1
|
Liu K, Xia J, Li Y, Li BB, Wang MQ, Zhou Q, Ma ML, He QR, Yang WQ, Liu DF, Wang ZY, Yang LL, Zhang YY. Discovery of Novel Coumarin Pleuromutilin Derivatives as Potent Anti-MRSA Agents. J Med Chem 2024; 67:21030-21048. [PMID: 39603597 DOI: 10.1021/acs.jmedchem.4c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Treating methicillin-resistant Staphylococcus aureus (MRSA) infection remains one of the most difficult challenges in clinical practice, primarily due to the resistance of MRSA to multiple antibiotics. Therefore, there is an urgent need to develop novel antibiotics with high efficacy and low cross-resistance rates. In this study, a series of novel pleuromutilin derivatives with coumarin structures were synthesized and subsequently assessed for their biological activities. Most of these derivatives showed potent antimicrobial activity against drug-resistant Gram-positive bacterial strains. Compound 14b displayed particularly rapid bactericidal effects, slow resistance development, and low cytotoxicity. Moreover, it decreased bacterial loads in the lung, liver, kidney, spleen, and heart and exhibited better antibacterial efficacy (ED50 = 11.16 mg/kg) than tiamulin (ED50 = 28.93 mg/kg) in a mouse model of systemic MRSA infection. Both in vitro and in vivo analyses suggest that compound 14b is a promising agent for the treatment of MRSA infections.
Collapse
Affiliation(s)
- Kai Liu
- School of Science, Xihua University, Chengdu 610039, China
| | - Jing Xia
- School of Science, Xihua University, Chengdu 610039, China
| | - Yun Li
- School of Science, Xihua University, Chengdu 610039, China
| | - Bing-Bing Li
- School of Science, Xihua University, Chengdu 610039, China
| | - Meng-Qian Wang
- School of Science, Xihua University, Chengdu 610039, China
| | - Qian Zhou
- School of Science, Xihua University, Chengdu 610039, China
| | - Meng-Lin Ma
- School of Science, Xihua University, Chengdu 610039, China
| | - Qiu-Rong He
- West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Wei-Qing Yang
- School of Science, Xihua University, Chengdu 610039, China
| | - Dong-Fang Liu
- School of Science, Xihua University, Chengdu 610039, China
| | - Zhou-Yu Wang
- School of Science, Xihua University, Chengdu 610039, China
| | - Ling-Ling Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yuan-Yuan Zhang
- School of Science, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| |
Collapse
|
2
|
Zhang Y, Yu X, Li J, Liang B, Sun J, Min X, Xiong Z, Chen WH, Xu X. Design, synthesis and biological evaluation of novel betulinic acid derivatives containing 1,2,4-triazole-derived schiff bases as α-glucosidase inhibitors. J Mol Struct 2024; 1315:138889. [DOI: 10.1016/j.molstruc.2024.138889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Yang L, Ding M, Shi J, Luo N, Wang Y, Lin D, Bao X. Design, synthesis, X-ray crystal structure, and antimicrobial evaluation of novel quinazolinone derivatives containing the 1,2,4-triazole Schiff base moiety and an isopropanol linker. Mol Divers 2024; 28:3215-3224. [PMID: 37935911 DOI: 10.1007/s11030-023-10749-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023]
Abstract
A series of novel quinazolinone derivatives (E1-E31) containing the 1,2,4-triazole Schiff base moiety and an isopropanol linker were designed, synthesized and assessed as antimicrobial agents in agriculture. All the target compounds were fully characterized by 1 H NMR, 13 C NMR, and high-resolution mass spectrometry (HRMS). Among them, the structure of compound E12 was further confirmed via single crystal X-ray diffraction method. The experimental results indicated that many compounds displayed good in vitro antibacterial efficacies against the tested phytopathogenic bacteria including Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Ralstonia solanacearum (Rs). For example, compounds E3, E4, E10, E13, and E22 had EC50 (half-maximal effective concentration) values of 55.4, 39.5, 49.5, 53.5, and 57.4 µg/mL against Xoo, respectively, superior to the commercialized bactericide Bismerthiazol (94.5 µg/mL). In addition, the antibacterial efficacies of compounds E10 and E13 against Xac were about two times more effective than control Bismerthiazol, in terms of their EC50 values. Last, the antifungal assays showed that compounds E22 and E30 had the inhibition rates of 52.7% and 54.6% at 50 µg/mL against Gibberella zeae, respectively, higher than the commercialized fungicide Hymexazol (48.4%).
