1
|
Scalia F, Culletta G, Barreca M, Caruso Bavisotto C, Bivacqua R, D'Amico G, Alberti G, Spanò V, Tutone M, Almerico AM, Cappello F, Montalbano A, Barraja P. Chaperoning system: Intriguing target to modulate the expression of CFTR in cystic fibrosis. Eur J Med Chem 2024; 278:116809. [PMID: 39226706 DOI: 10.1016/j.ejmech.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
The correction of protein folding is fundamental for cellular functionality and its failure can lead to severe diseases. In this context, molecular chaperones are crucial players involved in the tricky process of assisting in protein folding, stabilization, and degradation. Chaperones, such as heat shock proteins (HSP) 90, 70, and 60, operate within complex systems, interacting with co-chaperones both to prevent protein misfolding and direct to the correct folding. Chaperone targeting drugs could represent a challenging approach for the treatment of cystic fibrosis (CF), an autosomal recessive genetic disease caused by mutations in the CFTR gene, encoding for the CFTR chloride channel. In this review, we discuss the potential role of molecular chaperones as proteostasis modulators affecting CFTR biogenesis. In particular, we focused on HSP90 and HSP70, for their key role in CFTR folding and trafficking, as well as on HSP60 for its involvement in the inflammation process.
Collapse
Affiliation(s)
- Federica Scalia
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Giulia Culletta
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, via del Vespro 129, 90127 Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), via Michele Miraglia 20, 90139 Palermo, Italy
| | - Roberta Bivacqua
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giuseppa D'Amico
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Giusi Alberti
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Marco Tutone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Maria Almerico
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Francesco Cappello
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, via del Vespro 129, 90127 Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), via Michele Miraglia 20, 90139 Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
2
|
Barreca M, Renda M, Spanò V, Montalbano A, Raimondi MV, Giuffrida S, Bivacqua R, Bandiera T, Galietta LJV, Barraja P. Identification of 6,9-dihydro-5H-pyrrolo[3,2-h]quinazolines as a new class of F508del-CFTR correctors for the treatment of cystic fibrosis. Eur J Med Chem 2024; 276:116691. [PMID: 39089001 DOI: 10.1016/j.ejmech.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024]
Abstract
Although substantial advances have been obtained in the pharmacological treatment of cystic fibrosis (CF) with the approval of Kaftrio, a combination of two correctors (VX-661, VX-445) and one potentiator (VX-770), new modulators are still needed to rescue F508del and other CFTR mutants with trafficking defects. We have previously identified PP compounds based on a tricyclic core as correctors with high efficacy in the rescue of F508del-CFTR on native epithelial cells of CF patients, particularly in combination with class 1 correctors (VX-809, VX-661). Compound PP028 was found as a lead candidate for the high rescue of F508del-CFTR and used for mechanistic insight indicating that PP028 behaves as a class 3 corrector, similarly to VX-445. From the exploration of the chemical space around the hit structure, based on iterative cycles of chemical synthesis and functional testing, the class of 6,9-dihydro-5H-pyrrolo [3,2-h]quinazolines with corrector activity was discovered. Within a series of 38 analogues, two derivatives emerged as promising candidates and used for further insight to assess the mechanism of action. Both compounds, decorated with a benzensulfonylamino group at the pyrimidine moiety, were able to generate a dose-dependent increase in CFTR function, particularly in the presence of VX-809. Half-effective concentrations (EC50) were in the single digit micromolar range and decreased in the presence of VX-809 thus indicating a synergistic interaction with class 1 correctors. Synergy was also observed with corr-4a (class 2 corrector) but not with VX-445 and PP028 (class 3 correctors) indicating that the new compounds behave as class 3 correctors. These results suggest that tricyclic pyrrolo-quinazolines interact with CFTR at a site different from that of VX-809 and represent a novel class of CFTR correctors suitable for combinatorial pharmacological treatments for the basic defect in CF.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Mario Renda
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Stefano Giuffrida
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Roberta Bivacqua
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; Department of Translational Medical Sciences (DISMET), University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
3
|
