are reliant on flavin-adenine dinucleotides. Numerous neurological conditions, such as Parkinson's disease (PD) and Alzheimer's disease (AD), are significantly correlated with changes in the amounts of biogenic amines in the brain caused by MAO. Hydrogen peroxide, reactive oxygen species, and ammonia, among other toxic consequences of this oxidative breakdown, can harm brain cells' mitochondria and cause oxidative damage. OBJECTIVE The prime objective of this review article was to highlight and conclude the recent advancements in structure-activity relationships of synthetic derivatives of coumarins for MAO-B inhibition, published in the last five years' research articles. METHODS The literature (between 2019 and 2023) was searched from platforms like Science Direct, Google Scholar, PubMed, etc. After going through the literature, we have found a number of coumarin derivatives being synthesized by researchers for the inhibition of MAO-B for the management of diseases associated with the enzyme such as Alzheimer's Disease and Parkinson's Disease. The effect of these coumarin derivatives on the enzyme depends on the substitutions associated with the structure. The structure-activity relationships of the synthetic coumarin derivatives that are popular nowadays have been described and summarized in the current study. RESULTS The results revealed the updated review on SAR studies of synthetic coumarins as MAO-B inhibitors, specifically for Alzheimer's Disease and Parkinson's Disease. The patents reported on coumarin derivatives as MAO-B inhibitors were also highlighted. CONCLUSION Recently, coumarins, a large class of chemicals with both natural and synthetic sources, have drawn a lot of attention because of the vast range of biological actions they have that are linked to neurological problems. Numerous studies have demonstrated that chemically produced and naturally occurring coumarin analogs both exhibited strong MAO-B inhibitory action. Coumarins bind to MAO-B reversibly thereby preventing the breakdown of neurotransmitters like dopamine leading to the inhibition of the enzyme A number of MAO-B blockers have been proven to be efficient therapies for treating neurological diseases like Alzheimer's Disease and Parkinson's Disease. To combat these illnesses, there is still an urgent need to find effective treatment compounds.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Naresh Kumar Rangra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, 174103, India
| |
Collapse
|
11
|
Zhang C, Zhang Y, Lv Y, Guo J, Gao B, Lu Y, Zang A, Zhu X, Zhou T, Xie Y. Chromone-based monoamine oxidase B inhibitor with potential iron-chelating activity for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:100-117. [PMID: 36519319 PMCID: PMC9762789 DOI: 10.1080/14756366.2022.2134358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Based on the multitarget-directed ligands (MTDLs) strategy, a series of chromone-hydroxypyridinone hybrids were designed, synthesised, and evaluated as potential multimodal anti-AD ligands. Prospective iron-chelating effects and favourable monoamine oxidase B (MAO-B) inhibitory activities were observed for most of the compounds. Pharmacological assays led to the identification of compound 17d, which exhibited favourable iron-chelating potential (pFe3+ = 18.52) and selective hMAO-B inhibitory activity (IC50 = 67.02 ± 4.3 nM, SI = 11). Docking simulation showed that 17d occupied both the substrate and the entrance cavity of MAO-B, and established several key interactions with the pocket residues. Moreover, 17d was determined to cross the blood-brain barrier (BBB), and can significantly ameliorate scopolamine-induced cognitive impairment in AD mice. Despite its undesired pharmacokinetic property, 17d remains a promising multifaceted agent that is worth further investigation.
Collapse
Affiliation(s)
- Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yujia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Bianbian Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yi Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Anjie Zang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xi Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China,Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China,CONTACT Yuanyuan X. Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou310014, P. R. China
| |
Collapse
|
12
|
Hassani B, Zare F, Emami L, Khoshneviszadeh M, Fazel R, Kave N, Sabet R, Sadeghpour H. Synthesis of 3-hydroxypyridin-4-one derivatives bearing benzyl hydrazide substitutions towards anti-tyrosinase and free radical scavenging activities. RSC Adv 2023; 13:32433-32443. [PMID: 37942455 PMCID: PMC10629491 DOI: 10.1039/d3ra06490e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Tyrosinase is a vital enzyme in the biosynthesis of melanin, which has a significant role in skin protection. Due to the importance of the tyrosinase enzyme in the cosmetics and health industries, studies to design new tyrosinase inhibitors have been expanded. In this study, the design and synthesis of 3-dihydroxypyridine-4-one derivatives containing benzo hydrazide groups with different substitutions were carried out, and their antioxidant and anti-tyrosinase activities were also evaluated. The proposed compounds showed tyrosinase inhibitory effects (IC50) in the 25.29 to 64.13 μM range. Among all compounds, 6i showed potent anti-tyrosinase activity with an IC50 = 25.29 μM. Also, the antioxidant activity of derivatives by using DPPH radical scavenging indicates an EC50 value between 0.039 and 0.389 mM. Molecular docking studies were performed to reveal the position and interactions of 6i as the most potent inhibitor within the tyrosinase active site. The results showed that 6i binds well to the proposed binding site and forms a stable complex with the target protein. Furthermore, the physicochemical profiles of the tested compounds indicated drug-like and bioavailability properties. The kinetic assay revealed that 6i acts as a competitive inhibitor. Also, for the estimation of the reactivity of the best compound (6i), the density functional theory (DFT) was performed at the B3LYP/6-31+G**.
Collapse
Affiliation(s)
- Bahareh Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Fateme Zare
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Leila Emami
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Fazel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Negin Kave
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| |
Collapse
|
13
|
Yi C, Liu X, Chen K, Liang H, Jin C. Design, synthesis and evaluation of novel monoamine oxidase B (MAO-B) inhibitors with improved pharmacokinetic properties for Parkinson's disease. Eur J Med Chem 2023; 252:115308. [PMID: 37001389 DOI: 10.1016/j.ejmech.2023.115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
A series of novel ((benzofuran-5-yl)methyl)pyrrolidine-2-carboxamide derivatives were designed, synthesized and evaluated as MAO-B inhibitors. SAR studies indicated that cyclizing benzyl ether into benzofuran ring resulted in the most potent MAO-B inhibitor (IC50 = 0.037 μM), (2S,4S)-4-fluoro-1-((2-(4-fluorophenyl) benzofuran-5-yl)methyl)pyrrolidine-2-carboxamide (C14). PK properties of C14 in rats and mice were significantly improved compared to our previous candidate and safinamide, indicating that benzofuran moiety is essential for improving PK properties. Moreover, C14 displayed good metabolic stability and brain-blood barrier permeability, as well as favorable in vitro properties. Finally, C14 significantly inhibited MAO-B in the mouse brain. C14 exhibited a potential efficacy for DA deficits in the MPTP-induced mouse model and significantly increased DA concentration in the striatum. Thus, we identified that C14 may be a promising drug candidate for PD treatment.
