1
|
Liu Y, Xu D, Xing X, Shen A, Jin X, Li S, Liu Z, Wang L, Huang Y. Lung-Targeting Perylenediimide Nanocomposites for Efficient Therapy of Idiopathic Pulmonary Fibrosis. NANO LETTERS 2024; 24:12701-12708. [PMID: 39331492 DOI: 10.1021/acs.nanolett.4c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Idiopathic pulmonary fibrosis, an idiopathic interstitial lung disease with high mortality, remains challenging to treat due to the lack of clinically approved lung-targeting drugs. Herein, we present PDIC-DPC, a perylenediimide derivative that exhibits superior lung-selective enrichment. PDIC-DPC forms nanocomposites with plasma proteins, including fibrinogen beta chain and vitronectin, which bind to pulmonary endothelial receptors for lung-specific accumulation. Moreover, PDIC-DPC significantly suppresses transforming growth factor beta1 and activates adenosine monophosphate-activated protein kinase. As a result, compared to existing therapeutic drugs, PDIC-DPC achieves superior therapeutic outcomes, evidenced by the lowest Ashcroft score, significantly improved pulmonary function, and an extended survival rate in a bleomycin-induced pulmonary fibrosis model. This study elucidates the lung-selective enrichment of assembled prodrug from biological perspectives and affords a platform enabling therapeutic efficiency on idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuting Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Damin Xu
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoyi Xing
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Anqi Shen
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Xinpeng Jin
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Shijiao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Shi Z, Zhou M, Zhai J, Sun J, Wang X. Novel therapeutic strategies and drugs for idiopathic pulmonary fibrosis. Arch Pharm (Weinheim) 2024; 357:e2400192. [PMID: 38961537 DOI: 10.1002/ardp.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown etiology. Currently, drugs used to treat IPF in clinical practice exhibit severe side effects and limitations. To address these issues, this paper discusses the therapeutic effects of preclinical targeted drugs (such as STAT3 and TGF-β/Smad pathway inhibitors, chitinase inhibitors, PI3K and phosphodiesterase inhibitors, etc.) and natural products on IPF. Through a summary of current research progress, it is found that natural products possess multitarget effects, stable therapeutic efficacy, low side effects, and nondrug dependence. Furthermore, we discuss the significant prospects of natural product molecules in combating fibrosis by influencing the immune system, expecting that current analytical data will aid in the development of new drugs or the investigation of active ingredients in natural products for potential IPF treatments in the future.
Collapse
Affiliation(s)
- Zezhou Shi
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Min Zhou
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Jingfang Zhai
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| |
Collapse
|
3
|
Liang M, He M, Zhong Z, Wan B, Du Q, Mai S. Catalytic and Base-free Suzuki-type α-Arylation of Cyclic 1,3-Dicarbonyls via a Cyclic Iodonium Ylide Strategy. Angew Chem Int Ed Engl 2024; 63:e202400741. [PMID: 38385585 DOI: 10.1002/anie.202400741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
To date, it remains challenging to achieve a general and catalytic α-arylation of cyclic 1,3-dicarbonyls, particularly ubiquitous heteroaromatic ones. In most cases, the preparation of their medically significant arylated derivatives requires multistep synthetic sequences. Herein, we introduce a new, convenient strategy involving the conversion of cyclic 1,3-dicarbonyls to cyclic iodonium ylides (CIYs), followed by rhodium-catalyzed α-arylation with arylboronic reagents via carbene coupling. This approach is mild, operationally simple, base-free, biocompatible, and exhibits broad substrate scope (>100 examples), especially with respect to various heteroaromatic 1,3-dicarbonyls and ortho-substituted or base-sensitive arylboronic acids. Importantly, owing to the excellent compatibility with various arylboronic acids or boronate esters (ArBpin, ArBneop, or ArBF3K), this method allows the late-stage installation of heterocyclic 1,3-dicarbonyl motifs in highly complex settings. The utility of this transformation is further demonstrated through significantly simplifying the synthesis of several bioactive molecules and natural products.
