1
|
Yu L, Qin J, Zhang M, Gao Y, Zhao Y. Research Progress on the Anti-Liver Cancer Mechanism and Toxicity of Rhubarb Anthraquinone. Drug Des Devel Ther 2024; 18:6089-6113. [PMID: 39717199 PMCID: PMC11664478 DOI: 10.2147/dddt.s489377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Ethnopharmacological Relevance Rhubarb has the effect of breaking blood stasis and abnormal mass, and was often used to treat various tumor diseases including liver cancer in ancient China. Recipes containing rhubarb have anti-liver cancer properties and are still used today. However, the main components and mechanism of action of rhubarb against liver cancer are still unclear. Aim of the Review To conduct a review of the anti-liver cancer effects and toxicity of rhubarb anthraquinones (AQs). Materials and Methods This article reviewed the effects of rhubarb AQs in the treatment of liver cancer and the signaling pathways involved, and discussed the toxicity and pharmacokinetics of rhubarb AQs by searching the Web of Science, PubMed and CNKI databases. Results Rhubarb (Rhei Radix et Rhizoma) is a traditional Chinese medicine that has been existed for thousands of years and is used as an anti-cancer drug. Modern pharmacological research shows that rhubarb AQs, as the main component of rhubarb, contains emodin, rhein, chrysophanol, physcione and aloe-emodin, which has anti-liver cancer effects and can be considered as a potential therapeutic drug for liver cancer. However, many modern studies have shown that rhubarb AQs have certain toxicity, which hinders in-depth research on rhubarb AQs. Conclusion Rhubarb AQs can be used as a potential anti-liver cancer drug, but its research still has many limitations. Strengthening research on related experiments and finding a balance between toxicity and efficacy are all directions worth studying in the future.
Collapse
Affiliation(s)
- Linyuan Yu
- Department of Pharmacy, Chengdu Integrative TCM & Western Medicine Hospital, Chengdu, Sichuan, 610095, People’s Republic of China
- Department of Pharmacy, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Jinxing Qin
- Department of Pharmacy, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Mei Zhang
- Department of Neurosurgery, Guiqian International General Hospital, Guiyang, Guizhou, 550000, People’s Republic of China
| | - Yawen Gao
- Department of Anesthesia, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yongli Zhao
- Department of Pharmacy, Chengdu Integrative TCM & Western Medicine Hospital, Chengdu, Sichuan, 610095, People’s Republic of China
| |
Collapse
|
2
|
Ren PY, Zhang JY, Zhao L, Sun XJ. Tripterygium wilfordii polyglycoside tablets attenuated the progression of hepatocellular carcinoma by targeting IL-6 and downstream signaling pathways in a multi-target manner. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-21. [PMID: 39671338 DOI: 10.1080/10286020.2024.2435992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024]
Abstract
Tripterygium wilfordii polyglycoside tablets (TWPT) have traditionally been used to treat certain inflammatory diseases. This study validated TWPT as a novel application in hepatocellular carcinoma treatment through multiple targets, thereby expanding its clinical medication scope. TWPT exhibited a low toxicity and a significantly antihepatoma effects in vitro and in vivo. Through network pharmacology analysis, we found TWPT attenuated the progression of hepatocellular carcinoma by multi-targeting, including IL-6, MMP9, TNF-α and VEGFA. Additionally, TWPT targeted IL-6 to regulate downstream pathways, including the PI3K/Akt, JAK2/STAT3, and MAPK signaling pathways. Thus, TWPT could be developed as a potential therapeutic drug for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Pei-You Ren
- Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Department of Thyroid, Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Jian-Ying Zhang
- College of Life Science, Linyi University, Linyi 276000, China
| | - Lei Zhao
- Department of Thyroid, Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Xiang-Jun Sun
- Department of General Surgery, Linyi People's Hospital, Linyi 276000, China
| |
Collapse
|
3
|
Zhao L, Ma H, Jiang Y, Li Y, Guo N, Chen Y, Jiang X, Zhao Y, Yang J, Liu Y, Wen K, Wang L, Jian L, Fan X. Reserpine, a novel N6-methyladenosine regulator, reverses Lenvatinib resistance in hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156002. [PMID: 39326134 DOI: 10.1016/j.phymed.2024.156002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an aggressive malignancy and a growing global health problem. Reserpine (Res), a plant-derived hypertension drug, has been reported to possess anti-tumor efficacy. However, the role and function of Res in N6-methyladenosine (m6A) regulation and Lenvatinib (Len) resistance in HCC have not been clarified. PURPOSE To verify whether Res can be used as a natural small-molecule regulator of m6A to reverse Len resistance in HCC. METHODS Dot blotting, Western blotting and m6A quantification were used to compare and analyze the differential expression of m6A and its methyltransferase METTL3. Western blotting, Real-Time PCR (RT-PCR), cellular thermal shift assay (CETSA) and molecular docking were used to explore the mechanism of interaction between Res and m6A. The effects of Res on the biological characteristics of Lenvatinib-resistant HCC cells were investigated through CCK-8, clone formation, and Transwell assays. Cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models were used to assess the ability of Res to reverse Len resistance in vivo. MeRIP m6A sequencing, PATHWAY analysis and Western blotting were used to analyze the downstream signaling pathways and genes involved in Res-mediated reversal of Len resistance. RESULTS Len resistance in HCC is related to the increased m6A level and the high expression of METTL3. Res affects the activity of METTL3 protein by binding to it, thereby downregulating the level of m6A. In vitro study showed that Res can sensitize HCC cells to the anti-tumor effects of Len treatment, including blocking proliferation, inhibiting migration, and inducing apoptosis. Len-resistant CDX and PDX models revealed that Res can reverse the resistant phenotype, with the tumor inhibition rates of 77.46 % and 62.1 %, respectively, when combined with Len treatment. Analysis of xenograft tissues showed that the combination of Res and Len down-regulates the m6A level, reduces proliferation biomarkers, and induces apoptosis, which is consistent with the in vitro data. Mechanistically, our preliminary results indicate that Res can up-regulate the SMAD3 level by down-regulating m6A in Len-resistant cells. CONCLUSIONS Reserpine, a small-molecule regulator of m6A, reverses Lenvatinib-resistant phenotypes, including proliferation, migration and anti-apoptosis, in vitro and in vivo by targeting SMAD3 and down-regulating the m6A level in HCC.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Heyao Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Yuhui Jiang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yingying Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ning Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaowen Jiang
- Department of Analysis and Pharmacology of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yunpeng Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jingjing Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yifei Liu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kaishu Wen
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Xinyu Fan
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
4
|
Han Z, Han R, Wang Y, Zhu K, Tian X, Chen P, Song T, Chen L. Sorafenib combined with TACE improves survival in patients with hepatocellular carcinoma with vascular invasion. Biosci Trends 2024; 18:457-464. [PMID: 39428500 DOI: 10.5582/bst.2024.01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sorafenib is a recommended first-line therapy for advanced hepatocellular carcinoma (HCC). However, when used as monotherapy in patients in advanced stages, the prognosis remains suboptimal. This study aimed to evaluate the impact of transcatheter arterial chemoembolization (TACE) on survival outcomes in patients with advanced HCC treated with sorafenib, as well as to identify which subgroups may benefit most from the addition of TACE. This single-institution retrospective study included 92 patients diagnosed with Barcelona Clinic liver cancer (BCLC) stage C HCC who received sorafenib between August 2011 and December 2016. We assessed the influence of different treatment modalities on prognosis using multivariable regression analysis. Patients were categorized into three subgroups: those with vascular invasion, those with distant metastasis, and those with both risk factors. Baseline comparisons indicated no significant differences in clinical characteristics among the three groups. Survival analysis showed no statistically significant difference in overall survival (OS) between the subgroups. However, in the overall cohort of patients with BCLC stage C, multifactorial Cox regression analysis identified pre-treatment alpha-fetoprotein (AFP) levels (p = 0.020), alkaline phosphatase (ALP) levels (p = 0.034), and the absence of combination TACE therapy (p = 0.008) as independent risk factors affecting OS. Further subgroup Cox analyses revealed that the lack of combination TACE therapy was an independent risk factor for OS in both the vascular invasion group and the group with both risk factors. In conclusion, for patients with advanced HCC receiving sorafenib, the addition of TACE may enhance long-term survival, particularly in those with vascular invasion.
Collapse
Affiliation(s)
- Zhiqiang Han
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ruyu Han
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Hepatobiliary Cancer, Liver cancer research center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yimeng Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Hepatobiliary Cancer, Liver cancer research center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kangwei Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Hepatobiliary Cancer, Liver cancer research center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiangdong Tian
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ping Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Hepatobiliary Cancer, Liver cancer research center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianqiang Song
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Hepatobiliary Cancer, Liver cancer research center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Hepatobiliary Cancer, Liver cancer research center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Hepato-Biliary-Pancreatic Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Su J, Wang X, Li S, Wu X, Li M, Du F, Deng S, Shen J, Zhao Y, Xiao Z, Chen Y. Synthesis and antitumor evaluation of glycyrrhetinic acid-dithiocarbamate hybrids. Arch Pharm (Weinheim) 2024:e2400421. [PMID: 39526492 DOI: 10.1002/ardp.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Glycyrrhetinic acid (GA) is a naturally occurring triterpene compound. The aim of this study was to employ the pharmacophore hybrid strategy to merge GA with various dithiocarbamates and obtain novel compounds with better antitumor activities. We present a two-step synthetic protocol wherein the GA derivative underwent reaction with carbon disulfide and various secondary amines in a one-pot manner under mild conditions, facilitating the preparation of a series of structurally novel GA-dithiocarbamate derivatives. Bioassay screening revealed that the representative compound 3c demonstrated the capacity to reduce the mitochondrial membrane potential in Hep3B and Huh-7 cells, induce nuclear apoptosis, inhibit invasion and migration, and prompt both early and late apoptosis. Furthermore, our research findings indicated that this apoptotic phenomenon may be associated with the expression of Bcl-2, Bax, Bak, PARP, and cleaved-PARP proteins. Utilizing network pharmacology for predicting core targets and signaling pathways of compound 3c for hepatocellular carcinoma (HCC) treatment involved employing molecular docking models to demonstrate high affinity between compound and target protein. In conjunction with Western blot analysis, compound 3c may impact HCC through the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sha Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
6
|
Yan Z, Chen HQ. Anti-liver cancer effects and mechanisms and its application in nano DDS of polysaccharides: A review. Int J Biol Macromol 2024; 279:135181. [PMID: 39218183 DOI: 10.1016/j.ijbiomac.2024.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Liver cancer is the third leading cause of cancer death, with high incidence and poor treatment effect. In recent years, polysaccharides have attracted more and more attention in the research field of anti-liver cancer because of their high efficiency, low toxicity, good biocompatibility, wide sources and low cost. Polysaccharides have been proven to have good anti-liver cancer activity. In this paper, the pathways and molecular mechanisms of polysaccharides against liver cancer were reviewed in detail. Polysaccharides exert anti-liver cancer activity by blocking cell cycle, inducing apoptosis, regulating immunity, inhibiting cancer cell metastasis, inhibiting tumor angiogenesis and so on. The primary structure and chain conformation of polysaccharides have an important influence on their anti-liver cancer activity. Structural modification enhanced the anti-liver cancer activity of polysaccharides. Polysaccharides have good attenuated and synergistic effects on chemotherapy drugs. Polysaccharides can be used as functional carriers to construct intelligent nano drug delivery systems (DDS) targeting liver cancer. This review can provide theoretical support for the further development and application of polysaccharides in the field of anti-liver cancer, and provide theoretical reference and clues for relevant researchers in food, nutrition, medicine and other fields.