Collapse
|
14
|
Guo Z, Gu J, Zhang M, Su F, Su W, Xie Y. NMR-Based Metabolomics to Analyze the Effects of a Series of Monoamine Oxidases-B Inhibitors on U251 Cells. Biomolecules 2023; 13:biom13040600. [PMID: 37189348 DOI: 10.3390/biom13040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer’s disease (AD) is a typical progressive neurodegenerative disorder, and with multiple possible pathogenesis. Among them, coumarin derivatives could be used as potential drugs as monoamine oxidase-B (MAO-B) inhibitors. Our lab has designed and synthesized coumarin derivatives based on MAO-B. In this study, we used nuclear magnetic resonance (NMR)-based metabolomics to accelerate the pharmacodynamic evaluation of candidate drugs for coumarin derivative research and development. We detailed alterations in the metabolic profiles of nerve cells with various coumarin derivatives. In total, we identified 58 metabolites and calculated their relative concentrations in U251 cells. In the meantime, the outcomes of multivariate statistical analysis showed that when twelve coumarin compounds were treated with U251cells, the metabolic phenotypes were distinct. In the treatment of different coumarin derivatives, there several metabolic pathways changed, including aminoacyl-tRNA biosynthesis, D-glutamine and D-glutamate metabolism, glycine, serine and threonine metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, glutathione metabolism and valine, leucine and isoleucine biosynthesis. Our work documented how our coumarin derivatives affected the metabolic phenotype of nerve cells in vitro. We believe that these NMR-based metabolomics might accelerate the process of drug research in vitro and in vivo.
Collapse
|
15
|
Study on Absorption, Distribution and Excretion of a New Candidate Compound XYY-CP1106 against Alzheimer's Disease in Rats by LC-MS/MS. Molecules 2023; 28:molecules28052377. [PMID: 36903623 PMCID: PMC10005075 DOI: 10.3390/molecules28052377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
XYY-CP1106, a candidate compound synthesized from a hybrid of hydroxypyridinone and coumarin, has been shown to be remarkably effective in treating Alzheimer's disease. A simple, rapid and accurate high-performance liquid chromatography coupled with the triple quadrupole mass spectrometer (LC-MS/MS) method was established in this study to elucidate the pharmacokinetics of XYY-CP1106 after oral and intravenous administration in rats. XYY-CP1106 was shown to be rapidly absorbed into the blood (Tmax, 0.57-0.93 h) and then eliminated slowly (T1/2, 8.26-10.06 h). Oral bioavailability of XYY-CP1106 was (10.70 ± 1.72)%. XYY-CP1106 could pass through the blood-brain barrier with a high content of (500.52 ± 260.12) ng/g at 2 h in brain tissue. The excretion results showed that XYY-CP1106 was mainly excreted through feces, with an average total excretion rate of (31.14 ± 0.05)% in 72 h. In conclusion, the absorption, distribution and excretion of XYY-CP1106 in rats provided a theoretical basis for subsequent preclinical studies.
Collapse
|
16
|
Ishabiyi FO, Ogidi JO, Olukade BA, Amorha CC, El-Sharkawy LY, Okolo CC, Adeniyi TM, Atasie NH, Ibrahim A, Balogun TA. Computational Evaluation of Azadirachta indica-Derived Bioactive Compounds as Potential Inhibitors of NLRP3 in the Treatment of Alzheimer's Disease. J Alzheimers Dis 2023; 94:S67-S85. [PMID: 36683510 PMCID: PMC10473084 DOI: 10.3233/jad-221020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The development of therapeutic agents against Alzheimer's disease (AD) has stalled recently. Drug candidates targeting amyloid-β (Aβ) deposition have often failed clinical trials at different stages, prompting the search for novel targets for AD therapy. The NLRP3 inflammasome is an integral part of innate immunity, contributing to neuroinflammation and AD pathophysiology. Thus, it has become a promising new target for AD therapy. OBJECTIVE The study sought to investigate the potential of bioactive compounds derived from Azadirachta-indica to inhibit the NLRP3 protein implicated in the pathophysiology of AD. METHODS Structural bioinformatics via molecular docking and density functional theory (DFT) analysis was utilized for the identification of novel NLRP3 inhibitors from A. indica bioactive compounds. The compounds were further subjected to pharmacokinetic and drug-likeness analysis. Results obtained from the compounds were compared against that of oridonin, a known NLRP3 inhibitor. RESULTS The studied compounds optimally saturated the binding site of the NLRP3 NACHT domain, forming principal interactions with the different amino acids at its binding site. The studied compounds also demonstrated better bioactivity and chemical reactivity as ascertained by DFT analysis and all the compounds except 7-desacetyl-7-benzoylazadiradione, which had two violations, conformed to Lipinski's rule of five. CONCLUSION In silico studies show that A. indica derived compounds have better inhibitory potential against NLRP3 and better pharmacokinetic profiles when compared with the reference ligand (oridonin). These compounds are thus proposed as novel NLRP3 inhibitors for the treatment of AD. Further wet-lab studies are needed to confirm the potency of the studied compounds.
Collapse
Affiliation(s)
- Felix Oluwasegun Ishabiyi
- Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - James Okwudirichukwu Ogidi
- Faculty of Pharmacy, University of Nigeria, Nsukka, Enugu, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Baliqis Adejoke Olukade
- Physiology Department, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu Campus, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Chizoba Christabel Amorha
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Lina Y. El-Sharkawy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, United Kingdom
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Chukwuemeka Calistus Okolo
- Department of Veterinary Medicine University of Nigeria, Nsukka, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Titilope Mary Adeniyi
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Nkechi Hope Atasie
- Nigerian Correctional Services, Enugu Custodial Center, Enugu State, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Abdulwasiu Ibrahim
- Department of Biochemistry, Drosophila Laboratory, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | | |
Collapse
|
17
|
Li X, Li T, Zhang P, Li X, Lu L, Sun Y, Zhang B, Allen S, White L, Phillips J, Zhu Z, Yao H, Xu J. Discovery of novel hybrids containing clioquinol−1-benzyl-1,2,3,6-tetrahydropyridine as multi-target-directed ligands (MTDLs) against Alzheimer's disease. Eur J Med Chem 2022; 244:114841. [DOI: 10.1016/j.ejmech.2022.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022]
|
18
|
Arshad JZ, Hanif M. Hydroxypyrone derivatives in drug discovery: from chelation therapy to rational design of metalloenzyme inhibitors. RSC Med Chem 2022; 13:1127-1149. [PMID: 36325396 PMCID: PMC9579940 DOI: 10.1039/d2md00175f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 07/31/2023] Open
Abstract
The versatile structural motif of hydroxypyrone is found in natural products and can be easily converted into hydroxypyridone and hydroxythiopyridone analogues. The favourable toxicity profile and ease of functionalization to access a vast library of compounds make them an ideal structural scaffold for drug design and discovery. This versatile scaffold possesses excellent metal chelating properties that can be exploited for chelation therapy in clinics. Deferiprone [1,2-dimethyl-3-hydroxy-4(1H)-one] was the first orally active chelator to treat iron overload in thalassemia major. Metal complexes of hydroxy-(thio)pyr(id)ones have been investigated as magnetic resonance imaging contrast agents, and anticancer and antidiabetic agents. In recent years, this compound class has demonstrated potential in discovering and developing metalloenzyme inhibitors. This review article summarizes recent literature on hydroxy-(thio)pyr(id)ones as inhibitors for metalloenzymes such as histone deacetylases, tyrosinase and metallo-β-lactamase. Different approaches to the design of hydroxy-(thio)pyr(id)ones and their biological properties against selected metalloenzymes are discussed.