Collapse
Affiliation(s)
- Mingxuan Liang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mengling He
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhiqing Zhong
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Bei Wan
- Centre of General Practice The Seventh Affiliated Hospital, Southern Medical University, Foshan, 528000, China
| | - Qingfeng Du
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Centre of General Practice The Seventh Affiliated Hospital, Southern Medical University, Foshan, 528000, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shaoyu Mai
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Wu X, Xiao X, Fang H, He C, Wang H, Wang M, Lan P, Wang F, Du Q, Yang H. Elucidating shared biomarkers in gastroesophageal reflux disease and idiopathic pulmonary fibrosis: insights into novel therapeutic targets and the role of angelicae sinensis radix. Front Pharmacol 2024; 15:1348708. [PMID: 38414734 PMCID: PMC10897002 DOI: 10.3389/fphar.2024.1348708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Background: The etiological underpinnings of gastroesophageal reflux disease (GERD) and idiopathic pulmonary fibrosis (IPF) remain elusive, coupled with a scarcity of effective therapeutic interventions for IPF. Angelicae sinensis radix (ASR, also named Danggui) is a Chinese herb with potential anti-fibrotic properties, that holds promise as a therapeutic agent for IPF. Objective: This study seeks to elucidate the causal interplay and potential mechanisms underlying the coexistence of GERD and IPF. Furthermore, it aims to investigate the regulatory effect of ASR on this complex relationship. Methods: A two-sample Mendelian randomization (TSMR) approach was employed to delineate the causal connection between gastroesophageal reflux disease and IPF, with Phennoscanner V2 employed to mitigate confounding factors. Utilizing single nucleotide polymorphism (SNPs) and publicly available microarray data, we analyzed potential targets and mechanisms related to IPF in GERD. Network pharmacology and molecular docking were employed to explore the targets and efficacy of ASR in treating GERD-related IPF. External datasets were subsequently utilized to identify potential diagnostic biomarkers for GERD-related IPF. Results: The IVW analysis demonstrated a positive causal relationship between GERD and IPF (IVW: OR = 1.002, 95%CI: 1.001, 1.003; p < 0.001). Twenty-five shared differentially expressed genes (DEGs) were identified. GO functional analysis revealed enrichment in neural, cellular, and brain development processes, concentrated in chromosomes and plasma membranes, with protein binding and activation involvement. KEGG analysis unveiled enrichment in proteoglycan, ERBB, and neuroactive ligand-receptor interaction pathways in cancer. Protein-protein interaction (PPI) analysis identified seven hub genes. Network pharmacology analysis demonstrated that 104 components of ASR targeted five hub genes (PDE4B, DRD2, ERBB4, ESR1, GRM8), with molecular docking confirming their excellent binding efficiency. GRM8 and ESR1 emerged as potential diagnostic biomarkers for GERD-related IPF (ESR1: AUCGERD = 0.762, AUCIPF = 0.725; GRM8: AUCGERD = 0.717, AUCIPF = 0.908). GRM8 and ESR1 emerged as potential diagnostic biomarkers for GERD-related IPF, validated in external datasets. Conclusion: This study establishes a causal link between GERD and IPF, identifying five key targets and two potential diagnostic biomarkers for GERD-related IPF. ASR exhibits intervention efficacy and favorable binding characteristics, positioning it as a promising candidate for treating GERD-related IPF. The potential regulatory mechanisms may involve cell responses to fibroblast growth factor stimulation and steroidal hormone-mediated signaling pathways.
Collapse
Affiliation(s)
- Xuanyu Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyu Fang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Cuifang He
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyue Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peishu Lan
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quanyu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Yu D, Xiang Y, Gou T, Tong R, Xu C, Chen L, Zhong L, Shi J. New therapeutic approaches against pulmonary fibrosis. Bioorg Chem 2023; 138:106592. [PMID: 37178650 DOI: 10.1016/j.bioorg.2023.106592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Pulmonary fibrosis is the end-stage change of a large class of lung diseases characterized by the proliferation of fibroblasts and the accumulation of a large amount of extracellular matrix, accompanied by inflammatory damage and tissue structure destruction, which also shows the normal alveolar tissue is damaged and then abnormally repaired resulting in structural abnormalities (scarring). Pulmonary fibrosis has a serious impact on the respiratory function of the human body, and the clinical manifestation is progressive dyspnea. The incidence of pulmonary fibrosis-related diseases is increasing year by year, and no curative drugs have appeared so far. Nevertheless, research on pulmonary fibrosis have also increased in recent years, but there are no breakthrough results. Pathological changes of pulmonary fibrosis appear in the lungs of patients with coronavirus disease 2019 (COVID-19) that have not yet ended, and whether to improve the condition of patients with COVID-19 by means of the anti-fibrosis therapy, which are the questions we need to address now. This review systematically sheds light on the current state of research on fibrosis from multiple perspectives, hoping to provide some references for design and optimization of subsequent drugs and the selection of anti-fibrosis treatment plans and strategies.