Collapse
Affiliation(s)
- Zheng Yan
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Han-Qing Chen
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China.
| |
Collapse
|
7
|
Zhang K, Zhu Z, Zhou J, Shi M, Wang N, Yu F, Xu L. Disulfidptosis-related gene expression reflects the prognosis of drug-resistant cancer patients and inhibition of MYH9 reverses sorafenib resistance. Transl Oncol 2024; 49:102091. [PMID: 39146597 PMCID: PMC11375144 DOI: 10.1016/j.tranon.2024.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024] Open
Abstract
The onset of drug resistance in advanced cancer patients markedly diminishes their prognosis. Recently, disulfidptosis, a novel form of cell death, has been identified, triggered by excessive disulfide formation leading to cell shrinkage and F-actin contraction. Previous studies have identified 15 essential genes (FLNA, FLNB, MYH9, TLN1, ACTB, MYL6, MYH10, CAPZB, DSTN, IQGAP1, ACTN4, PDLIM1, CD2AP, INF2, SLC7A11) associated with disulfidptosis. This study sourced pan-cancer mRNA expression data from Xena to thoroughly evaluate the molecular and clinical characteristics of disulfidptosis-related genes. Through unsupervised clustering, mRNA expression data identified the expression levels of disulfidptosis-related genes and potential clusters related to this form of cell death. Kaplan-Meier survival curves illustrated the correlation between different clusters and overall survival. The findings reveal that high expression of disulfidptosis-related genes is linked to poor survival in liver cancer. The GDSC database was utilized to analyze the relationship between disulfidptosis-related genes and the AUC of 198 drugs. The results demonstrate that 12 disulfidptosis-related genes influence sorafenib resistance, as revealed by the intersection of differential genes related to sorafenib resistance from the GSE109211 dataset. Among them, the MYH9 gene was found to play a crucial role in both. Finally, experimental evidence confirmed that MYH9 mitigates sorafenib resistance in hepatocellular carcinoma through disulfidptosis-like changes. This study identifies disulfidptosis as a promising avenue for enhancing the sensitivity of tumor cells to drugs, offering new therapeutic perspectives for future research on disulfidptosis and drug resistance in cancer patients.
Collapse
Affiliation(s)
- Kangnan Zhang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Zhenhua Zhu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200001, China
| | - Jingyi Zhou
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Min Shi
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Na Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| | - Fudong Yu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Public Health School, Fudan University, Shanghai, 200030, China.
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
8
|
Li X, Cui M, Xu L, Guo Q. Low miR-936-mediated upregulation of Pim-3 drives sorafenib resistance in liver cancer through ferroptosis inhibition by activating the ANKRD18A/Src/NRF2 pathway. Front Oncol 2024; 14:1483660. [PMID: 39507762 PMCID: PMC11540556 DOI: 10.3389/fonc.2024.1483660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Objective Sorafenib, a multikinase inhibitor, is currently the standard treatment for advanced liver cancer. However, its application has become limited by the development of drug resistance. We intended to explore the mechanisms underlying the development of sorafenib resistance, therefore identifying an effective strategy to overcome sorafenib resistance remain challenges. Methods Here, the follow-up of liver cancer patients undergoing sorafenib therapy, as well as animal tumor challenge and treatment were performed. The sorafenib-resistant liver cancer cell lines Huh7/SOR and HepG2/SOR were also established. miRNA and mRNA microarray analyses, TargetScan prediction, dual luciferase reporter assay, RNA pull-down assay, co-mmunoprecipitation (Co-IP) and pull-down assays, a transcription factor-specific NRF2 assay, an iron detection assay, a lipid peroxidation quantification assay, a ROS measurement assay, and GSH/GSSG and GSH-px standard quantitative assays were used. Results We showed that upregulation of the provirus-integrating site for Moloney murine leukemia virus 3 (Pim-3) predicted poor response and unsatisfactory prognosis in sorafenib-treated liver cancer patients. Similarly, Pim-3 expression was positively associated with sorafenib resistance in liver cancer cells. Furthermore, microRNA-936 (miR-936) targeted the 3'-noncoding region (3'-UTR) of Pim-3 but exhibited lower expression in sorafenib-resistant liver cancer cells than in their parental cells. The high expression of Pim-3 mediated by miR-936 insufficiency activated the ANKRD18A/Src/NRF2 pathway which rearranged the expression of the indicated markers involved in iron distribution and lipid peroxidation homeostasis. MiR-936 overexpression and GV102-Pim-3-shRNA significantly attenuated the activity of the ANKRD18A/Src/NRF2 pathway to decrease the expression of Ankyrin repeat domain-containing protein 18A (ANKRD18A), Src, and Nuclear factor (erythroid-derived 2)-like 2 (NRF2), especially decreasing NRF2 nuclear retention and transcriptional activity. The transcriptional activity of NRF2 prompted cell ferroptosis because the transfection of miR-936 mimics, GV102-Pim-3-shRNA and GV102-NRF2-shRNA plasmid increased the expression of transferrin receptor 1 (TFR1) and divalent metal transporter 1 (DMT1) but decreased the expression of solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), quinone oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1), thus facilitating the accumulation of intracellular Fe2+, lipid peroxides, and reactive oxygen species (ROS) but reducing the glutathione (GSH) level. Moreover, the elevated expression of Pim-3, resulting from the absence of miR-936 enhances sorafenib resistance in liver cancer by inhibiting cell ferroptosis. Conclusion Pim-3 can be regarded as a target in the treatment of sorafenib-resistant liver cancer.
Collapse
Affiliation(s)
| | | | | | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
9
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Wang WT, Xue YJ, Zhou JK, Zhang Z, Guo SY, Zhao CF, Bai Y, Zhu YT, Zhang LZ, Guo S, Ren GX. Exploring the antimicrobial activity of rare ginsenosides and the progress of their related pharmacological effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155904. [PMID: 39151265 DOI: 10.1016/j.phymed.2024.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Panax ginseng C. A. Mey is a precious medicinal resource that could be used to treat a variety of diseases. Saponins are the most important bioactive components of, and rare ginsenosides (Rg3, Rh2, Rk1 and Rg5, etc.) refer to the chemical structure changes of primary ginsenosides through dehydration and desugarization reactions, to obtain triterpenoids that are easier to be absorbed by the human body and have higher activity. PURPOSE At present, the research of P. ginseng. is widely focused on anticancer related aspects, and there are few studies on the antibacterial and skin protection effects of rare ginsenosides. This review summarizes the rare ginsenosides related to bacterial inhibition and skin protection and provides a new direction for P. ginseng research. METHODS PubMed and Web of Science were searched for English-language studies on P. ginseng published between January 2002 and March 2024. Selected manuscripts were evaluated manually for additional relevant references. This review includes basic scientific articles and related studies such as prospective and retrospective cohort studies. CONCLUSION This paper summarizes the latest research progress of several rare ginsenosides, discusses the antibacterial effect of rare ginsenosides, and finds that ginsenosides can effectively protect the skin and promote wound healing during use, so as to play an efficient antibacterial effect, and further explore the other medicinal value of ginseng. It is expected that this review will provide a wider understanding and new ideas for further research and development of P. ginseng drugs.
Collapse
Affiliation(s)
- Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Ya-Jie Xue
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian-Kang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Sheng-Yuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chao-Fan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu-Ting Zhu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li-Zhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Shanxi University, Taiyuan 030006, China.
| | - Gui-Xing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
11
|
Wang S, Chen W, Dong C, Wu J, Zheng M, Ma Y, Xue Y. Exploring the mechanism of genistein in treating hepatocellular carcinoma through network pharmacology and molecular docking. ONCOLOGIE 2024; 26:799-811. [DOI: 10.1515/oncologie-2024-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Abstract
Objectives
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, with treatment options limited and outcomes often poor, especially in advanced stages. This study explores the therapeutic potential of genistein, a soybean-derived isoflavone, on HCC using network pharmacology to uncover its multi-targeted anti-cancer mechanisms.
Methods
Potential targets of genistein were predicted using databases such as Super-PRED, PharmMapper, and SwissTargetPrediction. Abnormally expressed genes in HCC tissues were analyzed from TCGA and GEO datasets, with genes linked to the prognosis of HCC patients selected as potential therapeutic targets. GO and KEGG pathway enrichment analyses were conducted for both genistein’s targets and the HCC-related gene set. Key targets were identified through network analysis using Cytoscape software. Molecular docking was performed with Autodock to assess the binding affinity between genistein and these key targets. The therapeutic effects of genistein on HCC were validated through animal experiments and cell line studies.
Results
This study identified 343 potential targets for genistein in treating hepatocellular carcinoma (HCC). Analyses revealed enrichment in cell cycle regulation pathways through GO and KEGG assessments. Transcriptomic data from HCC datasets unveiled 184 potential therapeutic targets, emphasizing cell cycle regulation. Notably, 12 proteins were identified as targets of both genistein and HCC treatment. Molecular docking studies demonstrated genistein’s strong binding affinity with CDC25C and MELK. In vitro and in vivo validations affirmed genistein’s role in inhibiting HCC proliferation by inducing G2/M phase arrest. This study elucidates genistein’s multi-target mechanism in suppressing HCC cell proliferation, supporting its potential clinical application in HCC treatment.
Conclusions
This study demonstrates that genistein effectively suppresses the malignant growth of HCC by interfering with the transition from the G2 to M phase, revealing a multifaceted mechanism of action.