Brusa I, Sondo E, Pesce E, Tomati V, Gioia D, Falchi F, Balboni B, Ortega Martínez JA, Veronesi M, Romeo E, Margaroli N, Recanatini M, Girotto S, Pedemonte N, Roberti M, Cavalli A. Innovative Strategy toward Mutant CFTR Rescue in Cystic Fibrosis: Design and Synthesis of Thiadiazole Inhibitors of the E3 Ligase RNF5. J Med Chem 2023. [PMID: 37440686 PMCID: PMC10388311 DOI: 10.1021/acs.jmedchem.3c00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
In cystic fibrosis (CF), deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) is associated to misfolding and defective gating of the mutant channel. One of the most promising CF drug targets is the ubiquitin ligase RNF5, which promotes F508del-CFTR degradation. Recently, the first ever reported inhibitor of RNF5 was discovered, i.e., the 1,2,4-thiadiazol-5-ylidene inh-2. Here, we designed and synthesized a series of new analogues to explore the structure-activity relationships (SAR) of this class of compounds. SAR efforts ultimately led to compound 16, which showed a greater F508del-CFTR corrector activity than inh-2, good tolerability, and no toxic side effects. Analogue 16 increased the basal level of autophagy similar to what has been described with RNF5 silencing. Furthermore, co-treatment with 16 significantly improved the F508del-CFTR rescue induced by the triple combination elexacaftor/tezacaftor/ivacaftor in CFBE41o- cells. These findings validate the 1,2,4-thiadiazolylidene scaffold for the discovery of novel RNF5 inhibitors and provide evidence to pursue this unprecedented strategy for the treatment of CF.
Collapse
Affiliation(s)
- Irene Brusa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Dario Gioia
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Federico Falchi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Beatrice Balboni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | | | - Marina Veronesi
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Elisa Romeo
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Natasha Margaroli
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Maurizio Recanatini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Stefania Girotto
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | | | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Centre Européen de Calcul Atomique et Moléculaire, EPFL CECAM, 1015 Lousanne, Switzerland
| |
Collapse
|
4
|
Barreca M, Spanò V, Rocca R, Bivacqua R, Gualtieri G, Raimondi MV, Gaudio E, Bortolozzi R, Manfreda L, Bai R, Montalbano A, Alcaro S, Hamel E, Bertoni F, Viola G, Barraja P. Identification of pyrrolo[3',4':3,4]cyclohepta[1,2-d][1,2]oxazoles as promising new candidates for the treatment of lymphomas. Eur J Med Chem 2023; 254:115372. [PMID: 37068384 PMCID: PMC10287037 DOI: 10.1016/j.ejmech.2023.115372] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Unsatisfactory outcomes for relapsed/refractory lymphoma patients prompt continuing efforts to develop new therapeutic strategies. Our previous studies on pyrrole-based anti-lymphoma agents led us to synthesize a new series of twenty-six pyrrolo[3',4':3,4]cyclohepta[1,2-d] [1,2]oxazole derivatives and study their antiproliferative effects against a panel of four non-Hodgkin lymphoma cell lines. Several candidates showed significant anti-proliferative effects, with IC50's reaching the sub-micromolar range in at least one cell line, with compound 3z demonstrating sub-micromolar growth inhibitory effects towards the entire panel. The VL51 cell line was the most sensitive, with an IC50 value of 0.10 μM for 3z. Our earlier studies had shown that tubulin was a prominent target of many of our oxazole derivatives. We therefore examined their effects on tubulin assembly and colchicine binding. While 3u and 3z did not appear to target tubulin, good activity was observed with 3d and 3p. Molecular docking and molecular dynamics simulations allowed us to rationalize the binding mode of the synthesized compounds toward tubulin. All ligands exhibited a better affinity for the colchicine site, confirming their specificity for this binding pocket. In particular, a better affinity and free energy of binding was observed for 3d and 3p. This result was confirmed by experimental data, indicating that, although both 3d and 3p significantly affected tubulin assembly, only 3d showed activity comparable to that of combretastatin A-4, while 3p was about 4-fold less active. Cell cycle analysis showed that compounds 3u and especially 3z induced a block in G2/M, a strong decrease in S phase even at low compound concentrations and apoptosis through the mitochondrial pathway. Thus, the mechanism of action of 3u and 3z remains to be elucidated. Very high selectivity toward cancer cells and low toxicity in human peripheral blood lymphocytes were observed, highlighting the good potential of these agents in cancer therapy and encouraging further exploration of this compound class to obtain new small molecules as effective lymphoma treatments.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Rocca