Collapse
Affiliation(s)
- Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu 610072, China
| | - Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
6
|
Liu D, Zhang C, Zhang J, Xu GT, Zhang J. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis 2023; 185:106250. [PMID: 37536385 DOI: 10.1016/j.nbd.2023.106250] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss among elderly people in developed countries. Neovascular AMD (nAMD) accounts for more than 90% of AMD-related vision loss. At present, intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is widely used as the first-line therapy to decrease the choroidal and retinal neovascularizations, and thus to improve or maintain the visual acuity of the patients with nAMD. However, about 1/3 patients still progress to irreversible visual impairment due to subretinal fibrosis even with adequate anti-VEGF treatment. Extensive literatures support the critical role of epithelial-mesenchymal transformation (EMT) of retinal pigment epithelium (RPE) in the pathogenesis of subretinal fibrosis in nAMD, but the underlying mechanisms still remain largely unknown. This review summarized the molecular pathogenesis of subretinal fibrosis in nAMD, especially focusing on the transforming growth factor-β (TGF-β)-induced EMT pathways. It was also discussed how these pathways crosstalk and respond to signals from the microenvironment to mediate EMT and contribute to the progression of nAMD-related subretinal fibrosis. Targeting EMT signaling pathways might provide a promising and effective therapeutic strategy to treat subretinal fibrosis secondary to nAMD.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
7
|
Kubbara A, Amundson WH, Herman A, Lee AM, Bishop JR, Kim HJ. Genetic variations in idiopathic pulmonary fibrosis and patient response to pirfenidone. Heliyon 2023; 9:e18573. [PMID: 37560683 PMCID: PMC10407116 DOI: 10.1016/j.heliyon.2023.e18573] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Genetic variations in Idiopathic Pulmonary Fibrosis (IPF) affect survival and outcomes. Current antifibrotic agents are managed based on the patient's reported side effects, although certain single nucleotide polymorphisms (SNPs) might alter treatment response and survival depending on the antifibrotic administered. This study investigated variations in response and outcomes to pirfenidone based on patients-specific genetic profiles. METHODS Retrospective clinical data were collected from 56 IPF patients and had blood drawn for DNA extraction between 7/2013 and 3/2016, with the last patient followed until 10/2018. Nine SNPs were selected for pharmacogenetic investigation based on prior associations with IPF treatment outcomes or implications for pirfenidone metabolism. Genetic variants were examined in relation to clinical data and treatment outcomes. RESULTS Of the 56 patients, 38 were males (67.85%). The average age of IPF at diagnosis was 66.88 years. At the initiation of pirfenidone, the average percent predicted FVC was 70.7%, and the average DLCO percent predicted was 50.02% (IQR 40-61%). Among the genetic variants tested, the TOLLIP rs5743890 risk allele was significantly associated with improved survival, with increasing pirfenidone duration. This finding was observed with CC or CT genotype carriers but not for those with the TT genotype (p = 0.0457). Similarly, the TGF-B1 rs1800470 risk allele was also significantly associated with improved survival with longer pirfenidone therapy (p = 0.0395), even though it was associated with disease progression. CONCLUSION This pilot study suggests that in IPF patients, the TOLLIP rs5743890 genotypes CC and CT, as well as TGF-B1 rs 1800470 may be associated with increased survival when treated with pirfenidone.