Collapse
Affiliation(s)
- Siliang Wang
- 66322 Cancer Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Wenlian Chen
- 66322 Cancer Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Changsheng Dong
- 66322 Cancer Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai , China
- Department of Oncology , 66322 Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Jia Wu
- 66322 Cancer Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Miaomiao Zheng
- 66322 Cancer Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yushui Ma
- 66322 Cancer Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yuwen Xue
- Department of Pathology , 66322 Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| |
Collapse
|
12
|
Ning L, Tian Y, Chen D, Han J, Xie G, Sun J. Sorafenib safety evaluation: Real-world analysis of adverse events from the FAERS database. Heliyon 2024; 10:e37348. [PMID: 39309940 PMCID: PMC11416516 DOI: 10.1016/j.heliyon.2024.e37348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Background Sorafenib is approved for the targeted therapy of cancers such as liver cancer and renal cancer. Given its widespread use, drug-related adverse events have received attention, and the post-marketing regulatory link is crucial. Objective By using the FAERS database to mine the adverse events (AEs) related to sorafenib, comparing the association intensity of key AEs, and exploring potential drug-related AEs, it provides a reference for clinical medication. Methods Collect ADE data related to sorafenib in the FAERS database from 2006 to 2023. Standardize the data, and map adverse events to system organ classes and preferred terms. Analyze using various signal quantification techniques such as ROR, PRR, BCPNN, and MGPS. Results Among 18,520 adverse event reports (AERs) where sorafenib was the primary suspected drug, a total of 390 preferred terms (PTs) of adverse reactions were identified, covering 24 different system organ classes (SOCs). Specifically, the adverse events of sorafenib mainly involve the digestive system, skin and subcutaneous tissue, as well as non-specific physical discomfort including infection and injury. Among them, digestive system symptoms and skin toxicity are typical adverse reactions of sorafenib. We also observed uncommon but clearly strong AE signals, such as chloracne (n = 3, ROR 1756.39, PRR 1756.32, IC 8.78, EBGM 439.83), low-differentiated thyroid cancer (n = 4, ROR 585.47, PRR 585.44, IC 8.2, EBGM 293.22). It is worth noting that palmar-plantar erythrodysaesthesia syndrome (n = 2109, ROR 73.98, PRR 72.03, IC 6.01, EBGM 64.25) and hepatic encephalopathy (n = 457, ROR 37.44, PRR 37.23, IC 5.13, EBGM 35.07) have a higher incidence and signal intensity. In addition, we also observed some adverse events not mentioned in the official drug instructions, such as vitamin K deficiency or increased protein induced by antagonist II (PIVKA-II), abnormal alpha-fetoprotein, tumor metastasis, and splenic atrophy. Conclusion Sorafenib carries the risk of various adverse reactions while providing therapeutic effects. In clinical applications, physicians should closely monitor the occurrence of digestive system reactions, skin lesions, endocrine system lesions, as well as injuries, infections, and other events.
Collapse
Affiliation(s)
- Lin Ning
- Department of Traditional Chinese Medicine, The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Tian
- Department of Traditional Chinese Medicine, The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Hepatobiliary Medicine, Jinan, China
| | - Jie Han
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Hepatobiliary Medicine, Jinan, China
| | - Guanyue Xie
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Hepatobiliary Medicine, Jinan, China
| | - Jianguang Sun
- Department of Traditional Chinese Medicine, The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Shi S, Zhu C, Hu Y, Jiang P, Zhao J, Xu Q. ENG is a Biomarker of Prognosis and Angiogenesis in Liver Cancer, and Promotes the Differentiation of Tumor Cells into Vascular ECs. FRONT BIOSCI-LANDMRK 2024; 29:315. [PMID: 39344331 DOI: 10.31083/j.fbl2909315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Liver cancer is a highly lethal malignancy with frequent recurrence, widespread metastasis, and low survival rates. The aim of this study was to explore the role of Endoglin (ENG) in liver cancer progression, as well as its impacts on angiogenesis, immune cell infiltration, and the therapeutic efficacy of sorafenib. METHODS A comprehensive evaluation was conducted using online databases Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), 76 pairs of clinical specimens of tumor and adjacent non-tumor liver tissue, and tissue samples from 32 hepatocellular carcinoma (HCC) patients treated with sorafenib. ENG expression levels were evaluated using quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR), Western blot, and immunohistochemical analysis. Cox regression analysis, Spearman rank correlation analysis, and survival analysis were used to assess the results. Functional experiments included Transwell migration assays and tube formation assays with Human Umbilical Vein Endothelial Cells (HUVECs). RESULTS Tumor cells exhibited retro-differentiation into endothelial-like cells, with a significant increase in ENG expression in these tumor-derived endothelial cells (TDECs). High expression of ENG was associated with more aggressive cancer characteristics and worse patient prognosis. Pathway enrichment and functional analyses identified ENG as a key regulator of immune responses and angiogenesis in liver cancer. Further studies confirmed that ENG increases the expression of Collagen type Iα1 (COL1A1), thereby promoting angiogenesis in liver cancer. Additionally, HCC patients with elevated ENG levels responded well to sorafenib treatment. CONCLUSIONS This study found that ENG is an important biomarker of prognosis in liver cancer. Moreover, ENG is associated with endothelial cell differentiation in liver cancer and plays a crucial role in formation of the tumor vasculature. The assessment of ENG expression could be a promising strategy to identify liver cancer patients who might benefit from targeted immunotherapies.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/blood supply
- Liver Neoplasms/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Prognosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/drug therapy
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- Cell Differentiation
- Endoglin/metabolism
- Endoglin/genetics
- Male
- Female
- Middle Aged
- Cell Line, Tumor
- Phenylurea Compounds/pharmacology
- Human Umbilical Vein Endothelial Cells/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Angiogenesis
Collapse
Affiliation(s)
- Shangheng Shi
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| | - Cunle Zhu
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| | - Yue Hu
- Hepatobiliary and Pancreatic Surgery Department, Affiliated First Hospital of Ningbo University, 315000 Ningbo, Zhejiang, China
| | - Peng Jiang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| | - Jinxin Zhao
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| | - Qingguo Xu
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| |
Collapse
|
14
|
Cao LQ, Xie Y, Fleishman JS, Liu X, Chen ZS. Hepatocellular carcinoma and lipid metabolism: Novel targets and therapeutic strategies. Cancer Lett 2024; 597:217061. [PMID: 38876384 DOI: 10.1016/j.canlet.2024.217061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is an increasingly prevalent disease that is associated with high and continually rising mortality rates. Lipid metabolism holds a crucial role in the pathogenesis of HCC, in which abnormalities pertaining to the delicate balance of lipid synthesis, breakdown, and storage, predispose for the pathogenesis of the nonalcoholic fatty liver disease (NAFLD), a disease precursor to HCC. If caught early enough, HCC treatment may be curative. In later stages, treatment is only halting the inevitable outcome of death, boldly prompting for novel drug discovery to provide a fighting chance for this patient population. In this review, we begin by providing a summary of current local and systemic treatments against HCC. From such we discuss hepatic lipid metabolism and highlight novel targets that are ripe for anti-cancer drug discovery. Lastly, we provide a targeted summary of current known risk factors for HCC pathogenesis, providing key insights that will be essential for rationalizing future development of anti-HCC therapeutics.
Collapse
Affiliation(s)
- Lu-Qi Cao
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Yuhao Xie
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Xuan Liu
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518034, China.
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA.
| |
Collapse
|
15
|
Wang D, Ma Z. Association between obesity and liver cancer from 2012 to 2023: Bibliometric analysis and global trends. Medicine (Baltimore) 2024; 103:e39167. [PMID: 39093765 PMCID: PMC11296448 DOI: 10.1097/md.0000000000039167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Incidence rates of liver cancer have increased worldwide in recent decades, making it a major public health problem globally. Obesity can be caused by multiple factors and promotes the development of liver cancer in many ways. Although the research on the association between obesity and liver cancer was previously explored, we first employed bibliometrics to analyze the current research status. From 2012 to 2023, the Web of Science Core Collection database was searched for studies regarding the association between obesity and liver cancer. To evaluate worldwide trends and research hotspots in this topic, bibliometric analysis tools such as VOSviewer, CiteSpace, and R Package were employed. Altogether 233 eligible publications, consisting of 167 articles and 66 reviews, were analyzed. The yearly number of publications and average citation numbers have increased over the last 11 years, particularly the last 6 years. The great majority of published articles on this topic originated from the United States (n = 89, 38.20%), followed by China (n = 60, 25.75%), and England (n = 23, 9.87%). In this subject's research, American scholars embodied considerable production, great prominence, and high academic influence. The most cited article was Yoshimoto, S et al of Japan Science and Technology Agency published in 2013 with a citation number of 1410. We apply bibliometric analysis for the first time in this field, expecting to help scholars efficiently and effectively retrieve the association between obesity and liver cancer.
Collapse
Affiliation(s)
- Donghong Wang
- Harbin Medical University, Harbin, Heilongjiang, China
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhibin Ma
- Harbin Medical University, Harbin, Heilongjiang, China
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
16
|
Sulukoğlu EK, Günaydın Ş, Kalın ŞN, Altay A, Budak H. Diffractaic acid exerts anti-cancer effects on hepatocellular carcinoma HepG2 cells by inducing apoptosis and suppressing migration through targeting thioredoxin reductase 1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5745-5755. [PMID: 38308689 PMCID: PMC11329542 DOI: 10.1007/s00210-024-02980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Hepatocellular carcinoma (HCC) represents one of the most common malignant tumors worldwide. Due to the limited number of available drugs and their side effects, the development of new chemotherapeutic strategies for HCC treatment has become increasingly important. This study is aimed at investigating whether diffractaic acid (DA), one of the secondary metabolites of lichen, exhibits a potential anticancer effect on HepG2 cells and whether its anticancer effect is mediated by inhibition of thioredoxin reductase 1 (TRXR1), which is a target of chemotherapeutic strategies due to overexpression in tumor cells including HCC. XTT assay results showed that DA exhibited strong cytotoxicity on HepG2 cells with an IC50 value of 78.07 µg/mL at 48 h. Flow cytometric analysis results revealed that DA displayed late apoptotic and necrotic effects on HepG2 cells. Consistent with these findings, real-time PCR results showed that DA did not alter the BAX/BCL2 ratio in HepG2 cells but upregulated the P53 gene. Moreover, the wound healing assay results revealed a strong anti-migratory effect of DA in HepG2 cells. Real-time PCR and Western blot analyses demonstrated that DA increased TRXR1 gene and protein expression levels, whereas enzyme activity studies disclosed that DA inhibited TRXR1. These findings suggest that DA has an anticancer effect on HepG2 cells by targeting the enzymatic inhibition of TRXR1. In conclusion, DA as a TRXR1 inhibitor can be considered an effective chemotherapeutic agent which may be a useful lead compound for the treatment of HCC.
Collapse
Affiliation(s)
- Emine Karaca Sulukoğlu
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey
- Faculty of Science, Department of Molecular Biology and Genetics, Erzurum Technical University, 25100, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
| | - Şükran Günaydın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, 43100, Kütahya, Turkey
| | - Şeyda Nur Kalın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Altay
- Faculty of Science and Arts, Department of Chemistry, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey.