- Dipartimento di Medicina Sperimentale e Clinica, Università; Magna Græcia di Catanzaro, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università; Magna Græcia di Catanzaro, 88100, Catanzaro, Italy
| | - Roberta Bivacqua
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Gianmarco Gualtieri
- Dipartimento di Scienze della Salute, Università; Magna Græcia di Catanzaro, 88100, Catanzaro, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Roberta Bortolozzi
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 3, 35127, Padova, Italy; Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Lorenzo Manfreda
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 3, 35127, Padova, Italy
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Stefano Alcaro
- Net4Science srl, Academic Spinoff, Università; Magna Græcia di Catanzaro, 88100, Catanzaro, Italy; Dipartimento di Scienze della Salute, Università; Magna Græcia di Catanzaro, 88100, Catanzaro, Italy
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland
| | - Giampietro Viola
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 3, 35127, Padova, Italy; Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
5
|
Renda M, Barreca M, Borrelli A, Spanò V, Montalbano A, Raimondi MV, Bivacqua R, Musante I, Scudieri P, Guidone D, Buccirossi M, Genovese M, Venturini A, Bandiera T, Barraja P, Galietta LJV. Novel tricyclic pyrrolo-quinolines as pharmacological correctors of the mutant CFTR chloride channel. Sci Rep 2023; 13:7604. [PMID: 37165082 PMCID: PMC10172366 DOI: 10.1038/s41598-023-34440-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients. The most effective compound, PP028, showed synergy when combined with VX-809 and VX-661 but not with VX-445. By testing the ability of correctors to stabilize CFTR fragments of different length, we found that VX-809 is effective on the amino-terminal portion of the protein that includes the first membrane-spanning domain (amino acids 1-387). Instead, PP028 and VX-445 only show a stabilizing effect when the second membrane-spanning domain is included (amino acids 1-1181). Our results indicate that tricyclic pyrrolo-quinolines are a novel class of CFTR correctors that, similarly to VX-445, interact with CFTR at a site different from that of VX-809. Tricyclic pirrolo-quinolines may represent novel CFTR correctors suitable for combinatorial pharmacological treatments to treat the basic defect in CF.
Collapse
Affiliation(s)
- Mario Renda
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Anna Borrelli
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Bivacqua
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Ilaria Musante
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Paolo Scudieri
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Martina Buccirossi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Arianna Venturini
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy.
- Department of Translational Medical Sciences (DISMET), University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
6
|
Ramalho AS, Amato F, Gentzsch M. Patient-derived cell models for personalized medicine approaches in cystic fibrosis. J Cyst Fibros 2023; 22 Suppl 1:S32-S38. [PMID: 36529661 PMCID: PMC9992303 DOI: 10.1016/j.jcf.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) channel that perturb anion transport across the epithelia of the airways and other organs. To treat cystic fibrosis, strategies that target mutant CFTR have been developed such as correctors that rescue folding and enhance transfer of CFTR to the apical membrane, and potentiators that increase CFTR channel activity. While there has been tremendous progress in development and approval of CFTR therapeutics for the most common (F508del) and several other CFTR mutations, around 10-20% of people with cystic fibrosis have rare mutations that are still without an effective treatment. In the current decade, there was an impressive evolution of patient-derived cell models for precision medicine. In cystic fibrosis, these models have played a crucial role in characterizing the molecular defects in CFTR mutants and identifying compounds that target these defects. Cells from nasal, bronchial, and rectal epithelia are most suitable to evaluate treatments that target CFTR. In vitro assays using cultures grown at an air-liquid interface or as organoids and spheroids allow the diagnosis of the CFTR defect and assessment of potential treatment strategies. An overview of currently established cell culture models and assays for personalized medicine approaches in cystic fibrosis will be provided in this review. These models allow theratyping of rare CFTR mutations with available modulator compounds to predict clinical efficacy. Besides evaluation of individual personalized responses to CFTR therapeutics, patient-derived culture models are valuable for testing responses to developmental treatments such as novel RNA- and DNA-based therapies.