Collapse
Affiliation(s)
- Lan Yang
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Muhan Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Jun Shi
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou Medical University, Guiyang, 550014, China
| | - Na Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Yuli Wang
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Dongyun Lin
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Xiaoping Bao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Zhou X, Zhang H, Zhou Y, Yi Y, Yuan R, Pu W, Wang S, Shang R. Antimicrobial activity, safety and pharmacokinetics evaluation of PMTM: A novel pleuromutilin candidate. Biomed Pharmacother 2024; 179:117378. [PMID: 39241564 DOI: 10.1016/j.biopha.2024.117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
The prevalence of infections by methicillin-resistant Staphylococcus aureus (MRSA) has led to dramatically increased mortality and threated the public health worldwide. Pleuromutilin compound 14-O-[(4-(pyrrolidine-1-yl)-6-methylpyrimidine-2-yl) thioacetyl] mutilin (PMTM) is a new antibacterial agent with excellent antibacterial efficacy against Gram positive bacteria. For further developing PMTM as a potential drug against MRSA infections, the in vitro antibacterial efficacy and preclinical safety were explored in this study. The results revealed that PMTM presented the higher anti-MRSA activity, increasing post-antibiotic effect (PAE) and limited potential to develop resistance. In safety evaluation, PMTM demonstrated low cytotoxicity, poor hemolytic activity, tolerable oral acute toxic effects in rats, devoid of mutagenic response and weak inhibitory potential on CYP3A4, but displayed moderate potential hERG K+ channel inhibition. Furthermore, two salts of PMTM with sulfuric acid and hydrochloric acid were prepared and confirmed. The sulfate salt of PMTM exhibited the highest solubility based on powder dissolution experiments and was chosen to evaluate pharmacokinetics properties, in which it displayed improved mouse pharmacokinetics parameters and oral bioavailability. The present study successfully provides a good foundation of PMTM for new antibacterial drug development.
Collapse
Affiliation(s)
- Xingqian Zhou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Yuhang Zhou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong 250023, China
| | - Ruili Yuan
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| |
Collapse
|
5
|
Liu J, Ren J, Zuo XY, Zhou KX, Tang YZ, Jin Z. Design, synthesis, in vitro and in vivo evaluation and molecular docking study of novel pleuromutilin derivatives as antibacterial agents. Fitoterapia 2024; 176:106046. [PMID: 38821322 DOI: 10.1016/j.fitote.2024.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
14 novel pleuromutilin derivatives were designed and synthesized as inhibitors against Staphylococcus aureus (S. aureus). The modification was focused on the C22 position of pleuromutilin. We conducted the characterization, in vitro and in vivo biological assessment of the compounds. Compound 18 exhibited the best antibacterial effect against MRSA (MIC = 0.015 μg/mL, MBC = 0.125 μg/mL). Compound 18 was further studied by time-kill kinetic and post-antibiotic effect (PAE) approaches. Besides, most compounds exhibited low cytotoxicity to RAW 264.7 cells. Compound 18 displayed decent bactericidal activity in vivo (-0.51 log10 CFU/mL). Molecular docking study indicated that compound 18 could be located stably at the ribosome (ΔGb = -7.30 kcal/mol). The results revealed that compound 18 might be further developed into a novel antibiotic.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Ren
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiang-Yi Zuo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ke-Xin Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
6
|
Li K, Lin C, Hu YH, Wang J, Jin Z, Zeng ZL, Tang YZ. Design, Synthesis, Biological Evaluation, and Molecular Docking Studies of Pleuromutilin Derivatives Containing Thiazole. ACS Infect Dis 2024; 10:1980-1989. [PMID: 38703116 DOI: 10.1021/acsinfecdis.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
In this study, we designed and synthesized a series of pleuromutilin derivatives containing thiazole. The in vitro antimicrobial efficacy of these synthesized compounds was examined by using four strains. Compared with tiamulin (MIC = 0.25 μg/mL), compound 14 exhibited potency in inhibiting MRSA growth (MIC = 0.0625 μg/mL) in these derivatives. Meanwhile, the time-killing kinetics further demonstrated that compound 14 could efficiently inhibit the MRSA growth. After exposure at 4 × MIC, the postantibiotic effect (PAE) of compound 14 was 1.29 h. Additionally, in thigh-infected mice, compound 14 exhibited a more potent antibacterial efficacy (-1.78 ± 0.28 log10 CFU/g) in reducing MRSA load compared to tiamulin (-1.21 ± 0.23 log10 CFU/g). Moreover, the MTT assay on RAW 264.7 cells demonstrated that compound 14 (8 μg/mL) had no significant cytotoxicity. Docking studies indicated the strong affinity of compound 14 toward the 50S ribosomal subunit, with a binding free energy of -9.63 kcal/mol. Taken together, it could be deduced that compound 14 was a promising candidate for treating MRSA infections.