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
17
|
Zheng W, Huang Y, Wu Q, Cheng P, Song Y, Wang B, Huang Q, Hu S. Poly(lactic acid hydroxyacetic acid)-poly(ethylene glycol)-modified ginsenoside Rg3 nanomedicine enhances anti-tumor effect in hepatocellular carcinoma. Drug Dev Ind Pharm 2024; 50:763-775. [PMID: 39259031 DOI: 10.1080/03639045.2024.2402769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE This research aims to improve the bioavailability and anti-hepatocellular carcinoma (HCC) efficacy of Ginsenoside Rg3 by modification with poly (lactic acid hydroxyacetic acid)-poly(ethylene glycol) (PLGA-PEG). METHODS PLGA-PEG-Rg3 was obtained by emulsification and evaluated it physiochemical characterization by FTIR, SEM, laser particle-size analyzer and HPLC. The effect of the PLGA-PEG-Rg3 and Rg3 on HepG2 cells was compared in vitro studies, including cell proliferation, transwell and a series of apoptosis detection, and in-situ HCC model. RESULTS The PLGA-PEG-Rg3 were 122 nm in size and 0.112 in polydispersity index with sustained release profile in vitro. Compared to Rg3, PLGA-PEG-Rg3 was more effective in suppressing HepG2 growth and inducing apoptosis by the mitochondrial apoptosis pathway in vitro. And PLGA-PEG modification enhanced the liver-targeting ability and drug circulation time of Rg3 in vivo, resulting in PLGA-PEG-Rg3 possessing superior performance in inhibiting tumor growth and prolonging the survival time of tumor-bearing mice than Rg3. CONCLUSIONS Overall, these results showed PLGA-PEG-Rg3 enhanced the anti-tumor effect of Rg3 in HCC.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqiao Huang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Qiong Wu
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yujun Song
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Ben Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
18
|
Ding J, Li C, Wang G, Yang Y, Li J. Cancer-Related Therapeutic Potential of Epimedium and Its Extracts. Nutr Cancer 2024; 76:885-901. [PMID: 39066475 DOI: 10.1080/01635581.2024.2383336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Epimedium is a Chinese herb known as "yin and yang fire," first mentioned in the Compendium of Materia Medica. Many of the proprietary Chinese medicines used in clinical practice contain Epimedium as an ingredient, and its main active constituents include icariin, icaritin, and icariside II, among others. In addition to its traditional use in treating fatigue and sexual problems, modern research has confirmed that the main bioactive compounds in Epimedium have pharmacological effects such as antidepressant, antibacterial, antiviral, antioxidant, and anti-inflammatory properties, as well as inhibiting bone destruction, promoting bone growth, improving immune regulation and protecting the cardio-cerebral vascular system. With the continuous development of extraction and purification techniques, the development and use of bioactive compounds in Epimedium have significantly progressed, and the anticancer effect has received widespread attention. Since natural herbs have few side effects on the human body and do not easily develop drug resistance, they have long been the direction of research in cancer treatment. This review summarizes the latest research on the anticancer effects of Epimedium and its extracts, describes the bioactive compounds, pharmacological efficacy, and antitumor mechanism of Epimedium, and gives a new view on the administration and development of Epimedium.
Collapse
Affiliation(s)
- Jipeng Ding
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Changcheng Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Guanzheng Wang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yiming Yang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jing Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
19
|
Ge J, Zhang K, Hu W, Zhou H, Wu X. Metal-Organic Framework: Fabrication of Nano Fluorescent Composite Materials and Treatment of Hepatocellular Carcinoma. J Fluoresc 2024:10.1007/s10895-024-03858-8. [PMID: 39052156 DOI: 10.1007/s10895-024-03858-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor originating from liver cells, characterized by complex pathogenesis and limited treatment options such as surgery, chemotherapy, and transplantation. Cisplatin, an effective chemotherapeutic agent, disrupts cancer cell DNA but is hindered by side effects and the need for controlled sustained release to optimize efficacy. Metal-organic frameworks (MOFs) have emerged as promising nanocarriers for precise local drug delivery, reducing required doses and mitigating side effects of chemotherapeutic drugs, thus offering a potential avenue for hepatocellular carcinoma (HCC) treatment. In this research, a rectangular channel MOF (Rumgay H, Ferlay J, Martel C, Georges D, Ibrahim AS, Zheng R, Wei W, Lemmens VEPP, Soerjomataram I (2022) Global, regional and national burden of primary liver cancer by subtype. Eur J Cancer 161:108-118) carrier was synthesized using ligand L as the organic linker coordinated with Cu(II) and I(I). The MOF's structure and fluorescence properties were characterized. Additionally, to enhance substrate biocompatibility, composite carrier materials were prepared by incorporating polylactic acid (PLA) with 1, utilized for cisplatin loading. To evaluate the inhibitory effect of PLA-1@cisplatin on HCC, HepG-2 and Huh-7 HCC cell lines were treated with varying concentrations of the drug for 48 h, and their cell viability was assessed. The results demonstrated a significant dose-dependent reduction in cell viability of both HepG-2 and Huh-7 cells. To explore the potential inhibitory mechanism of PLA-1@cisplatin on HCC, the mRNA levels of GADD45A and NACC1 in HepG-2 and Huh-7 cells post-treatment were measured. GADD45A expression, initially low in HCC cells, was significantly upregulated after drug treatment, while NACC1, typically highly expressed in HCC, showed a significant decrease in mRNA levels with increasing concentrations of PLA-1@cisplatin. These findings indicate that PLA-1@cisplatin effectively upregulates GADD45A expression and downregulates NACC1 expression. Overall, the developed cisplatin-loaded nanoparticle system holds promise for HCC treatment by reducing chemotherapy side effects and enhancing drug efficacy.
Collapse
Affiliation(s)
- Jiahao Ge
- Department of Hepatobiliary Surgery Affiliated Jinhua Center Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Kangjun Zhang
- Department of Hepatobiliary Surgery Affiliated Jinhua Center Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Weijian Hu
- Department of Hepatobiliary Surgery Affiliated Jinhua Center Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Haihua Zhou
- Department of Hepatobiliary Surgery Affiliated Jinhua Center Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaokang Wu
- Department of Hepatobiliary Surgery Affiliated Jinhua Center Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| |
Collapse
|
20
|
Wang X, Meng F, Mao J. Progress of natural sesquiterpenoids in the treatment of hepatocellular carcinoma. Front Oncol 2024; 14:1445222. [PMID: 39081717 PMCID: PMC11286475 DOI: 10.3389/fonc.2024.1445222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma is one of the common malignant tumors of digestive tract, which seriously threatens the life of patients due to its high incidence rate, strong invasion, metastasis, and prognosis. At present, the main methods for preventing and treating HCC include medication, surgery, and intervention, but patients frequently encounter with specific adverse reactions or side effects. Many Traditional Chinese medicine can improve liver function, reduce liver cancer recurrence and have unique advantages in the treatment of HCC because of their acting mode of multi-target, multi-pathway, multi-component, and multi-level. Sesquiterpenoids, a class of natural products which are widely present in nature and exhibit good anti-tumor activity, and many of them possess good potential for the treatment of HCC. This article reviewed the anti-tumor activities, natural resources, pharmacological mechanism of natural sesquiterpenoids against HCC, providing the theoretical basis for the prevention and treatment of HCC and a comprehensive understanding of their potential for development of new clinical drugs.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jingxin Mao
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Mao Z, Gao Z, Long R, Guo H, Chen L, Huan S, Yin G. Mitotic catastrophe heterogeneity: implications for prognosis and immunotherapy in hepatocellular carcinoma. Front Immunol 2024; 15:1409448. [PMID: 39015573 PMCID: PMC11250588 DOI: 10.3389/fimmu.2024.1409448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background and aims The mitotic catastrophe (MC) pathway plays an important role in hepatocellular carcinoma (HCC) progression and tumor microenvironment (TME) regulation. However, the mechanisms linking MC heterogeneity to immune evasion and treatment response remain unclear. Methods Based on 94 previously published highly correlated genes for MC, HCC patients' data from the Cancer Genome Atlas (TCGA) and changes in immune signatures and prognostic stratification were studied. Time and spatial-specific differences for MCGs were assessed by single-cell RNA sequencing and spatial transcriptome (ST) analysis. Multiple external databases (GEO, ICGC) were employed to construct an MC-related riskscore model. Results Identification of two MC-related subtypes in HCC patients from TCGA, with clear differences in immune signatures and prognostic risk stratification. Spatial mapping further associates low MC tumor regions with significant immune escape-related signaling. Nomogram combining MC riskscore and traditional indicators was validated great effect for early prediction of HCC patient outcomes. Conclusion MC heterogeneity enables immune escape and therapy resistance in HCC. The MC gene signature serves as a reliable prognostic indicator for liver cancer. By revealing clear immune and spatial heterogeneity of HCC, our integrated approach provides contextual therapeutic strategies for optimal clinical decision-making.
Collapse
Affiliation(s)
- Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhixiang Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruyu Long
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Sheng Huan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoping Yin
- Department of Anesthesiology, Nanjing Second Hospital, Nanjing, China
| |
Collapse
|
22
|
Wang K, Yin J, Chen J, Ma J, Si H, Xia D. Inhibition of inflammation by berberine: Molecular mechanism and network pharmacology analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155258. [PMID: 38522318 DOI: 10.1016/j.phymed.2023.155258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/27/2023] [Accepted: 12/04/2023] [Indexed: 03/26/2024]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM), renowned for its holistic approach with a 2000-year history of utilizing natural remedies, offers unique advantages in disease prevention and treatment. Berberine, found in various Chinese herbs, has been employed for many years, primarily for addressing conditions such as diarrhea and dysentery. Berberine has recently become a research focus owing to its pharmacological activities and benefits to human bodies. However, little is known about the anti-inflammatory mechanism of berberine. PURPOSE To summarize recent findings regarding the pharmacological effects and mechanisms of berberine anti-inflammation and highlight and predict the potential therapeutic effects and systematic mechanism of berberine. METHODS Recent studies (2013-2023) on the pharmacological effects and mechanisms of berberine anti-inflammation were retrieved from Web of Science, PubMed, Google Scholar, and Scopus up to July 2023 using relevant keywords. Network pharmacology and bioinformatics analysis were employed to predict the therapeutic effects and mechanisms of berberine against potential diseases. RESULTS The related pharmacological mechanisms of berberine anti-inflammation include the inhibition of inflammatory cytokine production (e.g., IL-1β, IL-6, TNF-α), thereby attenuating the inflammatory response; Inhibiting the activation of NF-κB signaling pathway and IκBα degradation; Inhibiting the activation of MAPK signaling pathway; Enhancing the activation of the STAT1 signaling pathway; Berberine interacts directly with cell membranes through a variety of pathways, thereby influencing cellular physiological activities. Berberine enhances human immunity and modulates immune system function, which is integral to addressing certain autoimmune and tumour-related health concerns. CONCLUSION This study expounds on the correlation between berberine and inflammatory diseases, encapsulating the mechanisms through which berberine treats select typical inflammatory ailments. Furthermore, it delves into a deeper understanding of berberine's effectiveness by integrating network pharmacology and molecular docking techniques in the context of treating inflammatory diseases. It provides guidance and reference for berberine's subsequent revelation of the modern scientific connotation of Chinese medicine.