Collapse
Affiliation(s)
- Anabela S Ramalho
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Felice Amato
- Department Of Molecular Medicine and Medical Biotechnologies and CE.IN.GE - Biotecnologie Avanzate, University of Naples Federico II, Naples, Italy
| | - Martina Gentzsch
- Marsico Lung Institute - Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Fonseca Ó, Gomes MS, Amorim MA, Gomes AC. Cystic Fibrosis Bone Disease: The Interplay between CFTR Dysfunction and Chronic Inflammation. Biomolecules 2023; 13:425. [PMID: 36979360 PMCID: PMC10046889 DOI: 10.3390/biom13030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Cystic fibrosis is a monogenic disease with a multisystemic phenotype, ranging from predisposition to chronic lung infection and inflammation to reduced bone mass. The exact mechanisms unbalancing the maintenance of an optimal bone mass in cystic fibrosis patients remain unknown. Multiple factors may contribute to severe bone mass reduction that, in turn, have devastating consequences in the patients' quality of life and longevity. Here, we will review the existing evidence linking the CFTR dysfunction and cell-intrinsic bone defects. Additionally, we will also address how the proinflammatory environment due to CFTR dysfunction in immune cells and chronic infection impairs the maintenance of an adequate bone mass in CF patients.
Collapse
Affiliation(s)
- Óscar Fonseca
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS–Instuto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4030-313 Porto, Portugal
| | | | - Ana Cordeiro Gomes
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
8
|
Scanio MJC, Searle XB, Liu B, Koenig JR, Altenbach RJ, Gfesser GA, Bogdan A, Greszler S, Zhao G, Singh A, Fan Y, Swensen AM, Vortherms T, Manelli A, Balut C, Gao W, Yong H, Schrimpf M, Tse C, Kym P, Wang X. Discovery and SAR of 4-aminopyrrolidine-2-carboxylic acid correctors of CFTR for the treatment of cystic fibrosis. Bioorg Med Chem Lett 2022; 72:128843. [PMID: 35688367 DOI: 10.1016/j.bmcl.2022.128843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease resulting from mutations on both copies of the CFTR gene. Phenylalanine deletion at position 508 of the CFTR protein (F508del-CFTR) is the most frequent mutation in CF patients. Currently, the most effective treatments of CF use a dual or triple combination of CFTR correctors and potentiators. In triple therapy, two correctors (C1 and C2) and a potentiator are employed. Herein, we describe the identification and exploration of the SAR of a series of 4-aminopyrrolidine-2-carboxylic acid C2 correctors of CFTR to be used in conjunction with our existing C1 corrector series for the treatment of CF.
Collapse
Affiliation(s)
- Marc J C Scanio
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States.
| | - Xenia B Searle
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Bo Liu
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - John R Koenig
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Robert J Altenbach
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Gregory A Gfesser
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Andrew Bogdan
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Stephen Greszler
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Gang Zhao
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Ashvani Singh
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Yihong Fan
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Andrew M Swensen
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Timothy Vortherms
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Arlene Manelli
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Corina Balut
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Wenqing Gao
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Hong Yong
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Michael Schrimpf
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Chris Tse
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Philip Kym
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Xueqing Wang
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| |
Collapse
|
9
|
Diastereoselective synthesis and spectral characterization of trans-4,4a-dihydro-3H-benzo[4,5]oxazolo[3,2-a]pyridines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Ribeiro CMP, Gentzsch M. Impact of Airway Inflammation on the Efficacy of CFTR Modulators. Cells 2021; 10:3260. [PMID: 34831482 PMCID: PMC8619863 DOI: 10.3390/cells10113260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Defective CFTR biogenesis and activity in cystic fibrosis airways leads to airway dehydration and impaired mucociliary clearance, resulting in chronic airway infection and inflammation. Most cystic fibrosis patients have at least one copy of the F508del CFTR mutation, which results in a protein retained in the endoplasmic reticulum and degraded by the proteosomal pathway. CFTR modulators, e.g., correctors, promote the transfer of F508del to the apical membrane, while potentiators increase CFTR activity. Corrector and potentiator double therapies modestly improve lung function, whereas triple therapies with two correctors and one potentiator indicate improved outcomes. Enhanced F508del rescue by CFTR modulators is achieved by exposing F508del/F508del primary cultures of human bronchial epithelia to relevant inflammatory stimuli, i.e., supernatant from mucopurulent material or bronchoalveolar lavage fluid from human cystic fibrosis airways. Inflammation enhances the biochemical and functional rescue of F508del by double or triple CFTR modulator therapy and overcomes abrogation of CFTR correction by chronic VX-770 treatment in vitro. Furthermore, the impact of inflammation on clinical outcomes linked to CFTR rescue has been recently suggested. This review discusses these data and possible mechanisms for airway inflammation-enhanced F508del rescue. Expanding the understanding of how airway inflammation improves CFTR rescue may benefit cystic fibrosis patients.