Collapse
Affiliation(s)
- Ke Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chao Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Han Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhen-Ling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
7
|
Salam HAE, Abo-Salem HM, Kutkat O, Abdel-Aziz MS, Montaser AS, El-Sawy ER. Synthesis of 5-heptadecyl-4H-1,2,4-triazole incorporated indole moiety: Antiviral (SARS-CoV-2), antimicrobial, and molecular docking studies. J Mol Struct 2024; 1303:137517. [DOI: 10.1016/j.molstruc.2024.137517] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Liu Y, Zhou Q, Huo Y, Sun X, Hu J. Recent advances in developing modified C14 side chain pleuromutilins as novel antibacterial agents. Eur J Med Chem 2024; 269:116313. [PMID: 38503168 DOI: 10.1016/j.ejmech.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Owing to the increasing resistance to most existing antimicrobial drugs, research has shifted towards developing novel antimicrobial agents with mechanisms of action distinct from those of current clinical options. Pleuromutilins are antibiotics known for their distinct mechanism of action, inhibiting bacterial protein synthesis by binding to the peptidyl transferase center of the ribosome. Recent studies have revealed that pleuromutilin derivatives can disrupt bacterial cell membranes, thereby enhancing antibacterial efficacy. Both marketed pleuromutilin derivatives and those in clinical trials have been developed by structurally modifying the pleuromutilin C14 side chain to improve their antimicrobial activity. Therefore, this review aims to review advancement in the chemical structural characteristics, antibacterial activities, and structure-activity relationship studies of pleuromutilins, specifically focusing on modifications made to the C14 side chain in recent years. These findings provide a valuable reference for future research and development of pleuromutilins.
Collapse
Affiliation(s)
- Yue Liu
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Qinjiang Zhou
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yiwen Huo
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Xiujuan Sun
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Jinxing Hu
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| |
Collapse
|
9
|
Zhang J, Liu Q, Zhao H, Li G, Yi Y, Shang R. Design and Synthesis of Pleuromutilin Derivatives as Antibacterial Agents Using Quantitative Structure-Activity Relationship Model. Int J Mol Sci 2024; 25:2256. [PMID: 38396934 PMCID: PMC10888563 DOI: 10.3390/ijms25042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The quantitative structure-activity relationship (QSAR) is one of the most popular methods for the virtual screening of new drug leads and optimization. Herein, we collected a dataset of 955 MIC values of pleuromutilin derivatives to construct a 2D-QSAR model with an accuracy of 80% and a 3D-QSAR model with a non-cross-validated correlation coefficient (r2) of 0.9836 and a cross-validated correlation coefficient (q2) of 0.7986. Based on the obtained QSAR models, we designed and synthesized pleuromutilin compounds 1 and 2 with thiol-functionalized side chains. Compound 1 displayed the highest antimicrobial activity against both Staphylococcus aureus ATCC 29213 (S. aureus) and Methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentrations (MICs) < 0.0625 μg/mL. These experimental results confirmed that the 2D and 3D-QSAR models displayed a high accuracy of the prediction function for the discovery of lead compounds from pleuromutilin derivatives.
Collapse
Affiliation(s)
- Jiaming Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Qinqin Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Haoxia Zhao
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Guiyu Li
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| |
Collapse
|
10
|
Coandă M, Limban C, Nuță DC. Small Schiff Base Molecules-A Possible Strategy to Combat Biofilm-Related Infections. Antibiotics (Basel) 2024; 13:75. [PMID: 38247634 PMCID: PMC10812491 DOI: 10.3390/antibiotics13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only possess antimicrobial properties but also demonstrate efficacy against biofilms. While numerous investigations have focused on antimicrobial capabilities of Schiff bases, their potential as antibiofilm agents remains largely unexplored. Thus, the objective of this article is to present a comprehensive overview of the existing scientific literature pertaining to small molecules categorized as Schiff bases with antibiofilm properties. The survey involved querying four databases (Web of Science, ScienceDirect, Scopus and Reaxys). Relevant articles published in the last 10 years were selected and categorized based on the molecular structure into two groups: classical Schiff bases and oximes and hydrazones. Despite the majority of studies indicating a moderate antibiofilm potential of Schiff bases, certain compounds exhibited a noteworthy effect, underscoring the significance of considering this type of molecular modeling when seeking to develop new molecules with antibiofilm effects.