Collapse
Affiliation(s)
- Kaijun Wang
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jie Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiayi Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Jie Ma
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China.
| | - Hongbin Si
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China.
| | - Diqi Xia
- Department of Rehabilitation Medicine, Lecong Hospital of Shunde, Foshan 528315, China.
| |
Collapse
|
23
|
Elkady H, Mahdy HA, Taghour MS, Dahab MA, Elwan A, Hagras M, Hussein MH, Ibrahim IM, Husein DZ, Elkaeed EB, Alsfouk AA, Metwaly AM, Eissa IH. New thiazolidine-2,4-diones as potential anticancer agents and apoptotic inducers targeting VEGFR-2 kinase: Design, synthesis, in silico and in vitro studies. Biochim Biophys Acta Gen Subj 2024; 1868:130599. [PMID: 38521471 DOI: 10.1016/j.bbagen.2024.130599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/21/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND VEGFR-2 has emerged as a prominent positive regulator of cancer progression. AIM Discovery of new anticancer agents and apoptotic inducers targeting VEGFR-2. METHODS Design and synthesis of new thiazolidine-2,4-diones followed by extensive in vitro studies, including VEGFR-2 inhibition assay, MTT assay, apoptosis analysis, and cell migration assay. In silico investigations including docking, MD simulations, ADMET, toxicity, and DFT studies were performed. RESULTS Compound 15 showed the strongest VEGFR-2 inhibitory activity with an IC50 value of 0.066 μM. Additionally, most of the synthesized compounds showed anti-proliferative activity against HepG2 and MCF-7 cancer cell lines at the micromolar range with IC50 values ranging from 0.04 to 4.71 μM, relative to sorafenib (IC50 = 2.24 ± 0.06 and 3.17 ± 0.01 μM against HepG2 and MCF-7, respectively). Also, compound 15 showed selectivity indices of 1.36 and 2.08 against HepG2 and MCF-7, respectively. Furthermore, compound 15 showed a significant apoptotic effect and arrested the cell cycle of MCF-7 cells at the S phase. Moreover, compound 15 had a significant inhibitory effect on the ability of MCF-7 cells to heal from. Docking studies revealed that the synthesized thiazolidine-2,4-diones have a binding pattern approaching sorafenib. MD simulations indicated the stability of compound 15 in the active pocket of VEGFR-2 for 200 ns. ADMET and toxicity studies indicated an acceptable pharmacokinetic profile. DFT studies confirmed the ability of compound 15 to interact with VEGFR-2. CONCLUSION Compound 15 has promising anticancer activity targeting VEGFR-2 with significant activity as an apoptosis inducer.
Collapse
Affiliation(s)
- Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Mona H Hussein
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt.
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia.
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt.
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
24
|
Guo J, Yan W, Duan H, Wang D, Zhou Y, Feng D, Zheng Y, Zhou S, Liu G, Qin X. Therapeutic Effects of Natural Products on Liver Cancer and Their Potential Mechanisms. Nutrients 2024; 16:1642. [PMID: 38892575 PMCID: PMC11174683 DOI: 10.3390/nu16111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Liver cancer ranks third globally among causes of cancer-related deaths, posing a significant public health challenge. However, current treatments are inadequate, prompting a growing demand for novel, safe, and effective therapies. Natural products (NPs) have emerged as promising candidates in drug development due to their diverse biological activities, low toxicity, and minimal side effects. This paper begins by reviewing existing treatment methods and drugs for liver cancer. It then summarizes the therapeutic effects of NPs sourced from various origins on liver cancer. Finally, we analyze the potential mechanisms of NPs in treating liver cancer, including inhibition of angiogenesis, migration, and invasion; regulation of the cell cycle; induction of apoptosis, autophagy, pyroptosis, and ferroptosis; influence on tumor metabolism; immune regulation; regulation of intestinal function; and regulation of key signaling pathways. This systematic review aims to provide a comprehensive overview of NPs research in liver cancer treatment, offering a foundation for further development and application in pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Jinhong Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Wenjie Yan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Hao Duan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Diandian Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Yaxi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| | - Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China;
| | - Shiqi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Gaigai Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Xia Qin
- Graduate Department, Beijing Union University, Beijing 100101, China
| |
Collapse
|
25
|
Marka S, Zografaki ME, Tsolomiti G, Kalliampakou KI, Tsolomitis A, Koumantou C, Smirlis D, Vassilaki N, Kintzios S. 2-(4-Nitrophenyl)isothiazol-3(2H)-one: A Promising Selective Agent against Hepatocellular Carcinoma Cells. Pharmaceuticals (Basel) 2024; 17:673. [PMID: 38931341 PMCID: PMC11206498 DOI: 10.3390/ph17060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Liver cancer ranks among the most prevalent malignancies globally and stands as a leading cause of cancer-related mortality. Numerous isothiazolone derivatives and analogues have been synthesized and investigated for their potential as anticancer agents; however, limited data exist regarding their efficacy against liver cancer. In the present study, two nitrophenyl-isothiazolones, the 5-benzoyl-2-(4-nitrophenyl)isothiazol-3(2H)-one (IsoA) and the 2-(4-nitrophenyl)isothiazol-3(2H)-one (IsoB), were preliminarily investigated for their cytotoxicity against hepatoma human (Huh7) cells as a liver cancer model and Immortalized Human Hepatocytes (IHHs) as a model of non-cancerous hepatocytes. IsoB, derived from IsoA after removal of the benzoyl moiety, demonstrated the highest cytotoxic effect against Huh7 cells with CC50 values of 19.3 μΜ at 24 h, 16.4 μΜ at 48 h, and 16.2 μΜ at 72 h of incubation, respectively. IsoB also exhibited selective toxicity against the liver cancerous Huh7 cells compared to IHH cells, reinforcing its role as a potent and selective anticancer agent. Remarkably, the cytotoxicity of IsoB was higher when compared with the standard chemotherapeutical agent 5-fluorouracil (5-FU), which also failed to exhibit higher toxicity against the liver cancerous cell lines. Moreover, IsoB-treated Huh7 cells presented a noteworthy reduction in mitochondrial membrane potential (ΔΨm) after 48 and 72 h, while mitochondrial superoxide levels showed an increase after 24 h of incubation. The molecular mechanism of the IsoB cytotoxic effect was also investigated using RT-qPCR, revealing an apoptosis-mediated cell death along with tumor suppressor TP53 overexpression and key-oncogene MYCN downregulation.
Collapse
Affiliation(s)
- Sofia Marka
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.T.); (C.K.)
| | - Maria-Eleftheria Zografaki
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (M.-E.Z.); (K.I.K.)
| | - Georgia Tsolomiti
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.T.); (C.K.)
| | - Katerina I. Kalliampakou
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (M.-E.Z.); (K.I.K.)
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Athanasios Tsolomitis
- School of Chemical Engineering, National Technical University, 15772 Athens, Greece;
| | - Christina Koumantou
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.T.); (C.K.)
| | - Despina Smirlis
- Molecular Parasitology Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Spyros Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.T.); (C.K.)
| |
Collapse
|
26
|
Wang T, Gao Y, Wu F, Luo L, Ma J, Hu Y. Coumarin-furo[2,3- d]pyrimidone hybrid molecules targeting human liver cancer cells: synthesis, anticancer effect, EGFR inhibition and molecular docking studies. RSC Med Chem 2024; 15:1565-1577. [PMID: 38784474 PMCID: PMC11110736 DOI: 10.1039/d3md00668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
The design, synthesis and investigation of antitumor activities of some coumarin-furo[2,3-d]pyrimidone hybrid molecules are reported. In vitro, HepG2 cells were used to investigate the cytotoxicity of 6a-n and 10a-n. The results demonstrated that coupling a furopyrimidone scaffold with coumarin through a hydrazide linker can effectively improve their synergistic anticancer activity. The coumarin-furo[2,3-d]pyrimidone combination 10a exhibited significant inhibitory activity against HepG2 cells with IC50 = 7.72 ± 1.56 μM, which is better than those of gefitinib and sorafenib. It is worth mentioning that the coumarin-furo[2,3-d]pyrimidone combination 10a showed excellent inhibition of the EGFR enzymatic activity with IC50 = 1.53 μM and 90% inhibition at 10 μM concentration. In silico investigation predicts the possibility of direct binding between the new coumarin-furo[2,3-d]pyrimidone hybrid molecules and the EGFR. The results suggest that coumarin-furo[2,3-d]pyrimidone hybrid molecules are potential antitumor agents targeting human liver cancer cells.
Collapse
Affiliation(s)
- Tianshuai Wang
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yumeng Gao
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Fengxu Wu
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Lun Luo
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Junkai Ma
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yanggen Hu
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| |
Collapse
|
27
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
28
|
İnanir M, Uçar E, Tüzün B, Eruygur N, Ataş M, Akpulat HA. The pharmacological properties of Gypsophila eriocalyx: The endemic medicinal plant of northern central Turkey. Int J Biol Macromol 2024; 266:130943. [PMID: 38522690 DOI: 10.1016/j.ijbiomac.2024.130943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
The aim of this study is to evaluate and compare the biological properties of different extracts (methanol, ethanol, and water) obtained from Gypsophila eriocalyx (G. eriocalyx), a medicinal plant traditionally used in Turkey. The components of different extracts were defined using the GC-MS method. The effects of G. eriocalyx extracts on cell proliferation, apoptosis, and cell cycle arrest in MDA-MB-231 breast cancer as well as in vitro antioxidant, enzyme inhibition, and antimicrobial activities were investigated. In accordance with the results obtained, although ethanol and methanol extracts of G. eriocalyx show higher antioxidant activity than G. eriocalyx water extract, enzyme inhibition activities of the extracts were not found to be significant compared to the reference drug. The methanol and ethanol extract of G. eriocalyx exhibited moderate antimicrobial activity against Staphylococcus aureus and methanol extract showed significant antimicrobial activity against Bacillus cereus. In addition, both extracts significantly inhibited cell viability in a dose-dependent manner in breast cancer cells. The cell growth inhibition by methanol and ethanol extracts induced S phase cell-cycle arrest and apoptosis in MDA-MB-231 cells. Lastly, in order to compare the activities of the chemicals found in Gypsophila eriocalyx plant extract, their activities against various proteins that are breast cancer protein (PDB ID:1A52 and 1JNX), antioxidant protein (PDB ID: 1HD2), AChE enzyme protein (PDB ID: 4M0E), BChE enzyme protein (PDB ID: 5NN0), and Escherichia coli protein (PDB ID: 4PRV)were compared. Then, ADME/T analysis calculations were made to examine the effects of molecules with high activity on human metabolism. Eventually, G. eriocalyx is thought to be a potent therapeutic herb that can be considered as an alternative and functional therapy for the management of diseases of a progressive nature related to oxidative damage such as infection, diabetes, cancer, and Alzheimer's disease.