Collapse
Affiliation(s)
- Jahan Zaib Arshad
- Department of Chemistry, Government College Women University Sialkot Sialkot Pakistan
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland Private Bag 92019 Auckland 1142 New Zealand (+64) 9 373 7599 ext. 87422
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
19
|
Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. Eur J Med Chem 2022; 238:114464. [DOI: 10.1016/j.ejmech.2022.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
|
20
|
Alikhani M, Aalikhani M, Khalili M. Reduction of iron toxicity in the heart of iron-overloaded mice with natural compounds. Eur J Pharmacol 2022; 924:174981. [PMID: 35487255 DOI: 10.1016/j.ejphar.2022.174981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Iron-overload is one of the risk factors in susceptible individuals. Iron-overload causes complications such as diastolic dysfunction, arrhythmias, ventricular dilation, and systolic dysfunction in the heart. Therefore, particular care is needed for those who need blood transfusions or patients with underlying heart diseases. PURPOSE In this study, we examined the ability of six compounds, hesperidin, coumarin, caffeic acid, ferulic acid, and vanillin, to reduce the effects of iron-overdose in the heart of iron-overloaded mice. METHODS For this purpose, 84 mice were prepared and except for the control group, iron-overload conditions were created in them by injecting iron. The hearts of mice were then harvested and the activities of the antioxidant enzymes catalase and superoxide dismutase were evaluated. Additionally, the amount of lipid peroxidation was measured by assessing the quantity of malondialdehyde. The physiopathology of cardiac tissue was considered by Perl's and H&E staining. RESULTS According to the results, almost all natural compounds showed better performance than desferal, as an iron chelator chemical. Meanwhile, hesperidin, vanillin, and ferulic acid were the best antioxidant compounds and were able to improve the activity of antioxidant enzymes by reducing the amount of deposited iron. CONCLUSION We recommend the use of the above compounds as natural iron chelators after completing additional studies.
Collapse
Affiliation(s)
- Mehrdad Alikhani
- Department of Cardiology, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Aalikhani
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Khalili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
21
|
Lin S, Liu C, Zhao X, Han X, Li X, Ye Y, Li Z. Recent Advances of Pyridinone in Medicinal Chemistry. Front Chem 2022; 10:869860. [PMID: 35402370 PMCID: PMC8984125 DOI: 10.3389/fchem.2022.869860] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Pyridinones have been adopted as an important block in medicinal chemistry that could serve as hydrogen bond donors and acceptors. With the help of feasible synthesis routes via established condensation reactions, the physicochemical properties of such a scaffold could be manipulated by adjustment of polarity, lipophilicity, and hydrogen bonding, and eventually lead to its wide application in fragment-based drug design, biomolecular mimetics, and kinase hinge-binding motifs. In addition, most pyridinone derivatives exhibit various biological activities ranging from antitumor, antimicrobial, anti-inflammatory, and anticoagulant to cardiotonic effects. This review focuses on recent contributions of pyridinone cores to medicinal chemistry, and addresses the structural features and structure–activity relationships (SARs) of each drug-like molecule. These advancements contribute to an in-depth understanding of the potential of this biologically enriched scaffold and expedite the development of its new applications in drug discovery.
Collapse
Affiliation(s)
- Shibo Lin
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
- *Correspondence: Shibo Lin,
| | - Chun Liu
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiaotian Zhao
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiao Han
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xuanhao Li
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Yongqin Ye
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
22
|
Resveratrol-based compounds and neurodegeneration: Recent insight in multitarget therapy. Eur J Med Chem 2022; 233:114242. [DOI: 10.1016/j.ejmech.2022.114242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 01/04/2023]
|
23
|
Dorababu A. Promising heterocycle-based scaffolds in recent (2019-2021) anti-Alzheimer's drug design and discovery. Eur J Pharmacol 2022; 920:174847. [PMID: 35218718 DOI: 10.1016/j.ejphar.2022.174847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative diseases that led to morbidity and mortality world-wide. It is a complex disease whose etiology is not completely known that leads to difficulty in prevent or cure of the AD. Also, there are only few approved drugs for AD treatment. Apart from deaths due to AD, expenditure of treatment and care of AD patients is higher than that of treatment of HIV and cancer diseases combined. Hence, it leads to an economic burden also. Although research is being carried out on designing drugs for AD, most of them have ended up in poor inhibitors with high toxicity. Hence, researchers should shoulder a great responsibility of discovery of efficient drugs for AD treatment. In the field of drug discovery, heterocycles played an important role. Also, most of the heterocyclic scaffolds have been used in design of potent anti-AD agents. In view of this, heterocyclic molecules reported recently are compiled and evaluated comprehensively. Especially, the molecules which exhibited pronounced activity are emphasized and described with respect to structure-activity relationship (SAR) in brief.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, 583219, India.
| |
Collapse
|
24
|
Wojtunik-Kulesza K, Oniszczuk T, Mołdoch J, Kowalska I, Szponar J, Oniszczuk A. Selected Natural Products in Neuroprotective Strategies for Alzheimer's Disease-A Non-Systematic Review. Int J Mol Sci 2022; 23:1212. [PMID: 35163136 PMCID: PMC8835836 DOI: 10.3390/ijms23031212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) are distinguished by the irreversible degeneration of central nervous system function and structure. AD is characterized by several different neuropathologies-among others, it interferes with neuropsychiatrical controls and cognitive functions. This disease is the number one neurodegenerative disorder; however, its treatment options are few and, unfortunately, ineffective. In the new strategies devised for AD prevention and treatment, the application of plant-based natural products is especially popular due to lesser side effects associated with their taking. Moreover, their neuroprotective activities target different pathological mechanisms. The current review presents the anti-AD properties of several natural plant substances. The paper throws light on products under in vitro and in vivo trials and compiles information on their mechanism of actions. Knowledge of the properties of such plant compounds and their combinations will surely lead to discovering new potent medicines for the treatment of AD with lesser side effects than the currently available pharmacological proceedings.