Collapse
Affiliation(s)
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (M.C.); (D.C.N.)
| | | |
Collapse
|
11
|
Ren J, Zhang QW, He XJ, Chen XY, Zhou ZD, Zeng ZL, Jin Z, Tang YZ. Design, synthesis, biological evaluation and molecular docking study of novel pleuromutilin derivatives containing substituted benzoxazole as antibacterial agents. J Enzyme Inhib Med Chem 2023; 38:2251712. [PMID: 37664987 PMCID: PMC10478630 DOI: 10.1080/14756366.2023.2251712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
A series of pleuromutilin analogs containing substituted benzoxazole were designed, synthesised, and assessed for their antibacterial activity both in vivo and in vitro. The MIC of the synthesised derivatives was initially assessed using the broth dilution method against four strains of Staphylococcus aureus (MRSA ATCC 43300, S. aureus ATCC 29213, clinical isolation of S. aureus AD3 and S. aureus 144). Most of the synthesised derivatives displayed prominent in vitro activity (MIC ≤ 0.5 µg/mL). Compounds 50 and 57 exhibited the most effective antibacterial effect against MRSA (MIC = 0.125 µg/mL). Furthermore, the time-kill curves showed that compounds 50 and 57 had a certain inhibitory effect against MRSA in vitro. The in vivo antibacterial activity of compound 50 was evaluated further using a murine thigh model infected with MRSA (-1.24 log10CFU/mL). Compound 50 exhibited superior antibacterial efficacy to tiamulin. It was also found that compound 50 did not display significant inhibitory effect on the proliferation of RAW 264.7 cells. Molecular docking study revealed that compound 50 can effectively bind to the active site of the 50S ribosome (the binding free energy -7.50 kcal/mol).
Collapse
Affiliation(s)
- Jie Ren
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi-Wen Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xian-Jin He
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ying Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zi-Dan Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen-Ling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
12
|
Tian G, Song Q, Liu Z, Guo J, Cao S, Long S. Recent advances in 1,2,3- and 1,2,4-triazole hybrids as antimicrobials and their SAR: A critical review. Eur J Med Chem 2023; 259:115603. [PMID: 37478558 DOI: 10.1016/j.ejmech.2023.115603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/23/2023]
Abstract
With the widespread use and sometimes even abuse of antibiotics, the problem of bacterial resistance to antibiotics has become very serious, and it is posing a great threat to global health. Therefore, development of new antibiotics is imperative. Triazoles are five-membered, nitrogen-containing aromatic heterocyclic scaffolds, with two isomeric forms, i.e. 1,2,3-triazole and 1,2,4-triazole. Triazole-containing compounds have a wide range of biological activities such as antibacterial, antifungal, anticancer, antioxidant, antitubercular, antimalarial, anti-HIV, anticonvulsant, anti-inflammatory, antiulcer, analgesic, and etc. The bioactivities and the diversity of triazole-containing drugs have attracted wide interest in these heterocycles. Various antibiotic triazole hybrids have been developed, and most of which have shown potent antimicrobial activities. In this review, we summarized the recent advances in triazole hybrids as potential antibacterial agents and their structure-activity relationships (SARs). The information gained through SAR studies will provide further insights into the development of new triazole antimicrobials.
Collapse
Affiliation(s)
- Guimiao Tian
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Qiuyi Song
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| |
Collapse
|
13
|
Zhou Y, Yi Y, Yang J, Zhang H, Liu Q, Wang S, Pu W, Shang R. Anti-methicillin-resistant Staphylococcus aureus activity and safety evaluation of 14-O-[(5-ethoxycarbonyl-4,6-dimethylpyrimidine-2-yl) thioacetyl] mutilin (EDT). Sci Rep 2023; 13:15267. [PMID: 37709940 PMCID: PMC10502144 DOI: 10.1038/s41598-023-42621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have threated the public health worldwide, which emphasizes the urgent need for new drugs with novel mechanism of actions. 14-O-[(5-ethoxycarbonyl-4,6-dimethylpyrimidine-2-yl) thioacetyl] mutilin (EDT) is a pleuromutilin compound with high activity against several Gram-positive bacteria in vitro and in vivo. This study aimed to verifying the potential anti-MRSA activity and evaluating the safety of EDT. In in vitro antibacterial activity assays, EDT exhibited potent antibacterial activity against MRSA isolated from clinic (minimum inhibitory concentration = 0.0313-0.125 μg/mL), increased post-antibiotic effect (PAE) values and limited potential for the development of resistance. Docking model and green fluorescent protein (GFP) inhibition assay further elucidated the higher antibacterial activities of EDT via mechanism of action. In safety evaluation, EDT exhibited low cytotoxic effect and acute oral toxicity in mice and avoided to significantly increase the number of revertant colonies of six tested strains in the Ames study. Furthermore, EDT displayed a moderate inhibitory effect on CYP3A4 and moderate stability in mouse and human liver microsomes, providing a promising agent for the development of new antimicrobial candidate.