Collapse
Affiliation(s)
- Aahd Kubbara
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep, University of Minnesota, Minneapolis, United States
| | - William H. Amundson
- Pulmonary and Critical Care Medicine, Regions Hospital, University of Minnesota, St. Paul, Minneapolis, MN, United States
| | - Adam Herman
- University of Minnesota, Supercomputing Institute, Minneapolis, United States
| | - Adam M. Lee
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, United States
| | - Jeffrey R. Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, United States
| | - Hyun Joo Kim
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep, University of Minnesota, Minneapolis, United States
| |
Collapse
|
8
|
Fu S, Wen Y, Peng B, Tang M, Shi M, Liu J, Yang Y, Si W, Guo Y, Li X, Yan T, Kang J, Pei H, Chen L. Discovery of indoline-based derivatives as effective ROCK2 inhibitors for the potential new treatment of idiopathic pulmonary fibrosis. Bioorg Chem 2023; 137:106539. [PMID: 37163811 DOI: 10.1016/j.bioorg.2023.106539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/06/2023] [Accepted: 04/09/2023] [Indexed: 05/12/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disease with a median survival of only 3-5 years. Due to the lack of effective therapy, IPF threatens human health. Recently, increasing reports have indicated that Rho-associated coiled-coil protein kinases (ROCKs) play important roles in the development of IPF and might represent a novel target for the treatment of IPF. Herein, a new series of selective ROCK2 inhibitors based on indoline were designed and synthesized. Structural modification resulted in optimized compound 9b with an IC50 value of 6 nM against ROCK2 and the inhibition of collagen gel contraction. Cellular assays demonstrated that 9b could significantly suppress the expression of collagen I and α-SMA, and inhibited ROCK signaling pathway. Oral administration of compound 9b (10 mg/kg) exerted more significant anti-pulmonary fibrosis effects than nintedanib (100 mg/kg) and KD025 (100 mg/kg) in a bleomycin-induced IPF rat model, suggesting that 9b could serve as a potential lead compound for the treatment of IPF.
Collapse
Affiliation(s)
- Suhong Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Wen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingsong Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiang Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingxue Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenting Si
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiandeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Yan
- Sichuan Good Doctor Panxi Pharmaceutical Co.,Ltd., Xichang 615000, China
| | - Jie Kang
- Sichuan Key Laboratory for Medicinal American Cockroach, Chengdu 610031, China
| | - Heying Pei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China..
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu 610000, China.
| |
Collapse
|
9
|
Hafez SMNA, Saber EA, Aziz NM, Kamel MY, Aly AA, Abdelhafez ESMN, Ibrahim MFG. Potential protective effect of 3,3'-methylenebis(1-ethyl-4-hydroxyquinolin-2(1H)-one) against bleomycin-induced lung injury in male albino rat via modulation of Nrf2 pathway: biochemical, histological, and immunohistochemical study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:771-788. [PMID: 36480028 PMCID: PMC9734634 DOI: 10.1007/s00210-022-02324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Acute lung injury is a serious condition accounting for the majority of acute respiratory failure. Bleomycin (BLM) is an antibiotic that was first described as a chemotherapeutic agent. 3,3'-methylenebis(1-ethyl-4-hydroxyquinolin-2(1H)-one) was reported to have anti-inflammatory, anti-apoptotic, and anti-oxidative properties. The current work aimed to assess the possible protective effects and the mechanism of protection of 3,3'-methylenebis-(1-ethyl-4-hydroxyquinolin-2(1H)-one) on BLM-induced lung injury in addition to the effect and underlying mechanisms of nuclear factor-erythroid-related factor 2 pathway against this injury. Rats were equally divided into four groups: control group, BLM group, 1-ethyl-4-hydroxyquinolin-2(1H)-one-treated group, and BLM with 1-ethyl-4-hydroxyquinolin-2(1H)-one-treated group. At the end of the work, the blood samples were proceeded for biochemical study. Lung specimens were obtained for biochemical, histological, and immunohistochemical study. The results exhibited a significant increase in both malondialdehyde and tumor necrotic factor-α with a significant decrease in glutathione, superoxide dismutase, IL 10, surfactant protein A, and nuclear factor erythroid 2-related factor 2 in BLM group. The lung histological results showed various morphological changes in the form of disturbed architecture, inflammatory cell infiltration, and intraluminal debris. This group also displayed a significant increase in the mean surface area fraction of anti-cleaved caspase 3, while group IV exhibited amelioration in the previously mentioned parameters and histological alternations that were induced by BLM. It could be concluded that 3,3'-methylenebis(1-ethyl-4-hydroxyquinolin-2(1H)-one) has anti-oxidative, anti-inflammatory, and anti-apoptotic protective effects against BLM-induced lung injury.