Collapse
Affiliation(s)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Jarosław Szponar
- Toxicology Clinic, Clinical Department of Toxicology and Cardiology, Medical University of Lublin, Stefan Wyszyński Regional Specialist Hospital, Al. Kraśnicka 100, 20-718 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
25
|
Sharma S, Baral M, Kanungo BK. Recent advances in therapeutical applications of the versatile hydroxypyridinone chelators. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01114-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Wang Z, Yi C, Chen K, Wang T, Deng K, Jin C, Hao G. Enhancing monoamine oxidase B inhibitory activity via chiral fluorination: Structure-activity relationship, biological evaluation, and molecular docking study. Eur J Med Chem 2022; 228:114025. [PMID: 34871839 DOI: 10.1016/j.ejmech.2021.114025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/06/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease among the elderly. Currently, monoamine oxidase B (MAO-B) inhibitors are extensively used for PD in clinics. In this work, a series of novel chiral fluorinated pyrrolidine derivatives were designed and synthesized. In vitro biological evaluations revealed that compound D5 was the most potent, selective MAO-B inhibitor (IC50 = 0.019 μM, MAO-A/MAO-B selectivity index = 2440), which was 10-fold than that of miracle drug safinamide (IC50 = 0.163 μM, MAO-A/MAO-B selectivity index = 172). It was verified that the enhanced hydrophobic interaction of D5 improved the activity against MAO-B in molecular docking study. Besides, D5 exhibited excellent metabolic properties and pharmacokinetic profiles in monkeys and rats. Moreover, D5 displayed more efficacious than safinamide in vivo models. In the MPTP-induced PD mouse model, D5 significantly alleviated DA deficits and increased the effect of levodopa on dopamine concentration in the striatum. Meanwhile, D5 produced a prominent reduction in tremulous jaw movements induced by galantamine. Accordingly, we present D5 as a novel, highly potent, and selective MAO-B inhibitor for PD therapy.
Collapse
Affiliation(s)
- Zhizheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Chao Yi
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, China; HEC Pharm Group, HEC Research and Development Center, Dongguan, 523871, China
| | - Kangzhi Chen
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, China; HEC Pharm Group, HEC Research and Development Center, Dongguan, 523871, China
| | - Tao Wang
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, China; HEC Pharm Group, HEC Research and Development Center, Dongguan, 523871, China
| | - Kang Deng
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, China; HEC Pharm Group, HEC Research and Development Center, Dongguan, 523871, China
| | - Chuanfei Jin
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, China; HEC Pharm Group, HEC Research and Development Center, Dongguan, 523871, China.
| | - Gefei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
27
|
Liu T, Chen S, Du J, Xing S, Li R, Li Z. Design, synthesis, and biological evaluation of novel (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 227:113973. [PMID: 34752955 DOI: 10.1016/j.ejmech.2021.113973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
On the basis of our previous work, a novel series of (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives were synthesized and evaluated as multifunctional ligands for the treatment of Alzheimer's disease (AD). Biological evaluations indicated that the derivatives can be used as anti-AD drugs that have multifunctional properties, inhibit the activity of butyrylcholinesterase (BuChE), inhibit neuroinflammation, have neuroprotective properties, and inhibit the self-aggregation of Aβ. Compound f9 showed good potency in BuChE inhibition (IC50: 1.28 ± 0.18 μM), anti-neuroinflammatory potency (NO, IL-1β, TNF-α; IC50: 0.67 ± 0.14, 1.61 ± 0.21, 4.15 ± 0.44 μM, respectively), and inhibited of Aβ self-aggregation (51.91 ± 3.90%). Preliminary anti-inflammatory mechanism studies indicated that the representative compound f9 blocked the activation of the NF-κB signaling pathway. Moreover, f9 exhibited 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect, and an inhibitory effect on the production of intracellular reactive oxygen species (ROS). In the bi-directional transport assay, f9 displayed proper blood-brain barrier (BBB) permeability. In addition, the title compound improved memory and cognitive functions in a mouse model induced by scopolamine. Hence, the compound f9 can be considered as a promising lead compound for further investigation in the treatment of AD.
Collapse
Affiliation(s)
- Tongtong Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shiming Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jiyu Du
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Siqi Xing
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Rong Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
28
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
29
|
Song Y, Li X, Shi D, Sun T, Liu W, Li X, Qiao S, Chen X, Guo Y, Li J. A senolysis-based theragnostic prodrug strategy towards chronic renal failure. Chem Sci 2022; 13:11738-11745. [PMID: 36320912 PMCID: PMC9580481 DOI: 10.1039/d2sc03525a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Selective elimination of senescent cells (senolysis) has become a promising therapeutic strategy for the management of chronic renal failure (CRF), but the senolytic molecular pathways towards CRF therapy are limited. Here, we present for the first time a senescence-associated β-galactosidase (SA-β-gal) activatable theragnostic prodrug strategy to pertinently and effectively treat CRF in mice with the aid of fluorescence-guided senolysis. The signs of premature senescence, including the overexpression of β-gal, have been found in kidneys of mice with CRF, making this enzyme particularly suitable as a trigger of prodrugs for CRF therapy. With this unique design, our pioneering prodrug TSPD achieved the activation of a fluorophore for tracking and the specific release of the parent drug, gemcitabine, in β-gal-enriched cells after activation with SA-β-gal. In mice with CRF, abdominal administration of TSPD was effective for improvement of the kidney functions, supporting the feasibility of the SA-β-gal-dependent senolysis therapy towards CRF. Here, we report a senescence-associated β-galactosidase activatable theragnostic prodrug to pertinently treat chronic renal failure (CRF) in mice with the aid of fluorescence-guided senolysis, providing a creative molecular approach to CRF therapy.![]()
Collapse
Affiliation(s)
- Yihe Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinming Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Donglei Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Tianyue Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, Hainan, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Sicong Qiao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, Hainan, China
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali 671000, China
| |
Collapse
|
30
|
Jiang X, Guo J, Zhang C, Gu J, Zhou T, Bai R, Xie Y. Discovery of benzamide-hydroxypyridinone hybrids as potent multi-targeting agents for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2021; 36:2045-2054. [PMID: 34607518 PMCID: PMC8510601 DOI: 10.1080/14756366.2021.1978081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A novel class of benzamide-hydroxypyridinone (HPO) derivatives were innovatively designed, synthesised, and biologically evaluated as potential multitargeting candidates for the treatment of Alzheimer's disease (AD) through pharmacophores-merged approaches based on lead compounds 18d, benzyloxy phenyl analogs, and deferiprone (DFP). These hybrids possessed potent Monoamine oxidase B (MAO-B) inhibition as well as excellent iron chelation, with pFe3+ values ranging from 18.13 to 19.39. Among all the compounds, 8g exhibited the most potent selective MAO-B inhibitor (IC50 = 68.4 nM, SI = 213). Moreover, 8g showed favourable pharmacokinetic properties and had great potential to penetrate the BBB in silico and PAMPA-BBB assay. Molecular modelling showed that 8g could adopt an extended conformation and have more enhanced interactions with MAO-B than 18d. In vitro and in vivo assays demonstrated that 8g remarkably resisted Aβ-induced oxidation and ameliorated cognitive impairment induced by scopolamine. Taken collectively, these results suggest that compound 8g is a potential multifunctional candidate for anti-AD treatment.