Collapse
Affiliation(s)
- Carla M. P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Pulmonary Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Pediatric Pulmonology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Carrasco-Hernández L, Quintana-Gallego E, Calero C, Reinoso-Arija R, Ruiz-Duque B, López-Campos JL. Dysfunction in the Cystic Fibrosis Transmembrane Regulator in Chronic Obstructive Pulmonary Disease as a Potential Target for Personalised Medicine. Biomedicines 2021; 9:1437. [PMID: 34680554 PMCID: PMC8533244 DOI: 10.3390/biomedicines9101437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 01/09/2023] Open
Abstract
In recent years, numerous pathways were explored in the pathogenesis of COPD in the quest for new potential therapeutic targets for more personalised medical care. In this context, the study of the cystic fibrosis transmembrane conductance regulator (CFTR) began to gain importance, especially since the advent of the new CFTR modulators which had the potential to correct this protein's dysfunction in COPD. The CFTR is an ion transporter that regulates the hydration and viscosity of mucous secretions in the airway. Therefore, its abnormal function favours the accumulation of thicker and more viscous secretions, reduces the periciliary layer and mucociliary clearance, and produces inflammation in the airway, as a consequence of a bronchial infection by both bacteria and viruses. Identifying CFTR dysfunction in the context of COPD pathogenesis is key to fully understanding its role in the complex pathophysiology of COPD and the potential of the different therapeutic approaches proposed to overcome this dysfunction. In particular, the potential of the rehydration of mucus and the role of antioxidants and phosphodiesterase inhibitors should be discussed. Additionally, the modulatory drugs which enhance or restore decreased levels of the protein CFTR were recently described. In particular, two CFTR potentiators, ivacaftor and icenticaftor, were explored in COPD. The present review updated the pathophysiology of the complex role of CFTR in COPD and the therapeutic options which could be explored.
Collapse
Affiliation(s)
- Laura Carrasco-Hernández
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (L.C.-H.); (E.Q.-G.); (C.C.); (R.R.-A.); (B.R.-D.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther Quintana-Gallego
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (L.C.-H.); (E.Q.-G.); (C.C.); (R.R.-A.); (B.R.-D.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Calero
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (L.C.-H.); (E.Q.-G.); (C.C.); (R.R.-A.); (B.R.-D.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rocío Reinoso-Arija
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (L.C.-H.); (E.Q.-G.); (C.C.); (R.R.-A.); (B.R.-D.)
| | - Borja Ruiz-Duque
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (L.C.-H.); (E.Q.-G.); (C.C.); (R.R.-A.); (B.R.-D.)
| | - José Luis López-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (L.C.-H.); (E.Q.-G.); (C.C.); (R.R.-A.); (B.R.-D.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Designing small molecules for therapeutic success: A contemporary perspective. Drug Discov Today 2021; 27:538-546. [PMID: 34601124 DOI: 10.1016/j.drudis.2021.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/31/2021] [Accepted: 09/25/2021] [Indexed: 11/23/2022]
Abstract
Successful small-molecule drug design requires a molecular target with inherent therapeutic potential and a molecule with the right properties to unlock its potential. Present-day drug design strategies have evolved to leave little room for improvement in drug-like properties. As a result, inadequate safety or efficacy associated with molecular targets now constitutes the primary cause of attrition in preclinical development through Phase II. This finding has led to a deeper focus on target selection. In this current reality, design tactics that enable rapid identification of risk-balanced clinical candidates, translation of clinical experience into meaningful differentiation strategies, and expansion of the druggable proteome represent significant levers by which drug designers can accelerate the discovery of the next generation of medicines.