Collapse
Affiliation(s)
- Merve İnanir
- Department of Pharmacology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Esra Uçar
- Department of Medicinal and Aromatic Plant, Vocational School, Sivas Cumhuriyet University, Sivas, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical SciencesVocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Nuraniye Eruygur
- Department of Pharmacognosy, Faculty of Pharmacy, Selçuk University, Konya, Turkey
| | - Mehmet Ataş
- Department of Microbiology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hüseyin Aşkın Akpulat
- Department of Biology, Faculty of Science,Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
29
|
Liu X, Li J, Huang Q, Jin M, Huang G. Ginsenoside Rh2 shifts tumor metabolism from aerobic glycolysis to oxidative phosphorylation through regulating the HIF1-α/PDK4 axis in non-small cell lung cancer. Mol Med 2024; 30:56. [PMID: 38671369 PMCID: PMC11055298 DOI: 10.1186/s10020-024-00813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Ginsenoside Rh2 (G-Rh2), a steroidal compound extracted from roots of ginseng, has been extensively studied in tumor therapy. However, its specific regulatory mechanism in non-small cell lung cancer (NSCLC) is not well understood. Pyruvate dehydrogenase kinase 4 (PDK4), a central regulator of cellular energy metabolism, is highly expressed in various malignant tumors. We investigated the impact of G-Rh2 on the malignant progression of NSCLC and how it regulated PDK4 to influence tumor aerobic glycolysis and mitochondrial function. METHOD We examined the inhibitory effect of G-Rh2 on NSCLC through I proliferation assay, migration assay and flow cytometry in vitro. Subsequently, we verified the ability of G-Rh2 to inhibit tumor growth and metastasis by constructing subcutaneous tumor and metastasis models in nude mice. Proteomics analysis was conducted to analyze the action pathways of G-Rh2. Additionally, we assessed glycolysis and mitochondrial function using seahorse, PET-CT, Western blot, and RT-qPCR. RESULT Treatment with G-Rh2 significantly inhibited tumor proliferation and migration ability both in vitro and in vivo. Furthermore, G-Rh2 inhibited the tumor's aerobic glycolytic capacity, including glucose uptake and lactate production, through the HIF1-α/PDK4 pathway. Overexpression of PDK4 demonstrated that G-Rh2 targeted the inhibition of PDK4 expression, thereby restoring mitochondrial function, promoting reactive oxygen species (ROS) accumulation, and inducing apoptosis. When combined with sodium dichloroacetate, a PDK inhibitor, it complemented the inhibitory capacity of PDKs, acting synergistically as a detoxifier. CONCLUSION G-Rh2 could target and down-regulate the expression of HIF-1α, resulting in decreased expression of glycolytic enzymes and inhibition of aerobic glycolysis in tumors. Additionally, by directly targeting mitochondrial PDK, it elevated mitochondrial oxidative phosphorylation and enhanced ROS accumulation, thereby promoting tumor cells to undergo normal apoptotic processes.
Collapse
Affiliation(s)
- Xiyu Liu
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China
| | - Jingjing Li
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China
| | - Qingqing Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China.
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China.
| | - Gang Huang
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China.
| |
Collapse
|
30
|
Alsulays BB, Aodah AH, Ahmed MM, Anwer MK. Preparation and Evaluation of Chitosan Coated PLGA Nanoparticles Encapsulating Ivosidenib with Enhanced Cytotoxicity Against Human Liver Cancer Cells. Int J Nanomedicine 2024; 19:3461-3473. [PMID: 38617799 PMCID: PMC11015841 DOI: 10.2147/ijn.s452989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Purpose Ivosidenib (IVO), an isocitrate dehydrogenase-1 (IDH1) used for treatment of acute myeloid leukemia (AML) and cholangiocarcinoma. However, poor solubility, low bioavailability, high dose and side effects limit clinical application of IVO. Methods Ivosidenib-loaded PLGA nanoparticles (IVO-PLGA-NPs) and Ivosidenib-loaded chitosan coated PLGA nanoparticles (IVO-CS-PLGA-NPs) were prepared using emulsification and solvent evaporation method for the treatment of liver cancer. Results The developed IVO-PLGA-NPs were evaluated for their particle size (171.7±4.9 nm), PDI (0.333), ZP (-23.0±5.8 mV), EE (96.3±4.3%), and DL (9.66±1.1%); similarly, the IVO-CS-PLGA-NPs were evaluated for their particle size (177.3±5.2 nm), PDI (0.311), ZP +25.9±5.7 mV, EE (90.8±5.7%), and DL (9.42±0.7%). The chitosan coating of IVO-PLGA-NPs was evidenced by an increase in mean particle size and positive ZP value. Because of the chitosan coating, the IVO-CS-PLGA-NPs showed a more stable and prolonged release of IVO than IVO-PLGA-NPs. In comparison to pure-IVO, the IVO-PLGA-NPs and IVO-CS-PLGA-NPs were found to be more effective against HepG2 cells, with IC50 values for the MTT assay being approximately half of those of pure-IVO. In HepG2 cells, the expressions of caspase-3, caspase-9, and p53 were significantly (p < 0.05) elevated. Conclusion Overall, these findings suggest that chitosan coating of IVO-PLGA-NPs improves the delivery and efficacy of ivosidenib in liver cancer treatment.
Collapse
Affiliation(s)
- Bader B Alsulays
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Alhussain H Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
31
|
Reyes-Hernández OD, Figueroa-González G, Quintas-Granados LI, Hernández-Parra H, Peña-Corona SI, Cortés H, Kipchakbayeva A, Mukazhanova Z, Habtemariam S, Leyva-Gómez G, Büsselberg D, Sharifi-Rad J. New insights into the anticancer therapeutic potential of icaritin and its synthetic derivatives. Drug Dev Res 2024; 85:e22175. [PMID: 38567708 DOI: 10.1002/ddr.22175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Icaritin is a natural prenylated flavonoid derived from the Chinese herb Epimedium. The compound has shown antitumor effects in various cancers, especially hepatocellular carcinoma (HCC). Icaritin exerts its anticancer activity by modulating multiple signaling pathways, such as IL-6/JAK/STAT3, ER-α36, and NF-κB, affecting the tumor microenvironment and immune system. Several clinical trials have evaluated the safety and efficacy of icaritin in advanced HCC patients with poor prognoses, who are unsuitable for conventional therapies. The results have demonstrated that icaritin can improve survival, delay progression, and produce clinical benefits in these patients, with a favorable safety profile and minimal adverse events. Moreover, icaritin can enhance the antitumor immune response by regulating the function and phenotype of various immune cells, such as CD8+ T cells, MDSCs, neutrophils, and macrophages. These findings suggest that icaritin is a promising candidate for immunotherapy in HCC and other cancers. However, further studies are needed to elucidate the molecular mechanisms and optimal dosing regimens of icaritin and its potential synergistic effects with other agents. Therefore, this comprehensive review of the scientific literature aims to summarize advances in the knowledge of icaritin in preclinical and clinical studies as well as the pharmacokinetic, metabolism, toxicity, and mechanisms action to recognize the main challenge, gaps, and opportunities to develop a medication that cancer patients can use. Thus, our main objective was to clarify the current state of icaritin for use as an anticancer drug.
Collapse
Affiliation(s)
- Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Itzel Quintas-Granados
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México. Ciudad de México, México, México
| | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Aliya Kipchakbayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Zhazira Mukazhanova
- Higher School of IT and Natural Sciences, Sarsen Amanzholov East Kazakhstan University, Ust-Kamenogorsk, Kazakhstan
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, London, UK
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | | |
Collapse
|
32
|
Hu J, Jiang J, Xu B, Li Y, Wang B, He S, Ren X, Shi B, Zhang X, Zheng H, Hua B, Liu R. Bioinformatics analyses of infiltrating immune cell participation on pancreatic ductal adenocarcinoma progression and in vivo experiment of the therapeutic effect of Shuangshen granules. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117590. [PMID: 38113986 DOI: 10.1016/j.jep.2023.117590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuangshen granules (SSG), a nationally patented Chinese medicinal formula, including Panax quinquefolium L., Panax notoginseng (Burkill) F. H. Chen, and Cordyceps sinensis (Berk.) Sacc., has demonstrated remarkable therapeutic effects on pancreatic cancer in clinical treatment for nearly 10 years. Previous pharmacological researches have found that its main components, including ginsenosides and cordycepin have anticancer or preventive effects on pancreatic ductal adenocarcinoma (PDAC), which may be associated with immune metabolism. However, the underlying pharmacological mechanism of SSG in the truncation effect of PDAC progression is still unclear. AIM OF THE STUDY To comprehensively understand the infiltrating immune cells during the different stages of the PDAC development chain and search for immune-related biomarkers that could potentially serve as drug targets through bioinformatic analysis. Meanwhile, the truncation effect of SSG on PDAC progression was also investigated. MATERIALS AND METHODS The gene expression profiles at different PDAC developmental stages, including normal pancreas, pancreatic intraepithelial neoplasia (PanIN), and PDAC, were retrieved from the GEO database. The GEO2R tool was used to identify differentially expressed genes among the three groups. Functional enrichment analysis was performed with the GSEA software and Metascape platform. The CIBERSORT algorithm evaluated immune cell infiltration in the three groups, and immune-related biomarkers were identified. Correlation analysis was employed to examine the association between immune cells and the biomarkers. One of these biomarkers was selected for immunohistochemistry validation in human samples. Lastly, the effectiveness of SSG against PDAC progression and the influence on the selected biomarker were validated in vivo. The underlying pharmacological mechanisms were also explored. RESULTS One dataset was obtained, where the functional enrichment of DEGs primarily involved immune effector processes and cytokine production of immune cells. The differential immune cells reflected during the progression from PanIN to PDAC were B memory cells, monocytes, M2 macrophages, and activated dendritic cells. The upregulation of ACTA2 was closely associated with M2 macrophage regulation. The immunohistochemistry on human samples validated significant differences in ACTA2 expression levels as the PDAC progressed. Moreover, animal experiments revealed that the national patented drug SSG ameliorated the pathological changes, decreased the expression of ACTA2 and its functional protein α-smooth muscle actin during PDAC progression. The underlying pharmacological mechanism was related to the regulation of macrophage polarization and downregulation of TGF-β/Smad signaling pathway. CONCLUSIONS The immunosuppressive environment changes during the PDAC progression. ACTA2 is a potential immuned-target for drug prevention of PDAC, while SSG could be a promising drug candidate.
Collapse
Affiliation(s)
- Jiaqi Hu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Juling Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bei Wang
- China-Japan Friendship Hospital, Beijing, China
| | - Shulin He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoling Ren
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bolun Shi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
33
|
Song M, Wang L, Jiang S, Liang J, Li W, Rao W, Du Q, Liu G, Meng H, Tang L, Li Z, Yang Y, Zhang L, Zhang B. Pathogenic Th17 cell-mediated liver fibrosis contributes to resistance to PD-L1 antibody immunotherapy in hepatocellular carcinoma. Int Immunopharmacol 2024; 129:111601. [PMID: 38350354 DOI: 10.1016/j.intimp.2024.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/15/2024]
Abstract
Understanding the mechanisms of resistance of hepatocellular carcinoma (HCC) to targeted therapies and immune checkpoint blockade is critical for the development of new combination therapies and improving patient survival. Here, we found that in HCC, anti-programmed cell death 1 ligand 1 (PD-L1) therapy reduces liver cancer growth, but the tumors eventually become resistant to continued therapy. Experimental analyses shows that the infiltration of pathogenic T helper 17 (pTh17) cells increases in drug-resistant HCC, and pTh17 cells secrete interleukin-17A (IL-17A), which promotes the expression of PD-L1 on the surface of HCC cells and produces resistance to anti-PD-L1 therapy. Anti-IL-17A combined with PD-L1 blockade significantly increased the infiltration of cytotoxic CD8+ T cells expressing high levels of interferon-γ and reduced treatment resistance in HCC. These results support the combination of anti-PD-L1 and anti-IL-17A as a novel strategy to induce effective T cell-mediated anti-tumor immune responses.