Collapse
Affiliation(s)
- Yuhang Zhou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, 250023, People's Republic of China
| | - Jing Yang
- Gansu Analysis and Research Center, Lanzhou, 730000, People's Republic of China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Qinqin Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China.
| |
Collapse
|
14
|
Xia J, Li Y, He C, Yong C, Wang L, Fu H, He XL, Wang ZY, Liu DF, Zhang YY. Synthesis and Biological Activities of Oxazolidinone Pleuromutilin Derivatives as a Potent Anti-MRSA Agent. ACS Infect Dis 2023; 9:1711-1729. [PMID: 37610012 DOI: 10.1021/acsinfecdis.3c00162] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A series of pleuromutilin derivatives containing an oxazolidinone skeleton were synthesized and evaluated in vitro and in vivo as antibacterial agents. Most of the synthesized derivatives exhibited potent antibacterial activities against three strains of Staphylococcus aureus (including MRSA ATCC 33591, MRSA ATCC 43300, and MSSA ATCC 29213) and two strains of Staphylococcus epidermidis (including MRSE ATCC 51625 and MSSE ATCC 12228). Compound 28 was the most active antibacterial agent in vitro (MIC = 0.008-0.125 μg·mL-1) and exhibited a significant bactericidal effect, low cytotoxicity, and weak inhibition (IC50 = 20.66 μmol·L-1) for CYP3A4, as well as exhibited less possibility to cause bacterial resistance. Furthermore, in vivo activities indicated that the compound was effective in reducing MRSA load in a murine thigh infection model. Moreover, it clearly facilitated the healing of MRSA skin infection and inhibited the secretion of the TNF-α, IL-6, and MCP-1 inflammatory factors in serum. These results suggest that oxazolidinone pleuromutilin is a promising therapeutic candidate for drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jing Xia
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Yun Li
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Cailu He
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Can Yong
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Li Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Huan Fu
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Xiao-Long He
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Zhou-Yu Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Dong-Fang Liu
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yuan-Yuan Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| |
Collapse
|
15
|
Stojković D, Petrović J, Carević T, Soković M, Liaras K. Synthetic and Semisynthetic Compounds as Antibacterials Targeting Virulence Traits in Resistant Strains: A Narrative Updated Review. Antibiotics (Basel) 2023; 12:963. [PMID: 37370282 PMCID: PMC10295040 DOI: 10.3390/antibiotics12060963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
This narrative review paper provides an up-to-date overview of the potential of novel synthetic and semisynthetic compounds as antibacterials that target virulence traits in resistant strains. The review focused on research conducted in the last five years and investigated a range of compounds including azoles, indoles, thiophenes, glycopeptides, pleuromutilin derivatives, lactone derivatives, and chalcones. The emergence and spread of antibiotic-resistant bacterial strains is a growing public health concern, and new approaches are urgently needed to combat this threat. One promising approach is to target virulence factors, which are essential for bacterial survival and pathogenesis, but not for bacterial growth. By targeting virulence factors, it may be possible to reduce the severity of bacterial infections without promoting the development of resistance. We discuss the mechanisms of action of the various compounds investigated and their potential as antibacterials. The review highlights the potential of targeting virulence factors as a promising strategy to combat antibiotic resistance and suggests that further research is needed to identify new compounds and optimize their efficacy. The findings of this review suggest that novel synthetic and semisynthetic compounds that target virulence factors have great potential as antibacterials in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.S.); (J.P.); (T.C.); (M.S.)
| | - Jovana Petrović
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.S.); (J.P.); (T.C.); (M.S.)
| | - Tamara Carević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.S.); (J.P.); (T.C.); (M.S.)
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.S.); (J.P.); (T.C.); (M.S.)
| | - Konstantinos Liaras
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus
| |
Collapse
|
16
|
Wang J, Hu YH, Zhou KX, Wang W, Li F, Li K, Zhang GY, Tang YZ. Design, Synthesis and Biological Evaluation of Novel Pleuromutilin Derivatives Containing 6-Chloro-1-R-1 H-pyrazolo[3,4- d]pyrimidine-4-amino Side Chain. Molecules 2023; 28:molecules28093975. [PMID: 37175382 PMCID: PMC10180054 DOI: 10.3390/molecules28093975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Two series of pleuromutilin derivatives were designed and synthesized as inhibitors against Staphylococcus aureus (S. aureus). 6-chloro-4-amino-1-R-1H-pyrazolo[3,4-d]pyrimidine or 4-(6-chloro-1-R-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-phenylthiol were connected to pleuromutilin. A diverse array of substituents was introduced at the N-1 position of the pyrazole ring. The in vitro antibacterial activities of these semisynthetic derivatives were evaluated against two standard strains, Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Staphylococcus aureus (S. aureus), ATCC 29213 and two clinical S. aureus strains (144, AD3) using the broth dilution method. Compounds 12c, 19c and 22c (MIC = 0.25 μg/mL) manifested good in vitro antibacterial ability against MRSA which was similar to that of tiamulin (MIC = 0.5 μg/mL). Among them, compound 22c killed MRSA in a time-dependent manner and performed faster bactericidal kinetics than tiamulin in time-kill curves. In addition, compound 22c exhibited longer PAE than tiamulin, and showed no significant inhibition on the cell viability of RAW 264.7, Caco-2 and 16-HBE cells at high doses (≤8 μg/mL). The neutropenic murine thigh infection model study revealed that compound 22c displayed more effective in vivo bactericidal activity than tiamulin in reducing MRSA load. The molecular docking studies indicated that compound 22c was successfully localized inside the binding pocket of 50S ribosomal, and four hydrogen bonds played important roles in the binding of them.