Collapse
|
13
|
Wu L, Ye K, Jiang S, Zhou G. Marine Power on Cancer: Drugs, Lead Compounds, and Mechanisms. Mar Drugs 2021; 19:md19090488. [PMID: 34564150 PMCID: PMC8472172 DOI: 10.3390/md19090488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, 19.3 million new cancer cases and almost 10.0 million cancer deaths occur each year. Recently, much attention has been paid to the ocean, the largest biosphere of the earth that harbors a great many different organisms and natural products, to identify novel drugs and drug candidates to fight against malignant neoplasms. The marine compounds show potent anticancer activity in vitro and in vivo, and relatively few drugs have been approved by the U.S. Food and Drug Administration for the treatment of metastatic malignant lymphoma, breast cancer, or Hodgkin's disease. This review provides a summary of the anticancer effects and mechanisms of action of selected marine compounds, including cytarabine, eribulin, marizomib, plitidepsin, trabectedin, zalypsis, adcetris, and OKI-179. The future development of anticancer marine drugs requires innovative biochemical biology approaches and introduction of novel therapeutic targets, as well as efficient isolation and synthesis of marine-derived natural compounds and derivatives.
Collapse
Affiliation(s)
- Lichuan Wu
- Medical College, Guangxi University, Nanning 530004, China;
| | - Ke Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
- Correspondence: (S.J.); (G.Z.)
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.J.); (G.Z.)
| |
Collapse
|
14
|
|
15
|
Grand DL, Gosling M, Baettig U, Bahra P, Bala K, Brocklehurst C, Budd E, Butler R, Cheung AK, Choudhury H, Collingwood SP, Cox B, Danahay H, Edwards L, Everatt B, Glaenzel U, Glotin AL, Groot-Kormelink P, Hall E, Hatto J, Howsham C, Hughes G, King A, Koehler J, Kulkarni S, Lightfoot M, Nicholls I, Page C, Pergl-Wilson G, Popa MO, Robinson R, Rowlands D, Sharp T, Spendiff M, Stanley E, Steward O, Taylor RJ, Tranter P, Wagner T, Watson H, Williams G, Wright P, Young A, Sandham DA. Discovery of Icenticaftor (QBW251), a Cystic Fibrosis Transmembrane Conductance Regulator Potentiator with Clinical Efficacy in Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. J Med Chem 2021; 64:7241-7260. [PMID: 34028270 DOI: 10.1021/acs.jmedchem.1c00343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel are established as the primary causative factor in the devastating lung disease cystic fibrosis (CF). More recently, cigarette smoke exposure has been shown to be associated with dysfunctional airway epithelial ion transport, suggesting a role for CFTR in the pathogenesis of chronic obstructive pulmonary disease (COPD). Here, the identification and characterization of a high throughput screening hit 6 as a potentiator of mutant human F508del and wild-type CFTR channels is reported. The design, synthesis, and biological evaluation of compounds 7-33 to establish structure-activity relationships of the scaffold are described, leading to the identification of clinical development compound icenticaftor (QBW251) 33, which has subsequently progressed to deliver two positive clinical proofs of concept in patients with CF and COPD and is now being further developed as a novel therapeutic approach for COPD patients.