Collapse
Affiliation(s)
- Sara Mohamed Naguib Abdel Hafez
- grid.411806.a0000 0000 8999 4945Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, 61111 Egypt
| | - Entesar Ali Saber
- grid.411806.a0000 0000 8999 4945Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, 61111 Egypt ,Delegated to Deraya University, New Minia City, Minia Egypt
| | - Neven Makram Aziz
- Delegated to Deraya University, New Minia City, Minia Egypt ,grid.411806.a0000 0000 8999 4945Department of Medical Physiology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Maha Yehia Kamel
- grid.411806.a0000 0000 8999 4945Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ashraf A. Aly
- grid.411806.a0000 0000 8999 4945Department of Chemistry, Faculty of Science, Minia University, Minia, Egypt
| | - El-Shimaa M. N. Abdelhafez
- grid.411806.a0000 0000 8999 4945Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Manar Fouli Gaber Ibrahim
- grid.411806.a0000 0000 8999 4945Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, 61111 Egypt
| |
Collapse
|
10
|
Hao MJ, Chen PN, Li HJ, Wu F, Zhang GY, Shao ZZ, Liu XP, Ma WZ, Xu J, Mahmud T, Lan WJ. β-Carboline Alkaloids From the Deep-Sea Fungus Trichoderma sp. MCCC 3A01244 as a New Type of Anti-pulmonary Fibrosis Agent That Inhibits TGF-β/Smad Signaling Pathway. Front Microbiol 2022; 13:947226. [PMID: 35966687 PMCID: PMC9366743 DOI: 10.3389/fmicb.2022.947226] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022] Open
Abstract
Pulmonary fibrosis is a scarring disease of lung tissue, which seriously threatens human health. Treatment options are currently limited, and effective strategies are still lacking. In the present study, 25 compounds were isolated from the deep-sea fungus Trichoderma sp. MCCC 3A01244. Among them, two β-carboline alkaloids, trichocarbolines A (1) and C (4) are new compounds. The chemical structures of these compounds were elucidated based on their HRESIMS, 1D and 2D NMR spectra, optical rotation calculation, and comparisons with data reported in the literature. Trichocarboline B [(+)- and (–)-enantiomers] had previously been synthesized, and this is its first report as a natural product. Their anti-pulmonary fibrosis (PF) activity and cytotoxicity were investigated. Compounds 1, 11, and 13 strongly inhibited TGF-β1-induced total collagen accumulation and showed low cytotoxicity against the HFL1 cell line. Further studies revealed compound 1 inhibited extracellular matrix (ECM) deposition by downregulating the expression of protein fibronectin (FN), proliferating cell nuclear antigen (PCNA), and α-smooth muscle actin (α-SMA). Mechanistic study revealed that compound 1 decreased pulmonary fibrosis by inhibiting the TGF-β/Smad signaling pathway. As a newly identified β-carboline alkaloid, compound 1 may be used as a lead compound for developing more efficient anti-pulmonary fibrosis agents.