Collapse
Affiliation(s)
- Xiaoying Jiang
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China.,College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Jianan Guo
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Jinping Gu
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
31
|
Husain A, Balushi K A, Akhtar MJ, Khan SA. Coumarin linked heterocyclic hybrids: A promising approach to develop multi target drugs for Alzheimer's disease. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Jakaria M, Belaidi AA, Bush AI, Ayton S. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem 2021; 159:804-825. [PMID: 34553778 DOI: 10.1111/jnc.15519] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, with complex pathophysiology that is not fully understood. While β-amyloid plaque and neurofibrillary tangles define the pathology of the disease, the mechanism of neurodegeneration is uncertain. Ferroptosis is an iron-mediated programmed cell death mechanism characterised by phospholipid peroxidation that has been observed in clinical AD samples. This review will outline the growing molecular and clinical evidence implicating ferroptosis in the pathogenesis of AD, with implications for disease-modifying therapies.
Collapse
Affiliation(s)
- Md Jakaria
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
33
|
Koyiparambath VP, Prayaga Rajappan K, Rangarajan TM, Al-Sehemi AG, Pannipara M, Bhaskar V, Nair AS, Sudevan ST, Kumar S, Mathew B. Deciphering the detailed structure-activity relationship of coumarins as Monoamine oxidase enzyme inhibitors-An updated review. Chem Biol Drug Des 2021; 98:655-673. [PMID: 34233082 DOI: 10.1111/cbdd.13919] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022]
Abstract
In the last few years, Monoamine oxidase (MAO) have emerged as a target for the treatment of many neurodegenerative diseases including anxiety, depression, Alzheimer's, and Parkinson's diseases. The MAO inhibitors especially selective and reversible inhibitors of either of the isoenzymes (MAO-A & MAO-B) have been given more attention as both the form have different therapeutic properties and hence can be used for different neurological disorders. The lack of selective and reversible inhibitors available for both the enzymes and severity of the neuronal disorder in society have opened a new door to the researchers to carry out large and dedicated researches in this field. Among the several classes of the molecule as the inhibitors, coumarins hold a rank as a potent scaffold with its ease of synthesis, high therapeutic potential, and reversibility in inhibiting MAOs. The current review is an update of the research in the field that covers the works during the last six years (2014-2020) with a major focus on the SAR of the coumarin derivatives including synthetic, natural, and hybrids of coumarins with FDA-approved drugs.
Collapse
Affiliation(s)
- Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Krishnendu Prayaga Rajappan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Abdullah G Al-Sehemi
- Research center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| | - Mehboobali Pannipara
- Research center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| | - Vaishnav Bhaskar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
34
|
Abbasi U, Abbina S, Gill A, Takuechi LE, Kizhakkedathu JN. Role of Iron in the Molecular Pathogenesis of Diseases and Therapeutic Opportunities. ACS Chem Biol 2021; 16:945-972. [PMID: 34102834 DOI: 10.1021/acschembio.1c00122] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron is an essential mineral that serves as a prosthetic group for a variety of proteins involved in vital cellular processes. The iron economy within humans is highly conserved in that there is no proper iron excretion pathway. Therefore, iron homeostasis is highly evolved to coordinate iron acquisition, storage, transport, and recycling efficiently. A disturbance in this state can result in excess iron burden in which an ensuing iron-mediated generation of reactive oxygen species imparts widespread oxidative damage to proteins, lipids, and DNA. On the contrary, problems in iron deficiency either due to genetic or nutritional causes can lead to a number of iron deficiency disorders. Iron chelation strategies have been in the works since the early 1900s, and they still remain the most viable therapeutic approach to mitigate the toxic side effects of excess iron. Intense investigations on improving the efficacy of chelation strategies while being well tolerated and accepted by patients have been a particular focus for many researchers over the past 30 years. Moreover, recent advances in our understanding on the role of iron in the pathogenesis of different diseases (both in iron overload and iron deficiency conditions) motivate the need to develop new therapeutics. We summarized recent investigations into the role of iron in health and disease conditions, iron chelation, and iron delivery strategies. Information regarding small molecule as well as macromolecular approaches and how they are employed within different disease pathogenesis such as primary and secondary iron overload diseases, cancer, diabetes, neurodegenerative diseases, infections, and in iron deficiency is provided.
Collapse
Affiliation(s)
- Usama Abbasi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Arshdeep Gill
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Lily E. Takuechi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
- The School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
35
|
Zhang C, Lv Y, Bai R, Xie Y. Structural exploration of multifunctional monoamine oxidase B inhibitors as potential drug candidates against Alzheimer's disease. Bioorg Chem 2021; 114:105070. [PMID: 34126574 DOI: 10.1016/j.bioorg.2021.105070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
AD is one of the most typical neurodegenerative disorders that suffer many seniors worldwide. Recently, MAO inhibitors have received increasing attention not only for their roles involved in monoamine neurotransmitters metabolism and oxidative stress but also for their additional neuroprotective and neurorescue effects against AD. The curiosity in MAO inhibitors is reviving, and novel MAO-B inhibitors recently developed with ancillary activities (e.g., Aβ aggregation and AChE inhibition, anti-ROS and chelating activities) have been proposed as multitarget drugs foreshadowing a positive outlook for the treatment of AD. The current review describes the recent development of the design, synthesis, and screening of multifunctional ligands based on MAO-B inhibition for AD therapy. Structure-activity relationships and rational design strategies of the synthetic or natural product derivatives (chalcones, coumarins, chromones, and homoisoflavonoids) are discussed.