Collapse
Affiliation(s)
- Darren Le Grand
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Martin Gosling
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Urs Baettig
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Parmjit Bahra
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Kamlesh Bala
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Cara Brocklehurst
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, CH 4002, Switzerland
| | - Emma Budd
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Rebecca Butler
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Atwood K Cheung
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Hedaythul Choudhury
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Stephen P Collingwood
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Brian Cox
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Henry Danahay
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Lee Edwards
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Brian Everatt
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Ulrike Glaenzel
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, CH 4002, Switzerland
| | - Anne-Lise Glotin
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Paul Groot-Kormelink
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, CH 4002, Switzerland
| | - Edward Hall
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Julia Hatto
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Catherine Howsham
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Glyn Hughes
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Anna King
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Julia Koehler
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, CH 4002, Switzerland
| | - Swarupa Kulkarni
- Novartis Institutes for Biomedical Research, East Hanover, New Jersey 07936, United States
| | - Megan Lightfoot
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Ian Nicholls
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, CH 4002, Switzerland
| | - Christopher Page
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Giles Pergl-Wilson
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Mariana Oana Popa
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Richard Robinson
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - David Rowlands
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Tom Sharp
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Matthew Spendiff
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Emily Stanley
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Oliver Steward
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Roger J Taylor
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Pamela Tranter
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Trixie Wagner
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, CH 4002, Switzerland
| | - Hazel Watson
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Gareth Williams
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, CH 4002, Switzerland
| | - Penny Wright
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - Alice Young
- Novartis Institutes for Biomedical Research, Horsham Research Center, Wimblehurst Road, Horsham RH12 5AB, U.K
| | - David A Sandham
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Capurro V, Tomati V, Sondo E, Renda M, Borrelli A, Pastorino C, Guidone D, Venturini A, Giraudo A, Mandrup Bertozzi S, Musante I, Bertozzi F, Bandiera T, Zara F, Galietta LJV, Pedemonte N. Partial Rescue of F508del-CFTR Stability and Trafficking Defects by Double Corrector Treatment. Int J Mol Sci 2021; 22:ijms22105262. [PMID: 34067708 PMCID: PMC8156943 DOI: 10.3390/ijms22105262] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Deletion of phenylalanine at position 508 (F508del) in the CFTR chloride channel is the most frequent mutation in cystic fibrosis (CF) patients. F508del impairs the stability and folding of the CFTR protein, thus resulting in mistrafficking and premature degradation. F508del-CFTR defects can be overcome with small molecules termed correctors. We investigated the efficacy and properties of VX-445, a newly developed corrector, which is one of the three active principles present in a drug (Trikafta®/Kaftrio®) recently approved for the treatment of CF patients with F508del mutation. We found that VX-445, particularly in combination with type I (VX-809, VX-661) and type II (corr-4a) correctors, elicits a large rescue of F508del-CFTR function. In particular, in primary bronchial epithelial cells of CF patients, the maximal rescue obtained with corrector combinations including VX-445 was close to 60–70% of CFTR function in non-CF cells. Despite this high efficacy, analysis of ubiquitylation, resistance to thermoaggregation, protein half-life, and subcellular localization revealed that corrector combinations did not fully normalize F508del-CFTR behavior. Our study indicates that it is still possible to further improve mutant CFTR rescue with the development of corrector combinations having maximal effects on mutant CFTR structural and functional properties.
Collapse
Affiliation(s)
- Valeria Capurro
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (V.C.); (V.T.); (E.S.); (C.P.); (I.M.); (F.Z.)
| | - Valeria Tomati
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (V.C.); (V.T.); (E.S.); (C.P.); (I.M.); (F.Z.)
| | - Elvira Sondo
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (V.C.); (V.T.); (E.S.); (C.P.); (I.M.); (F.Z.)
| | - Mario Renda
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; (M.R.); (A.B.); (D.G.); (A.V.)
| | - Anna Borrelli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; (M.R.); (A.B.); (D.G.); (A.V.)
| | - Cristina Pastorino
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (V.C.); (V.T.); (E.S.); (C.P.); (I.M.); (F.Z.)
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; (M.R.); (A.B.); (D.G.); (A.V.)
| | - Arianna Venturini
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; (M.R.); (A.B.); (D.G.); (A.V.)
| | - Alessandro Giraudo
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (A.G.); (F.B.); (T.B.)
| | - Sine Mandrup Bertozzi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Ilaria Musante
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (V.C.); (V.T.); (E.S.); (C.P.); (I.M.); (F.Z.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genova, Italy
| | - Fabio Bertozzi
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (A.G.); (F.B.); (T.B.)
| | - Tiziano Bandiera
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (A.G.); (F.B.); (T.B.)
| | - Federico Zara
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (V.C.); (V.T.); (E.S.); (C.P.); (I.M.); (F.Z.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genova, Italy
| | - Luis J. V. Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; (M.R.); (A.B.); (D.G.); (A.V.)