Collapse
Affiliation(s)
- Meng-Jiao Hao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei-Nan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hou-Jin Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Feng Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guang-Yu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zong-Ze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiu-Pian Liu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wen-Zhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Jun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Wen-Jian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wen-Jian Lan,
| |
Collapse
|
11
|
Hong MJ, Hao MJ, Zhang GY, Li HJ, Shao ZZ, Liu XP, Ma WZ, Xu J, Mahmud T, Lan WJ. Exophilone, a Tetrahydrocarbazol-1-one Analogue with Anti-Pulmonary Fibrosis Activity from the Deep-Sea Fungus Exophiala oligosperma MCCC 3A01264. Mar Drugs 2022; 20:md20070448. [PMID: 35877741 PMCID: PMC9317524 DOI: 10.3390/md20070448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
A new compound, exophilone (1), together with nine known compounds (2–10), were isolated from a deep-sea-derived fungus, Exophiala oligosperma. Their chemical structures, including the absolute configuration of 1, were elucidated using nuclear magnetic resonance (NMR) spectroscopy, high-resolution electrospray ionization mass spectroscopy (HRESIMS), and electronic circular dichroism (ECD) calculation. Compounds were preliminarily screened for their ability to inhibit collagen accumulation. Compounds 1, 4, and 7 showed weaker inhibition of TGF-β1-induced total collagen accumulation in compared with pirfenidone (73.14% inhibition rate). However, pirfenidone exhibited cytotoxicity (77.57% survival rate), while compounds 1, 4, and 7 showed low cytotoxicity against the HFL1 cell line. Particularly, exophilone (1) showed moderate collagen deposition inhibition effect (60.44% inhibition rate) and low toxicity in HFL1 cells (98.14% survival rate) at a concentration of 10 μM. A molecular docking study suggests that exophilone (1) binds to both TGF-β1 and its receptor through hydrogen bonding interactions. Thus, exophilone (1) was identified as a promising anti-pulmonary fibrosis agent. It has the potential to be developed as a drug candidate for pulmonary fibrosis.
Collapse
Affiliation(s)
- Ming-Jun Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.-J.H.); (M.-J.H.); (G.-Y.Z.); (J.X.)
| | - Meng-Jiao Hao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.-J.H.); (M.-J.H.); (G.-Y.Z.); (J.X.)
| | - Guang-Yu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.-J.H.); (M.-J.H.); (G.-Y.Z.); (J.X.)
| | - Hou-Jin Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China;
| | - Zong-Ze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Z.-Z.S.); (X.-P.L.)
| | - Xiu-Pian Liu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Z.-Z.S.); (X.-P.L.)
| | - Wen-Zhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 519020, Macau, China;
| | - Jun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.-J.H.); (M.-J.H.); (G.-Y.Z.); (J.X.)
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Wen-Jian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.-J.H.); (M.-J.H.); (G.-Y.Z.); (J.X.)
- Correspondence: ; Tel.: +86-20-399-43-042
| |
Collapse
|
12
|
Zhang GY, Chen WY, Li XB, Ke H, Zhou XL. Scutellarin-induced A549 cell apoptosis depends on activation of the transforming growth factor-β1/smad2/ROS/caspase-3 pathway. Open Life Sci 2021; 16:961-968. [PMID: 34568577 PMCID: PMC8424968 DOI: 10.1515/biol-2021-0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
Scutellarin plays an anti-tumor role in A549 lung cancer cells, but the underlying mechanism is unclear. In this study, scutellarin was used to treat A549 cells for 12, 24, and 48 h, followed by the addition of Tempo, a selective scavenger of mitochondrial reactive oxygen species (ROS) and SB431542, a transforming growth factor (TGF)-β1 receptor inhibitor. A dihydroethidium fluorescence probe was used to measure the intracellular ROS level, Cell Counting Kit-8 (CCK-8) was used to detect cell viability, and flow cytometry was performed to examine apoptosis. Western blots were used to detect the total protein level of TGF-β1, p-smad2, and cleaved caspase-3 in A549 cells. The results showed that scutellarin significantly inhibited cell viability and increased apoptosis. Scutellarin also promoted intracellular ROS production, TGF-β1/smad2 signaling pathway activation, and cleaved caspase-3 expression, which was partly reversed by Tempo. Moreover, scutellarin-induced intracellular ROS production and cleaved caspase-3 expression were inhibited by blocking the TGF-β1/smad2 pathway with SB431542. In conclusion, scutellarin promoted apoptosis and intracellular ROS accumulation, which could be abrogated by Tempo and SB431542 treatment in A549 cells. Our study indicated that scutellarin induced A549 cell apoptosis via the TGF-β1/smad2/ROS/caspase-3 pathway.