Collapse
Affiliation(s)
- Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Yu-Han Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Ke-Xin Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Fei Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Ke Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
17
|
Wu Z, Zhu X, Hong A, He G, Wang Z, Xu Q, Hu Z, Wu X, Wang Y, Chen Q, Zhao X, Li L, Deng X. Discovery of urea-based pleuromutilin derivatives as potent gram-positive antibacterial agents. Bioorg Chem 2023; 136:106547. [PMID: 37105000 DOI: 10.1016/j.bioorg.2023.106547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
There is an urgent need to discover new antibacterial drugs and provide new treatment options for clinical antimicrobial resistance (AMR) pathogen infections. Inspired by the structural insights from analyzing the co-crystal structure of lefamulin with the ribosomes of S. aureus, a series of novel pleuromutilin derivatives of phenylene sulfide incorporated with urea moiety were designed and synthesized. The structure-activity relationship (SAR) study revealed that derivatives with urea in the meta position of phenylene sulfide had optimal antibacterial activities in vitro. Among them, 21h was the most potent one against Methicillin-resistant Staphylococcus aureus (MRSA) and clinical AMR Gram-positive bacteria with minimum inhibitory concentrations (MICs) in the range of 0.00195-0.250 μg/mL. And it possessed low resistance frequency, prolonged Post-Antibiotic Effect and the capability to overcome lefamulin-induced resistance. Furthermore, 21h exhibited potent antibacterial activity in vivo in both the thigh infection model and trauma infection model, representing a promising lead for the development of new antibiotics against Gram-positive pathogens, especially for AMR bacteria.
Collapse
Affiliation(s)
- Zhenhua Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoli Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Anjin Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Guanghui He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Zheng Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiyu Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaobing Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuezhou Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiufang Chen
- Women and Children's Hospital, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China.
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
18
|
Yi Y, Yang S, Liu Y, Yin B, Zhao Z, Li G, Huang Z, Chen L, Liu F, Shang R, Lin S. Antibiotic resistance and drug modification: Synthesis, characterization and bioactivity of newly modified potent pleuromutilin derivatives with a substituted piperazine moiety. Bioorg Chem 2023; 132:106353. [PMID: 36669358 DOI: 10.1016/j.bioorg.2023.106353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Antibiotic-resistant bacteria pose a major global public health concern, owing to the lack of effective antibacterial drugs. Consequently, the discovery and development of innovative antibacterial drug classes with unique mechanisms of action are urgently needed. In this study, we designed, synthesised, and tested a series of novel pleuromutilin derivatives with piperazine linker substituted by amino acids moieties to determine their antibacterial properties. Most synthesized compounds exhibited potent activities against Staphylococcus aureus (S. aureus), methicillin-resistant S. aureus (MRSA), and methicillin-resistant Staphylococcus epidermidis. Compound 6l, the most potent antibacterial agent created in this study, displayed a rapid bactericidal activity against MRSA, Klebsiella pneumoniae and S. aureus cfr N12. Moreover, pharmacokinetics study of compound 6l exhibited good PK performance with a low in vivo clearance (CL = 1965 mL/h/kg) and a suitable half-life (T1/2 = 11.614 ± 5.123 h). Molecular docking experiments revealed the binding model of compound 6l to the unmethylated A2503 of peptidyl transferase centre of 23S rRNA. Interaction pattern of 6l with cfr-mediated ribosomes revealed by molecular dynamics. Moreover in vivo mouse systemic infection experiments with compound 6l revealed its effectiveness against MRSA and S. aureus cfr N12 with the ED50 of 11.08 mg/kg and 14.63 mg/kg body weight, respectively.