Collapse
Affiliation(s)
- Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Rao
- Division of Hepatology, Liver Disease Center, Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Zhifei Li
- Department of Clinical Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
34
|
Wang R, Li R, Yang H, Chen X, Wu L, Zheng X, Jin Y. Flavokawain C inhibits proliferation and migration of liver cancer cells through FAK/PI3K/AKT signaling pathway. J Cancer Res Clin Oncol 2024; 150:117. [PMID: 38460052 PMCID: PMC10924746 DOI: 10.1007/s00432-024-05639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 03/11/2024]
Abstract
PURPOSE This study investigated the potential applicability and the underlying mechanisms of flavokawain C, a natural compound derived from kava extracts, in liver cancer treatment. METHODS Drug distribution experiment used to demonstrate the preferential tissues enrichment of flavokawain C. Cell proliferation, apoptosis and migration effect of flavokawain C were determined by MTT, colony formation, EdU staining, cell adhesion, transwell, flow cytometry and western blot assay. The mechanism was explored by comet assay, immunofluorescence assay, RNA-seq-based Kyoto encyclopedia of genes and genomes analysis, molecular dynamics, bioinformatics analysis and western blot assay. The anticancer effect of flavokawain C was further confirmed by xenograft tumor model. RESULTS The studies first demonstrated the preferential enrichment of flavokawain C within liver tissues in vivo. The findings demonstrated that flavokawain C significantly inhibited proliferation and migration of liver cancer cells, induced cellular apoptosis, and triggered intense DNA damage along with strong DNA damage response. The findings from RNA-seq-based KEGG analysis, molecular dynamics, bioinformatics analysis, and western blot assay mechanistically indicated that treatment with flavokawain C notably suppressed the FAK/PI3K/AKT signaling pathway in liver cancer cells. This effect was attributed to the induction of gene changes and the binding of flavokawain C to the ATP sites of FAK and PI3K, resulting in the inhibition of their phosphorylation. Additionally, flavokawain C also displayed the strong capacity to inhibit Huh-7-derived xenograft tumor growth in mice with minimal adverse effects. CONCLUSIONS These findings identified that flavokawain C is a promising anticancer agent for liver cancer treatment.
Collapse
Affiliation(s)
- Rong Wang
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Rizhao Li
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Huibing Yang
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuejiao Chen
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Medical University, Wenzhou, 325000, China
| | | | | | - Yuepeng Jin
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
35
|
Li R, Li S, Shen L, Li J, Zhang D, Yu J, Huang L, Liu N, Lu H, Xu M. SNHG1, interacting with SND1, contributes to sorafenib resistance of liver cancer cells by increasing m6A-mediated SLC7A11 expression and promoting aerobic glycolysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:1269-1282. [PMID: 37927237 DOI: 10.1002/tox.24014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
Aerobic glycolysis plays an important role in multidrug resistance of cancer cells. Here, we screened different expressed lncRNAs associated with sorafenib resistance of liver cancer cells, by intersecting the bioinformatics analyses of TCGA and GEO (the GSE62813 dataset) databases. Our results revealed that the 18 upregulated lncRNAs in the intersection are associated with and enriched in metabolism of small molecule organic acids, suggesting their potential in glycolysis. The lncRNA small nucleolar RNA host gene 1 (Snhg1) was chosen as a potential regulator of aerobic glycolysis in liver cancer cells, for its significant promotion on lactate production. Gain- and loss-of-function experiments mediated by Crispr-Cas9 technique in HepG2 cells indicated that Snhg1 promoted cell proliferation, invasion, sorafenib resistance, and aerobic glycolysis. In the mechanism exploration, we found that Snhg1 can interact with SND1 protein, a famous RNA binding protein and recently identified "Reader" of N6-methyladenosine (m6A). SND1 was demonstrated to be positively regulated by Snhg1 and had similar promoting effects on proliferation, invasion, sorafenib resistance, and aerobic glycolysis of HepG2 cells. SND1 bound with and promoted the expression of SLC7A11, an aerobic glycolysis regulator. Furthermore, either silencing SLC7A11 or blocking aerobic glycolysis with 2-deoxy-d-glucose (2-DG) was able to reverse the promotion of Snhg1 overexpression on malignancy, sorafenib resistance, and aerobic glycolysis of HepG2 cells. Finally, in a liver cancer xenograft mouse model, we found that formed tumors with Snhg1-knocked-down HepG2 cells were more sensitive to sorafenib administration. Altogether, SNHG1 contributes to sorafenib resistance of liver cancer cells by promoting SND1-m6A-SLC7A11-mediated aerobic glycolysis.
Collapse
Affiliation(s)
- Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shunle Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lin Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jinmin Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lanxuan Huang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
36
|
Zhou T, Zhou H, Tian L, Tang M, Wang L, Kang Y, Chen T, Li X, Wu S, Xia R, Huang X, Peng L, Yin W. Pomegranate juice-containing serum inhibits migration of hepatocellular carcinoma cells and promotes apoptosis by induction of mitochondrial dysfunction. J Nutr Biochem 2024; 125:109557. [PMID: 38151194 DOI: 10.1016/j.jnutbio.2023.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with an insidious onset and poor prognosis. Pomegranate is a fruit rich in many natural products with anti-cancer potential; however, its direct biological effects are difficult to evaluate in vitro because of changes in its active components after absorption and metabolism. This study was conducted to prepare pomegranate juice-containing serum (PJ serum) by gavage of pomegranate juice (PJ) in rats and to collect serum. The aim was to investigate the components and the effects of PJ serum on HCC cells by serum pharmacology. 56 compounds were identified in the PJ serum, including 6 prototype components. PJ serum selectively inhibited HCC cells proliferation and migration, and it promoted apoptosis of HCC cells without affecting LO2 cells activity. Furthermore, PJ serum reduced the mitochondrial membrane potential and increased the calcium ion concentration in HCC cells. Mechanistically, PJ serum up-regulated the expression of the Bax family, Caspases and TIMP2/MMP2, and down-regulated the expression of MMP9. This study revealed that PJ serum inhibited HCC cell migration by regulating the TIMP2/MMP2 balance and MMP9 expression and promoted HCC cell apoptosis by inducing mitochondrial dysfunction and causing a Caspase cascade. The polyphenols and flavonoids in PJ may be important components responsible for its anti-HCC activity after metabolism.
Collapse
Affiliation(s)
- Ting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Heting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Li Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Minghai Tang
- Collaborative Innovation Center for Biotherapy and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqun Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Yuhong Kang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Tao Chen
- Chengdu Institute of Product Quality Inspection Co., Ltd, Chengdu, Sichuan, China
| | - Xingjie Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Shouxun Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Rui Xia
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Xiaoyi Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China
| | - Lijun Peng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China.
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Workgroup, West China-PUMCC.C. Chen Institute of Health, Chengdu, Sichuan, China.
| |
Collapse
|
37
|
Huang WS, Li WQ, Yu X, Xue MZ, Yuan YL, Chen C, Wu YL, Yu JH, Diao XX. A robust and validated LC-MS/MS method for the quantification of ramucirumab in rat and human serum using direct enzymatic digestion without immunoassay. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:123991. [PMID: 38266611 DOI: 10.1016/j.jchromb.2023.123991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Abstract
A new liquid chromatography tandem mass spectrometry (LC-MS/MS) method was established to quantify the anti-gastric cancer fully human monoclonal antibody (ramucirumab) in rat and human serum. The surrogate peptide (GPSVLPLAPSSK) for ramucirumab was generated by trypsin hydrolysis and quantified using the isotopically labeled peptide GPSVLPLAPSSK[13C6, 15N2]ST containing two more amino acids at the carboxyl end as an internal standard to correct for variations introduced during the enzymatic hydrolysis process and any mass spectrometry changes. Additionally, the oxidation and deamidation of unstable peptides (VVSVLTVLHQDWLNGK and NSLYLQMNSLR) were detected. The quantitative range of the proposed method was 1-1000 μg/mL, and complete methodological validation was performed. The precision, accuracy, matrix effect, sensitivity, stability, selectivity, carryover, and interference of the measurements met the required standards. The validated LC-MS/MS method was applied to pharmacokinetic studies in rats administered ramucirumab at 15 mg/kg intravenously. Overall, a robust, efficient, and cost-effective LC-MS/MS method was successfully developed for quantifying ramucirumab in rat and human serum.
Collapse
Affiliation(s)
- Wen-Si Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qiang Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ming-Zhen Xue
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ya-Li Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chong Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ya-Li Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Hua Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Xing-Xing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Li Z, Ma J, Tian M, Xia P, Lv X, Hou R, Jiang Y, Xu X, Jia Z, Wang J, Li Z. Synthesis, biological activity evaluation and mechanism of action of novel bis-isatin derivatives as potential anti-liver cancer agents. Bioorg Med Chem Lett 2024; 99:129613. [PMID: 38224754 DOI: 10.1016/j.bmcl.2024.129613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
A series of bis-isatin conjugates with lysine linker were synthesized with the aim of probing their antiproliferative potential. All the newly synthesized derivatives (0-100 μM) were first screened against liver cancer cell lines(Huh1, H22, Huh7, Hepa1-6, HepG2, Huh6 and 97H) using CCK-8 assay. Results indicated that the derivative 4d exhibited the most potent activity against Huh1 (IC50 = 17.13 µM) and Huh7(IC50 = 8.265 µM). In vivo anti-tumor study showed that compound 4d effectively inhibited tumor growth in Huh1-induced xenograft mouse model; the anti-tumor effect of compound 4d (15 mg/kg) was comparable with sorafenib (20 mg/kg). H&E staining analysis and routine blood test and blood serum biochemistry examination was performed to confirm the safety of compound 4d in xenograft models. The mechanism of action of 4d on tumor growth inhibition was further investigated by RNA-Seq analysis, which indicates a positive regulation of autophagy signaling pathway, which was further confirmed with key biomarker expression of autophagy after 4d treatment. Our results suggest that the bis-isatin conjugate compound 4d is a promising tumor inhibitory agent for some liver cancer.
Collapse
Affiliation(s)
- Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Xing Yun Street, Pingcheng District, Datong, Shanxi Province 037009, PR China
| | - Jingbo Ma
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, PR China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, PR China
| | - Xiannian Lv
- Department of Geriatrics, Fifth People's Hospital of Datong City, Shanxi Province 2669 Wenxing Road North, Pingcheng District, Datong City 037006, Shanxi, PR China
| | - Rui Hou
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Yuke Jiang
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China
| | - Xiaolong Xu
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China
| | - Zhifang Jia
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Xing Yun Street, Pingcheng District, Datong, Shanxi Province 037009, PR China
| | - Jigang Wang
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Zhijie Li
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China.
| |
Collapse
|
39
|
Zhang L, Lu J. Combination strategies for first-line treatment of patients with unresectable hepatocellular carcinoma: prospect of natural products. Chin J Nat Med 2024; 22:1-3. [PMID: 38278555 DOI: 10.1016/s1875-5364(24)60574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 01/28/2024]
Affiliation(s)
- Lele Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China.