Collapse
Affiliation(s)
- Changjun Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, PR China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Renren Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, PR China.
| | - Yuanyuan Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, PR China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
36
|
Guo J, Zhang Y, Zhang C, Yao C, Zhang J, Jiang X, Zhong Z, Ge J, Zhou T, Bai R, Xie Y. N-Propargylamine-hydroxypyridinone hybrids as multitarget agents for the treatment of Alzheimer's disease. Bioorg Chem 2021; 113:105013. [PMID: 34062405 DOI: 10.1016/j.bioorg.2021.105013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
AD is a progressive brain disorder. Because of the lack of remarkable single-target drugs against neurodegenerative disorders, the multitarget-directed ligand strategy has received attention as a promising therapeutic approach. Herein, we rationally designed twenty-nine hybrids of N-propargylamine-hydroxypyridinone. The designed hybrids possessed excellent iron-chelating activity (pFe3+ = 17.09-22.02) and potent monoamine oxidase B inhibitory effects. Various biological evaluations of the optimal compound 6b were performed step by step, including inhibition screening of monoamine oxidase (hMAO-B IC50 = 0.083 ± 0.001 µM, hMAO-A IC50 = 6.11 ± 0.08 µM; SI = 73.5), prediction of blood-brain barrier permeability and mouse behavioral research. All of these favorable results proved that the N-propargylamine-hydroxypyridinone scaffold is a promising structure for the discovery of multitargeted ligands for AD therapy.
Collapse
Affiliation(s)
- Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Yujia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Changjun Zhang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Chuansheng Yao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Jingqi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Xiaoying Jiang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, PR China
| | - Zhichao Zhong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Jiamin Ge
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Renren Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, PR China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China; Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
37
|
Yao H, Uras G, Zhang P, Xu S, Yin Y, Liu J, Qin S, Li X, Allen S, Bai R, Gong Q, Zhang H, Zhu Z, Xu J. Discovery of Novel Tacrine-Pyrimidone Hybrids as Potent Dual AChE/GSK-3 Inhibitors for the Treatment of Alzheimer's Disease. J Med Chem 2021; 64:7483-7506. [PMID: 34024109 DOI: 10.1021/acs.jmedchem.1c00160] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Based on a multitarget strategy, a series of novel tacrine-pyrimidone hybrids were identified for the potential treatment of Alzheimer's disease (AD). Biological evaluation results demonstrated that these hybrids exhibited significant inhibitory activities toward acetylcholinesterase (AChE) and glycogen synthase kinase 3 (GSK-3). The optimal compound 27g possessed excellent dual AChE/GSK-3 inhibition both in terms of potency and equilibrium (AChE: IC50 = 51.1 nM; GSK-3β: IC50 = 89.3 nM) and displayed significant amelioration on cognitive deficits in scopolamine-induced amnesia mice and efficient reduction against phosphorylation of tau protein on Ser-199 and Ser-396 sites in glyceraldehyde (GA)-stimulated differentiated SH-SY5Y cells. Furthermore, compound 27g exhibited eligible pharmacokinetic properties, good kinase selectivity, and moderate neuroprotection against GA-induced reduction in cell viability and neurite damage in SH-SY5Y-derived neurons. The multifunctional profiles of compound 27g suggest that it deserves further investigation as a promising lead for the prospective treatment of AD.
Collapse
Affiliation(s)
- Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Giuseppe Uras
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Pengfei Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ying Yin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jie Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Shuai Qin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xinuo Li
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Stephanie Allen
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Renren Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| |
Collapse
|
38
|
He M, Fan M, Peng Z, Wang G. An overview of hydroxypyranone and hydroxypyridinone as privileged scaffolds for novel drug discovery. Eur J Med Chem 2021; 221:113546. [PMID: 34023737 DOI: 10.1016/j.ejmech.2021.113546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023]
Abstract
Hydroxypyranone and hydroxypyridinone are important oxygen-containing or nitrogen-containing heterocyclic nucleus and attracted increasing attention in medicinal chemistry and drug discovery over the past decade. Previous literature reports revealed that hydroxypyranone and hydroxypyridinone derivatives exhibit a wide range of pharmacological activities such as antibacterial, antifungal, antiviral, anticancer, anti-inflammatory, antioxidant, anticonvulsant, and anti-diabetic activities. In this review, we systematically summarized the literature reported biological activities of hydroxypyranone and hydroxypyridinone derivatives. In particular, we focus on their biological activity, structure-activity relationship (SAR), mechanism of action, and interaction mechanisms with the target. The collected information is expected to provide rational guidance for the development of clinically useful agents from these pharmacophores.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Meiyan Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.
| |
Collapse
|
39
|
Gleason A, Bush AI. Iron and Ferroptosis as Therapeutic Targets in Alzheimer's Disease. Neurotherapeutics 2021; 18:252-264. [PMID: 33111259 PMCID: PMC8116360 DOI: 10.1007/s13311-020-00954-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD), one of the most common neurodegenerative diseases worldwide, has a devastating personal, familial, and societal impact. In spite of profound investment and effort, numerous clinical trials targeting amyloid-β, which is thought to have a causative role in the disease, have not yielded any clinically meaningful success to date. Iron is an essential cofactor in many physiological processes in the brain. An extensive body of work links iron dyshomeostasis with multiple aspects of the pathophysiology of AD. In particular, regional iron load appears to be a risk factor for more rapid cognitive decline. Existing iron-chelating agents have been in use for decades for other indications, and there are preliminary data that some of these could be effective in AD. Many novel iron-chelating compounds are under development, some with in vivo data showing potential Alzheimer's disease-modifying properties. This heretofore underexplored therapeutic class has considerable promise and could yield much-needed agents that slow neurodegeneration in AD.
Collapse
Affiliation(s)
- Andrew Gleason
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
40
|
Guo J, Mi Z, Jiang X, Zhang C, Guo Z, Li L, Gu J, Zhou T, Bai R, Xie Y. Design, synthesis and biological evaluation of potential anti-AD hybrids with monoamine oxidase B inhibitory and iron-chelating effects. Bioorg Chem 2020; 108:104564. [PMID: 33353806 DOI: 10.1016/j.bioorg.2020.104564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/30/2020] [Accepted: 12/13/2020] [Indexed: 12/31/2022]
Abstract
A series of active hybrids combining 3-hydroxypyridin-4(1H)-one and coumarin pharmacophores were designed and synthesized as potential agents for the treatment of Alzheimer's disease (AD). All the compounds exhibited excellent iron-chelating activities (pFe3+ = 14.8-19.2) and showed favorable monoamine oxidase B (MAO-B) inhibitory effects compared to the reference drug Pargyline (IC50 = 86.9 nM). Among them, compound 11 g displayed the best MAO-B inhibitory activity with an IC50 value of 99.3 nM. Molecular docking analysis showed that compound 11 g could enter the entrance cavity and substrate cavity of MAO-B. Furthermore, the compound 11 g had an excellent antioxidant effect and was capable of protecting from the amyloid-β1-42 (Aβ1-42) induced PC12 cell damage. In silico tools were applied for predicting the blood-brain barrier (BBB) penetration and compound 11 g was proved to overcome the brain exposure challenge. In the mice behavioral study, compound 11 g significantly ameliorated cognitive impairment induced by Scopolamine. More importantly, compound 11 g displayed favorable pharmacokinetic profiles in a rat model. In summary, compound 11 g, with both anti-MAO-B and iron-chelating ability, was proved to be a promising potential anti-AD agent for further optimization.