Collapse
Affiliation(s)
- Guang-Yan Zhang
- Respiratory Department, The Chengdu Seventh People's Hospital, Wuhou District, Chengdu, Sichuan 610000, People's Republic of China
| | - Wei-Yong Chen
- Respiratory Department, The Chengdu Seventh People's Hospital, Wuhou District, Chengdu, Sichuan 610000, People's Republic of China
| | - Xiao-Bo Li
- Respiratory Department, The Chengdu Seventh People's Hospital, Wuhou District, Chengdu, Sichuan 610000, People's Republic of China
| | - Hua Ke
- Respiratory Department, The Chengdu Seventh People's Hospital, Wuhou District, Chengdu, Sichuan 610000, People's Republic of China
| | - Xue-Lin Zhou
- Respiratory Department, The Chengdu Seventh People's Hospital, Wuhou District, Chengdu, Sichuan 610000, People's Republic of China
| |
Collapse
|
13
|
Hypoxia-Inducible Factor-1: A Potential Target to Treat Acute Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8871476. [PMID: 33282113 PMCID: PMC7685819 DOI: 10.1155/2020/8871476] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency caused by various intra- and extrapulmonary injury factors. Presently, excessive inflammation in the lung and the apoptosis of alveolar epithelial cells are considered to be the key factors in the pathogenesis of ALI. Hypoxia-inducible factor-1 (HIF-1) is an oxygen-dependent conversion activator that is closely related to the activity of reactive oxygen species (ROS). HIF-1 has been shown to play an important role in ALI and can be used as a potential therapeutic target for ALI. This manuscript will introduce the progress of HIF-1 in ALI and explore the feasibility of applying inhibitors of HIF-1 to ALI, which brings hope for the treatment of ALI.
Collapse
|
14
|
Qiu Y, Wang Z, Zhang X, Huang P, Zhang W, Zhang K, Wang S, He L, Guo Y, Xiang A, Zhang C, Hao Q, Li M, Li W, Zhang Y. A long-acting isomer of Ac-SDKP attenuates pulmonary fibrosis through SRPK1-mediated PI3K/AKT and Smad2 pathway inhibition. IUBMB Life 2020; 72:2611-2626. [PMID: 33135306 DOI: 10.1002/iub.2389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening lung disease with a poor prognosis. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a critical negative regulator of fibrosis development. However, it's extremely short half-life greatly limits its applications. Previously, we reported an Ac-SDKP analog peptide in which Asp and Lys residues were replaced with D-amino acids (Ac-SDD KD P). Ac-SDD KD P exhibits better resistance to angiotensin-1-converting enzyme (ACE)-mediated degradation and a longer half-life than Ac-SDKP in rat and human sera. The objective of this study was to explore the potential application of Ac-SDD KD P for the treatment of IPF and to clarify the underlying mechanisms. We found that Ac-SDD KD P exerted similar antifibrotic effects as Ac-SDKP on human fetal lung fibroblast-1 (HFL-1) proliferation, α-smooth muscle actin (α-SMA), collagen I and collagen III expression, and Smad-2 phosphorylation in vitro. In vivo, Ac-SDD KD P exhibited significantly greater protective effects against bleomycin-induced pulmonary fibrosis than Ac-SDKP in mice. α-SMA, CD45, collagen I and collagen III expression, and Smad-2 phosphorylation were significantly decreased in the lungs of Ac-SDD KD P-treated but not Ac-SDKP-treated mice. Furthermore, a pull-down experiment was used to screen for molecules that interact with Ac-SDKP. Co-immunoprecipitation (Co-IP) and computer-based molecular docking experiments demonstrated an interaction between Ac-SDKP or Ac-SDD KD P (Ac-SDKP/Ac-SDD KD P) and serine/arginine-rich protein-specific kinase 1 (SRPK1) that caused inhibition SRPK1-mediated phosphatidylinositol-3 kinase/ serine/threonine kinase (PIK3/AKT) signaling pathway activation and Smad2 phosphorylation and thereby attenuated lung fibrosis. Our data suggest that long-acting Ac-SDD KD P may potentially be an effective drug for the treatment of pulmonary fibrosis. The interacting molecule and antifibrotic mechanism of Ac-SDKP/Ac-SDD KD P were also identified, providing an experimental and theoretical foundation for the clinical application of the drug.
Collapse
Affiliation(s)
- Yueyuan Qiu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhaowei Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xutao Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ping Huang
- The Brigade of Undergraduates, The Fourth Military Medical University, Xi'an, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuning Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Lei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yanhai Guo
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - An Xiang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|