Collapse
Affiliation(s)
- Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, Shandong, China
| | - Shifa Yang
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, Shandong, China
| | - Yueyue Liu
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, Shandong, China
| | - Bin Yin
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, Shandong, China
| | - Zengcheng Zhao
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, Shandong, China
| | - Guiming Li
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, Shandong, China
| | - Zhongli Huang
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, Shandong, China
| | - Lei Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Fei Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250023, Shandong, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Shuqian Lin
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, Shandong, China.
| |
Collapse
|
19
|
Sultana R, Ali A, Twala C, Mehandi R, Rana M, Yameen D, Abid M, Rahisuddin. Synthesis, spectral characterization of pyrazole derived Schiff base analogs: molecular dynamic simulation, antibacterial and DNA binding studies. J Biomol Struct Dyn 2023; 41:13724-13751. [PMID: 36826451 DOI: 10.1080/07391102.2023.2179541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
We have synthesized the pyrazole-bearing Schiff base derivatives (5a-5e) and (6a-6h) then the structural confirmation was supported by various spectral analyses. The antibacterial activity of all analogs was screened against bacterial strains Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Klebsiella pneumonieae and Pseudomonas aeruginosa. In comparison to the reference drug ciprofloxacin, the lead analogs 5c and 6c showed potent activity, with MIC values of 64 µg/mL against E. coli and B. subtilis. Compound 5c showed a moderate effect with a MIC value of 128 µg/mL against B. subtilis, P. aeruginosa and K. pneumonieae, while compound 6c was against E. coli and P. aeruginosa. Furthermore, the compounds 5c and 6c displayed groove binding mode towards CT-DNA by absorption, emission, competitive fluorescence studies using EtBr, CD and time-resolved fluorescence studies. Thermodynamic parameters of analogs 5c and 6c with CT-DNA were also calculated at 298, 303 and 308K temperatures by UV-visible spectroscopy. The molecular docking studies give the docking score for all compounds with PDB codes: 1BNA and 2XCT. The MD simulation study of analogs 5c and 6c was also carried out. The pharmacokinetic and ADME properties were calculated for all of the synthesized analogs (5a-5e) and (6a-6h).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Razia Sultana
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Asghar Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Charmy Twala
- Department of Life and Consumer Science, University of South Africa, Florida, South Africa
| | - Rabiya Mehandi
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Manish Rana
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Daraksha Yameen
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
20
|
Xia J, Xin L, Li J, Tian L, Wu K, Zhang S, Yan W, Li H, Zhao Q, Liang C. Discovery of Quaternized Pyridine-Thiazole-Pleuromutilin Derivatives with Broad-Spectrum Antibacterial and Potent Anti-MRSA Activity. J Med Chem 2023; 66:5061-5078. [PMID: 37051724 DOI: 10.1021/acs.jmedchem.2c02135] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The quaternization of compounds has emerged as a promising molecular design strategy for the development of antibiotics. Herein, we report the design, synthesis, antibacterial activities, and structure-activity relationships of a series of novel pleuromutilin derivatives containing a quaternary amine C-14 side chain. Most of these derivatives exhibited broad-spectrum antibacterial activity against the tested bacteria. 10b was the most effective antibacterial agent that displayed excellent antibacterial activity against five clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates, remarkable antimycoplasma activity, rapid bactericidal effects, and a strong ability to damage bacterial biofilms. Further mechanistic studies indicated that 10b destroyed bacterial cell membranes to exert its antibacterial effects. Moreover, 10b exhibited high survival protection and potent in vivo antibacterial efficacy (ED50 = 4.94 mg/kg) in a mouse model of systemic MRSA infection. These findings suggest that 10b is a promising candidate for the treatment of multi-drug-resistant infectious diseases, especially MRSA infections.
Collapse
Affiliation(s)
- Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Liang Xin
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Jingyi Li
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Lei Tian
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Kangxiong Wu
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Shaojun Zhang
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Wenjing Yan
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Han Li
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Qianqian Zhao
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Chengyuan Liang
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| |
Collapse
|
21
|
Elmaidomy AH, Shady NH, Abdeljawad KM, Elzamkan MB, Helmy HH, Tarshan EA, Adly AN, Hussien YH, Sayed NG, Zayed A, Abdelmohsen UR. Antimicrobial potentials of natural products against multidrug resistance pathogens: a comprehensive review. RSC Adv 2022; 12:29078-29102. [PMID: 36320761 PMCID: PMC9558262 DOI: 10.1039/d2ra04884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Antibiotic resistance is one of the critical issues, describing a significant social health complication globally. Hence, the discovery of novel antibiotics has acquired an increased attention particularly against drug-resistant pathogens. Natural products have served as potent therapeutics against pathogenic bacteria since the glorious age of antibiotics of the mid 20th century. This review outlines the various mechanistic candidates for dealing with multi-drug resistant pathogens and explores the terrestrial phytochemicals isolated from plants, lichens, insects, animals, fungi, bacteria, mushrooms, and minerals with reported antimicrobial activity, either alone or in combination with conventional antibiotics. Moreover, newly established tools are presented, including prebiotics, probiotics, synbiotics, bacteriophages, nanoparticles, and bacteriocins, supporting the progress of effective antibiotics to address the emergence of antibiotic-resistant infectious bacteria. Therefore, the current article may uncover promising drug candidates that can be used in drug discovery in the future.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62511 Egypt
| | - Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | | | | | - Hussein Hykel Helmy
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | - Emad Ashour Tarshan
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | - Abanoub Nabil Adly
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | | | - Nesma Gamal Sayed
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Elguish Street (Medical Campus) Tanta 31527 Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern Gottlieb-Daimler-Str. 49 Kaiserslautern 67663 Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| |
Collapse
|
22
|
Zhang ZQ, Liu J, Zhang GY, Li B, Li K, Jin Z, Bai X, Tang YZ. Design, synthesis, antibacterial activity evaluation and molecular docking study of pleuromutilin derivatives bearing amide side chains. Chem Biol Drug Des 2022; 100:564-579. [PMID: 35730249 DOI: 10.1111/cbdd.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/30/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022]
Abstract
A seize of pleuromutilin derivatives containing amide side chains were designed and synthesized as potential antibiotics against Methicillin-resistant Staphylococcus aureus (MRSA). Among all target compounds (compounds 11-30), compound 25 was found to have the strongest antibacterial activity against MRSA (minimum inhibitory concentration = 0.5 μg/ml). The result of the time-kill curves indicated that compound 25 could repress the growth of MRSA in vitro obviously (-3.72 log10 CFU/ml reduction). Furthermore, molecular docking studies demonstrated that compound 25 was localized in the binding pocket of 50S ribosomal subunit (ΔGb = -8.99 kcal/mol). Besides, compound 25 displayed low cytotoxicity to RAW 264.7 cells. The results suggested that compound 25 might be further developed into a novel antimicrobial agent against MRSA.
Collapse
Affiliation(s)
- Zhuo-Qi Zhang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jie Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu Bai
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
23
|
Aloe emodin-conjugated sulfonyl hydrazones as novel type of antibacterial modulators against S. aureus 25923 through multifaceted synergistic effects. Bioorg Chem 2022; 127:106035. [PMID: 35870413 DOI: 10.1016/j.bioorg.2022.106035] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
Aloe emodin-conjugated sulfonyl hydrazones were designed and synthesized as novel type of antibacterial modulators. Aloe emodin benzenesulfonyl hydrazone 5a (AEBH-5a) was preponderant for the treatment of S. aureus 25923 (MIC = 0.5 μg/mL) over norfloxacin and presented high selectivity between bacterial membranes and mammalian membranes. Especially, AEBH-5a could eliminate the formed biofilms and relieve the development of S. aureus 25923 resistance. The antibacterial mechanism of AEBH-5a from extracellularity to intracellularity illustrated that AEBH-5a could destroy bacterial membrane integrity, leading to the leakage of protein and nucleic acid. Besides, AEBH-5a could not only interact with DNA and induce oxidative stress but also inhibit lactate dehydrogenase (LDH) activity as well as render metabolic inactivation. In silico ADME studies prediction of AEBH-5a revealed a favorable bioavailability score and prominent drug-likeness profile. This research showed that the multifaceted synergistic effect initiated by aloe emodin-conjugated sulfonyl hydrazones is a reasonable and effective tactic to combat menacing bacterial infections.
Collapse
|
24
|
Wu G, Zhu Z, Li J, Luo X, Zhu W, Liao G, Xia J, Zhang W, Pan W, Li T, Wu S. Design, synthesis and antibacterial evaluation of pleuromutilin derivatives. Bioorg Med Chem 2022; 59:116676. [PMID: 35220163 DOI: 10.1016/j.bmc.2022.116676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
Abstract
We report herein the design, synthesis, and structure-activity relationship studies of pleuromutilin derivatives containing urea/thiourea functionalities. The antibacterial activities of these new pleuromutilin derivatives were evaluated in vitro against Gram-positive pathogens (GPPs) (Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium) and Mycoplasma pneumoniae by the broth dilution method. Most of the targeted compounds exhibit good potency in inhibiting the growth of pathogens including Methicillin-susceptible S. aureus (MSSA, ATCC29213, MIC: 0.0625-16 μg/mL), Methicillin-resistant S. aureus (MRSA, ATCC43300, MIC: 0.125-16 μg/mL) and M. pneumoniae (ATCC15531 MIC: 0.125-1 μg/mL, ATCC29342 MIC: 0.0625-0.25 μg/mL and drug resistant strain MIC: 0.5-2 μg/mL). In particular, the compounds 6m and 6n containing phenyl-urea group showed excellent activity with the MIC value less than 0.0625 μg/mL against S. aureus ATCC29213. The compound 6h exhibited better activity than tiamulin against Methicillin-resistant S. aureus ATCC43300.
Collapse
Affiliation(s)
- Guangxu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zihao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jishun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xinyu Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wenyong Zhu
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming 650031, Chin
| | - Guoyang Liao
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming 650031, Chin
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Tianlei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|