Collapse
Affiliation(s)
- Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Zhisheng Mi
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Xiaoying Jiang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Changjun Zhang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Zili Guo
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Linzi Li
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Jinping Gu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Renren Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, PR China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China; Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
41
|
Jin CF, Wang ZZ, Chen KZ, Xu TF, Hao GF. Computational Fragment-Based Design Facilitates Discovery of Potent and Selective Monoamine Oxidase-B (MAO-B) Inhibitor. J Med Chem 2020; 63:15021-15036. [PMID: 33210537 DOI: 10.1021/acs.jmedchem.0c01663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is one of the most common age-related neurodegenerative diseases. Inhibition of monoamine oxidase-B (MAO-B), which is mainly found in the glial cells of the brain, may lead to an elevated level of dopamine (DA) in patients. MAO-B inhibitors have been used extensively for patients with PD. However, the discovery of the selective MAO-B inhibitor is still a challenge. In this study, a computational strategy was designed for the rapid discovery of selective MAO-B inhibitors. A series of (S)-2-(benzylamino)propanamide derivatives were designed. In vitro biological evaluations revealed that (S)-1-(4-((3-fluorobenzyl)oxy)benzyl)azetidine-2-carboxamide (C3) was more potent and selective than safinamide, a promising drug for regulating MAO-B. Further studies revealed that the selectivity mechanism of C3 was due to the steric clash caused by the residue difference of Phe208 (MAO-A) and Ile199 (MAO-B). Animal studies showed that compound C3 could inhibit cerebral MAO-B activity and alleviate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neuronal loss.
Collapse
Affiliation(s)
- Chuan-Fei Jin
- Sunshine Lake Pharma Co. Ltd., Shenzhen 518000; HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, P. R. China
| | - Zhi-Zheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Kang-Zhi Chen
- Sunshine Lake Pharma Co. Ltd., Shenzhen 518000; HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, P. R. China
| | - Teng-Fei Xu
- Sunshine Lake Pharma Co. Ltd., Shenzhen 518000; HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, P. R. China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
42
|
Yang Z, Huang X, Lai W, Tang Y, Liu J, Wang Y, Chu K, Brown J, Hong G. Synthesis and identification of a novel derivative of salidroside as a selective, competitive inhibitor of monoamine oxidase B with enhanced neuroprotective properties. Eur J Med Chem 2020; 209:112935. [PMID: 33097301 DOI: 10.1016/j.ejmech.2020.112935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Salidroside [(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-(4-hydroxyphenethoxy)tetrahy-dro-2H-pyran-3,4,5-triol] is an antioxidant, anti-inflammatory and neuroprotective agent, but its drug-like properties are unoptimized and its mechanism of actions is uncertain. We synthesized twenty-six novel derivatives of salidroside and examined them in CoCl2-treated PC12 cells using MTT assay. pOBz, synthesized by esterifying the phenolic hydroxyl group of salidroside with benzoyl chloride, was one of five derivatives that were more cytoprotective than salidroside, with an EC50 of 0.038 μM versus 0.30 μM for salidroside. pOBz was also more lipophilic, with log P of 1.44 versus -0.89 for salidroside. Reverse virtual docking predicted that pOBz would bind strongly with monoamine oxidase (MAO) B by occupying its entrance and substrate cavities, and by interacting with the inter-cavity gating residue Ile199 and Tyr435 of the substrate cavity. Enzymatic studies confirmed that pOBz competitively inhibited the activity of purified human MAO-B (Ki = 0.041 μM versus Ki = 0.92 μM for salidroside), and pOBz was highly selective for MAO-B over MAO-A. In vivo, pOBz inhibited cerebral MAO activity after middle cerebral artery occlusion with reperfusion in rats, and it reduced cerebral infarct volume, improved neurological function and NeuN expression, and inhibited complement C3 expression and apoptosis. Our results suggest that pOBz is a structurally novel type of competitive and selective MAO-B inhibitor, with potent neuroprotective properties after cerebral ischemia-reperfusion injury in rats.
Collapse
Affiliation(s)
- Zelin Yang
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Xin Huang
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Wenfang Lai
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Yuheng Tang
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Junjie Liu
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Yingzheng Wang
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Kedan Chu
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - John Brown
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Guizhu Hong
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China.