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (L.J.V.G.); (N.P.)
| | - Nicoletta Pedemonte
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (V.C.); (V.T.); (E.S.); (C.P.); (I.M.); (F.Z.)
- Correspondence: (L.J.V.G.); (N.P.)
| |
Collapse
|
17
|
Pecoraro M, Franceschelli S, Pascale M. Lumacaftor and Matrine: Possible Therapeutic Combination to Counteract the Inflammatory Process in Cystic Fibrosis. Biomolecules 2021; 11:422. [PMID: 33805605 PMCID: PMC7999856 DOI: 10.3390/biom11030422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/03/2022] Open
Abstract
Cystic fibrosis is a monogenic, autosomal, recessive disease characterized by an alteration of chloride transport caused by mutations in the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene. The loss of Phe residue in position 508 (ΔF508-CFTR) causes an incorrect folding of the protein causing its degradation and electrolyte imbalance. CF patients are extremely predisposed to the development of a chronic inflammatory process of the bronchopulmonary system. When the cells of a tissue are damaged, the immune cells are activated and trigger the production of free radicals, provoking an inflammatory process. In addition to routine therapies, today drugs called correctors are available for mutations such as ΔF508-CFTR as well as for others less frequent ones. These active molecules are supposed to facilitate the maturation of the mutant CFTR protein, allowing it to reach the apical membrane of the epithelial cell. Matrine induces ΔF508-CFTR release from the endoplasmic reticulum to cell cytosol and its localization on the cell membrane. We now have evidence that Matrine and Lumacaftor not only restore the transport of mutant CFTR protein, but probably also counteract the inflammatory process by improving the course of the disease.
Collapse
Affiliation(s)
| | - Silvia Franceschelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; (M.P.); (M.P.)
| | | |
Collapse
|
18
|
Spanò V, Barreca M, Cilibrasi V, Genovese M, Renda M, Montalbano A, Galietta LJV, Barraja P. Evaluation of Fused Pyrrolothiazole Systems as Correctors of Mutant CFTR Protein. Molecules 2021; 26:molecules26051275. [PMID: 33652850 PMCID: PMC7956813 DOI: 10.3390/molecules26051275] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations that impair the function of the CFTR chloride channel. The most frequent mutation, F508del, causes misfolding and premature degradation of CFTR protein. This defect can be overcome with pharmacological agents named “correctors”. So far, at least three different classes of correctors have been identified based on the additive/synergistic effects that are obtained when compounds of different classes are combined together. The development of class 2 correctors has lagged behind that of compounds belonging to the other classes. It was shown that the efficacy of the prototypical class 2 corrector, the bithiazole corr-4a, could be improved by generating conformationally-locked bithiazoles. In the present study, we investigated the effect of tricyclic pyrrolothiazoles as analogues of constrained bithiazoles. Thirty-five compounds were tested using the functional assay based on the halide-sensitive yellow fluorescent protein (HS-YFP) that measured CFTR activity. One compound, having a six atom carbocyle central ring in the tricyclic pyrrolothiazole system and bearing a pivalamide group at the thiazole moiety and a 5-chloro-2-methoxyphenyl carboxamide at the pyrrole ring, significantly increased F508del-CFTR activity. This compound could lead to the synthesis of a novel class of CFTR correctors.
Collapse
Affiliation(s)
- Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
| | - Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
| | - Vincenzo Cilibrasi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
| | - Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078 Naples, Italy; (M.G.); (M.R.); (L.J.V.G.)
| | - Mario Renda
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078 Naples, Italy; (M.G.); (M.R.); (L.J.V.G.)
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
- Correspondence: ; Tel.: +39-091-238-968-22
| | - Luis Juan Vicente Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078 Naples, Italy; (M.G.); (M.R.); (L.J.V.G.)
- Department of Translational Medical Sciences (DISMET), University of Naples, “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
| |
Collapse
|
19
|
Bandiera T, Galietta LJV. Pharmacological approaches to cystic fibrosis. Eur J Med Chem 2021; 216:113240. [PMID: 33691259 DOI: 10.1016/j.ejmech.2021.113240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tiziano Bandiera
- D3 PharmaChemistry Line, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078, Pozzuoli, NA, Italy; Department of Translational Medical Sciences (DISMET), University of Naples, "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| |
Collapse
|