| |
Collapse
|
43
|
Jiang X, Zhou T, Bai R, Xie Y. Hydroxypyridinone-Based Iron Chelators with Broad-Ranging Biological Activities. J Med Chem 2020; 63:14470-14501. [PMID: 33023291 DOI: 10.1021/acs.jmedchem.0c01480] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron plays an essential role in all living cells because of its unique chemical properties. It is also the most abundant trace element in mammals. However, when iron is present in excess or inappropriately located, it becomes toxic. Excess iron can become involved in free radical formation, resulting in oxidative stress and cellular damage. Iron chelators are used to treat serious pathological disorders associated with systemic iron overload. Hydroxypyridinones stand out for their outstanding chelation properties, including high selectivity for Fe3+ in the biological environment, ease of derivatization, and good biocompatibility. Herein, we overview the potential for multifunctional hydroxypyridinone-based chelators to be used as therapeutic agents against a wide range of diseases associated either with systemic or local elevated iron levels.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Yuanyuan Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P.R. China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| |
Collapse
|
44
|
Xie SS, Liu J, Tang C, Pang C, Li Q, Qin Y, Nong X, Zhang Z, Guo J, Cheng M, Tang W, Liang N, Jiang N. Design, synthesis and biological evaluation of rasagiline-clorgyline hybrids as novel dual inhibitors of monoamine oxidase-B and amyloid-β aggregation against Alzheimer’s disease. Eur J Med Chem 2020; 202:112475. [DOI: 10.1016/j.ejmech.2020.112475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/13/2020] [Accepted: 05/15/2020] [Indexed: 01/07/2023]
|
45
|
Manzoor S, Hoda N. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer's disease agents: A review. Eur J Med Chem 2020; 206:112787. [PMID: 32942081 DOI: 10.1016/j.ejmech.2020.112787] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Monoamine oxidases (MAO-A and MAO-B) are mammalian flavoenzyme, which catalyze the oxidative deamination of several neurotransmitters like norepinephrine, dopamine, tyramine, serotonin, and some other amines. The oxidative deamination produces several harmful side products like ammonia, peroxides, and aldehydes during the biochemical reaction. The concentration of biochemical neurotransmitter alteration in the brain by MAO is directly related with several neurological disorders like Alzheimer's disease and Parkinson's disease (PD). Activated MAO also contributes to the amyloid beta (Aβ) aggregation by two successive cleft β-secretase and γ-secretase of amyloid precursor protein (APP). Additionally, activated MAO is also involved in aggregation of neurofibrillary tangles and cognitive destruction through the cholinergic neuronal damage and disorder of the cholinergic system. MAO inhibition has general anti-Alzheimer's disease effect as a consequence of oxidative stress reduction prompted by MAO enzymes. In this review, we outlined and addressed recent understanding on MAO enzymes such as their structure, physiological function, catalytic mechanism, and possible therapeutic goals in AD. In addition, it also highlights the current development and discovery of potential MAO inhibitors (MAOIs) from various chemical scaffolds.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
46
|
Mellado M, Mella J, González C, Viña D, Uriarte E, Matos MJ. 3-Arylcoumarins as highly potent and selective monoamine oxidase B inhibitors: Which chemical features matter? Bioorg Chem 2020; 101:103964. [DOI: 10.1016/j.bioorg.2020.103964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
|
47
|
Overview on developed synthesis procedures of coumarin heterocycles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01984-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractConsidering highly valuable biological and pharmaceutical properties of coumarins, the synthesis of these heterocycles has been considered for many organic and pharmaceutical chemists. This review includes the recent research in synthesis methods of coumarin systems, investigating their biological properties and describing the literature reports for the period of 2016 to the middle of 2020. In this review, we have classified the contents based on co-groups of coumarin ring. These reported methods are carried out in the classical and non-classical conditions particularly under green condition such as using green solvent, catalyst and other procedures.
Collapse
|
48
|
Shi DH, Min W, Song MQ, Si XX, Li MC, Zhang ZY, Liu YW, Liu WW. Synthesis, characterization, crystal structure and evaluation of four carbazole-coumarin hybrids as multifunctional agents for the treatment of Alzheimer’s disease. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Jiang X, Guo J, Lv Y, Yao C, Zhang C, Mi Z, Shi Y, Gu J, Zhou T, Bai R, Xie Y. Rational design, synthesis and biological evaluation of novel multitargeting anti-AD iron chelators with potent MAO-B inhibitory and antioxidant activity. Bioorg Med Chem 2020; 28:115550. [PMID: 32503694 DOI: 10.1016/j.bmc.2020.115550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
A series of (3-hydroxypyridin-4-one)-coumarin hybrids were developed and investigated as potential multitargeting candidates for the treatment of Alzheimer's disease (AD) through the incorporation of iron-chelating and monoamine oxidase B (MAO-B) inhibition. This combination endowed the hybrids with good capacity to inhibit MAO-B as well as excellent iron-chelating effects. The pFe3+ values of the compounds were ranging from 16.91 to 20.16, comparable to more potent than the reference drug deferiprone (DFP). Among them, compound 18d exhibited the most promising activity against MAO-B, with an IC50 value of 87.9 nM. Moreover, compound 18d exerted favorable antioxidant activity, significantly reversed the amyloid-β1-42 (Aβ1-42) induced PC12 cell damage. More importantly, 18d remarkably ameliorated the cognitive dysfunction in a scopolamine-induced mice AD model. In brief, a series of hybrids with potential anti-AD effect were successfully obtained, indicating that the design of iron chelators with MAO-B inhibitory and antioxidant activities is an attractive strategy against AD progression.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chuansheng Yao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Changjun Zhang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Zhisheng Mi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jinping Gu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuanyuan Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
50
|
Bortolami M, Pandolfi F, De Vita D, Carafa C, Messore A, Di Santo R, Feroci M, Costi R, Chiarotto I, Bagetta D, Alcaro S, Colone M, Stringaro A, Scipione L. New deferiprone derivatives as multi-functional cholinesterase inhibitors: design, synthesis and in vitro evaluation. Eur J Med Chem 2020; 198:112350. [PMID: 32380385 DOI: 10.1016/j.ejmech.2020.112350] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/19/2023]
Abstract
In order to obtain multi-functional molecules for Alzheimer's disease, a series of deferiprone derivatives has been synthesized and evaluated in vitro with the hypothesis that they can restore the cholinergic tone and attenuate the dyshomeostasis of the metals mainly involved in the pathology. These compounds were designed as dual binding site AChE inhibitors: they possess an arylalkylamine moiety connected via an alkyl chain to a 3-hydroxy-4-pyridone fragment, to allow the simultaneous interaction with catalytic active site (CAS) and peripheral anionic site (PAS) of the enzyme. Deferiprone moiety and 2-aminopyridine, 2-aminopyrimidine or 2,4-diaminopyrimidine groups have been incorporated into these compounds, in order to obtain molecules potentially able to chelate bio-metals colocalized in Aβ plaques and involved in the generation of radical species. Synthesized compounds were tested by enzymatic inhibition studies towards EeAChE and eqBChE using Ellman's method. The most potent EeAChE inhibitor is compound 5a, with a Ki of 788 ± 51 nM, while the most potent eqBChE inhibitors are compounds 12 and 19, with Ki values of 182 ± 18 nM and 258 ± 25 nM respectively. Selected compounds, among the most potent cholinesterases inhibitors, were able to form complex with iron and in some cases with copper and zinc. Moreover, these compounds were characterized by low toxicity on U-87 MG Cell Line from human brain (glioblastoma astrocytoma).
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Fabiana Pandolfi
- Department of Scienze di Base e Applicate per l'Ingegneria, Sapienza University of Rome, via Castro Laurenziano 7, I-00161, Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Camilla Carafa
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Antonella Messore
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Roberto Di Santo
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Marta Feroci
- Department of Scienze di Base e Applicate per l'Ingegneria, Sapienza University of Rome, via Castro Laurenziano 7, I-00161, Rome, Italy
| | - Roberta Costi
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Isabella Chiarotto
- Department of Scienze di Base e Applicate per l'Ingegneria, Sapienza University of Rome, via Castro Laurenziano 7, I-00161, Rome, Italy
| | - Donatella Bagetta
- Net4Science s.r.l., Campus universitario "S. Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Net4Science s.r.l., Campus universitario "S. Venuta", Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Scienze della Salute, Università"Magna Græcia" di Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 00161, Rome, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 00161, Rome, Italy
| | - Luigi Scipione
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy.
| |
Collapse
|