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
40
|
Zhang Z, Wu H, Zhang Y, Shen C, Zhou F. Dietary antioxidant quercetin overcomes the acquired resistance of Sorafenib in Sorafenib-resistant hepatocellular carcinoma cells through epidermal growth factor receptor signaling inactivation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:559-574. [PMID: 37490119 DOI: 10.1007/s00210-023-02605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/25/2023] [Indexed: 07/26/2023]
Abstract
Sorafenib (SOR) is a molecular targeting agent commonly utilized as a primary treatment for advanced and inoperable hepatocellular carcinoma (HCC). Regrettably, the effectiveness of SOR is frequently hindered by the resistance of multiple HCC cases. The current investigation endeavors to examine the potential of the natural product quercetin (QUE) in reversing the acquired resistance of SOR-resistant cells, known as Huh7R, to SOR. Moreover, this study aims to elucidate the underlying molecular mechanism that contributes to this phenomenon. The results demonstrated that QUE significantly impeded proliferation and stimulated apoptosis in Huh7R cells, while also suppressing the growth of transplanted tumors. The impact of QUE enhanced the efficacy of SOR treatment for Huh7R. Additionally, bioinformatic and western blot analyses indicated that the underlying mechanisms may be associated with EGFR tyrosine kinase inhibitor resistance, the PI3K-AKT signaling pathway, and HCC. Furthermore, molecular docking and dynamics simulation assays revealed that QUE exhibited strong affinity and stability towards its hub targets, EGFR and AKT1. It is noteworthy that the activation of EGFR by its ligand, EGF, mitigated the effects of co-treatment with QUE and SOR. These findings suggest that QUE might potentially serve as a therapeutic agent in treating as well as facilitating SOR against Huh7R cells, which has substantial clinical and research implications for the treatment of acquired resistance to SOR in HCC.
Collapse
Affiliation(s)
- Zhengguang Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Haitao Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Yajie Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Fuqiong Zhou
- Central Laboratory, Nanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| |
Collapse
|
41
|
He XF, Ma YB, Li TZ, Chen JJ. Highly oxygenated guaiane-type sesquiterpene lactones from Artemisia sacrorum and their antihepatoma activity. PHYTOCHEMISTRY 2024; 217:113930. [PMID: 37993076 DOI: 10.1016/j.phytochem.2023.113930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
The ethanol and EtOAc extracts of Artemisia sacrorum exhibited inhibitory effect against HepG2, Huh7, and SK-Hep-1 cell lines with inhibitory ratios of 65.5%, 28.1%, 84.6%, and 93.5%, 82.0%, 89.0% at 200 μg/mL. Twenty-three undescribed guaiane-type sesquiterpene lactones, artemisacrolides A‒W, were isolated from A. sacrorum under the guidance of antihepatoma activity. Their structures were elucidated by spectral data (HRESIMS, IR, UV, 1D and 2D NMR), ECD calculations, and a single-crystal X-ray diffraction. Artemisacrolides A‒U were guaiane-type sesquiterpene lactones possessing α-methylene-γ-lactone and containing acetoxyl groups at C-8, and artemisacrolides V and W represented the first report from the genus Artemisia with a 1,10-rearranged guaiane-type sesquiterpene lactone. Antihepatoma assay suggested that artemisacrolides A‒U demonstrated better inhibitory activity in Huh7 and SK-Hep-1 cells than those of HepG2 cells. Among them, nine compounds exhibited significant inhibitory activity against Huh7 cells with IC50 values of 8.2-14.3 μM, superior or equal to that of sorafenib; seven compounds demonstrated obvious activity against SK-Hep-1 cells with IC50 values of 13.5-19.2 μM, which were equivalent to that of sorafenib. Artemisacrolides B and E were the most active ones in three human hepatoma cell lines with IC50 values of 21.9, 8.2, 16.9 and 22.6, 9.0, 17.3 μM.
Collapse
Affiliation(s)
- Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Ge A, He Q, Zhao D, Li Y, Chen J, Deng Y, Xiang W, Fan H, Wu S, Li Y, Liu L, Wang Y. Mechanism of ferroptosis in breast cancer and research progress of natural compounds regulating ferroptosis. J Cell Mol Med 2024; 28:e18044. [PMID: 38140764 PMCID: PMC10805512 DOI: 10.1111/jcmm.18044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide and its incidence increases with age, posing a significant threat to women's health globally. Due to the clinical heterogeneity of breast cancer, the majority of patients develop drug resistance and metastasis following treatment. Ferroptosis, a form of programmed cell death dependent on iron, is characterized by the accumulation of lipid peroxides, elevated levels of iron ions and lipid peroxidation. The underlying mechanisms and signalling pathways associated with ferroptosis are intricate and interconnected, involving various proteins and enzymes such as the cystine/glutamate antiporter, glutathione peroxidase 4, ferroptosis inhibitor 1 and dihydroorotate dehydrogenase. Consequently, emerging research suggests that ferroptosis may offer a novel target for breast cancer treatment; however, the mechanisms of ferroptosis in breast cancer urgently require resolution. Additionally, certain natural compounds have been reported to induce ferroptosis, thereby interfering with breast cancer. Therefore, this review not only discusses the molecular mechanisms of multiple signalling pathways that mediate ferroptosis in breast cancer (including metastasis, invasion and proliferation) but also elaborates on the mechanisms by which natural compounds induce ferroptosis in breast cancer. Furthermore, this review summarizes potential compound types that may serve as ferroptosis inducers in future tumour cells, providing lead compounds for the development of ferroptosis-inducing agents. Last, this review proposes the potential synergy of combining natural compounds with traditional breast cancer drugs in the treatment of breast cancer, thereby suggesting future directions and offering new insights.
Collapse
Affiliation(s)
- Anqi Ge
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Qi He
- People's Hospital of Ningxiang CityNingxiangChina
| | - Da Zhao
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| | - Yuwei Li
- Hunan University of Science and TechnologyXiangtanChina
| | - Junpeng Chen
- Hunan University of Science and TechnologyXiangtanChina
| | - Ying Deng
- People's Hospital of Ningxiang CityNingxiangChina
| | - Wang Xiang
- The First People's Hospital Changde CityChangdeChina
| | - Hongqiao Fan
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Shiting Wu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yan Li
- People's Hospital of Ningxiang CityNingxiangChina
| | - Lifang Liu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yue Wang
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| |
Collapse
|
43
|
Li C, Zhang JP, Yuan YC, Zhao YQ, Zheng HS, Zhu ZH. Macrophage-hitchhiked arsenic/AB bionic preparations for liver cancer. Biomater Sci 2023; 12:187-198. [PMID: 37981869 DOI: 10.1039/d3bm01311a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Macrophage-hitchhiked arsenic/AB bionic preparations were developed to improve the therapeutic effect on liver cancer by means of the tumor-targeting ability of macrophages in vivo. In vitro and in vivo cellular uptake assays demonstrated that arsenic/AB, with negatively charged particles of around 100-200 nm size, could hitchhike to macrophages. Dissolution experiments of arsenic/AB showed that arsenic/AB could delay the release of arsenic and ensure the safety of macrophages during its transport. Histological examination confirmed the safety of the preparations for major organs. In vivo distribution experiment showed that the arsenic/AB bionic preparations could rapidly accumulate in tumors, and in vivo treatment experiment showed a significant tumor inhibition of arsenic/AB. The therapeutic mechanism of liver cancer might be that the arsenic/AB bionic preparations could inhibit tumor growth by reducing inflammatory response and inhibiting CSF1 secretion to block CSF1R activation to induce more differentiation of tumor-associated macrophages (TAMs) towards the anti-tumor M1 phenotype. Therefore, we concluded that the arsenic/AB bionic preparations could improve the distribution of arsenic in vivo by hitchhiking on macrophages as well as make it have tumor targeting and deep penetration abilities, thus increasing the therapeutic effect of arsenic on liver cancer with reduced side effects.
Collapse
Affiliation(s)
- Ce Li
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ji Ping Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yi Chao Yuan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yong Qin Zhao
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Hang Sheng Zheng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Zhi Hong Zhu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
44
|
Lu YY, Zhu CY, Ding YX, Wang B, Zhao SF, Lv J, Chen SM, Wang SS, Wang Y, Wang R, Qiu WS, Qi WW. Cepharanthine, a regulator of keap1-Nrf2, inhibits gastric cancer growth through oxidative stress and energy metabolism pathway. Cell Death Discov 2023; 9:450. [PMID: 38086844 PMCID: PMC10716385 DOI: 10.1038/s41420-023-01752-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 11/09/2024] Open
Abstract
Cepharanthine (CEP), a bioactive compound derived from Stephania Cephalantha Hayata, is cytotoxic to various malignancies. However, the underlying mechanism of gastric cancer is unknown. CEP inhibited the cellular activity of gastric cancer AGS, HGC27 and MFC cell lines in this study. CEP-induced apoptosis reduced Bcl-2 expression and increased cleaved caspase 3, cleaved caspase 9, Bax, and Bad expression. CEP caused a G2 cell cycle arrest and reduced cyclin D1 and cyclin-dependent kinases 2 (CDK2) expression. Meanwhile, it increased oxidative stress, decreased mitochondrial membrane potential, and enhanced reactive oxygen species (ROS) accumulation in gastric cancer cell lines. Mechanistically, CEP inhibited Kelch-like ECH-associated protein (Keap1) expression while activating NF-E2 related factor 2 (Nrf2) nuclear translocations, increasing transcription of Nrf2 target genes quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HMOX1), and glutamate-cysteine ligase modifier subunit (GCLM). Furthermore, a combined analysis of targeted energy metabolism and RNA sequencing revealed that CEP could alter the levels of metabolic substances such as D (+) - Glucose, D-Fructose 6-phosphate, citric acid, succinic acid, and pyruvic acid, thereby altering energy metabolism in AGS cells. In addition, CEP significantly inhibited tumor growth in MFC BALB/c nude mice in vivo, consistent with the in vitro findings. Overall, CEP can induce oxidative stress by regulating Nrf2/Keap1 and alter energy metabolism, resulting in anti-gastric cancer effects. Our findings suggest a potential application of CEP in gastric cancer treatment.
Collapse
Affiliation(s)
- Yang-Yang Lu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chun-Yang Zhu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi-Xin Ding
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Wang
- Biomedical Centre, Qingdao University, Qingdao, China
| | - Shu-Fen Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lv
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shu-Ming Chen
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sha-Sha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rui Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-Sheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wei-Wei Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
45
|
Hu Y, Cai Y, Ma W, Hu H, Gu H, Jin Y, Li F. The prognostic nutritional index and tumor pathological characteristics predict the prognosis of elderly patients with early-stage hepatocellular carcinoma after surgery. Biosci Trends 2023; 17:369-380. [PMID: 37813644 DOI: 10.5582/bst.2023.01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The elderly comprises over one-third of hepatocellular carcinoma (HCC) patients, however, they are not adequately represented in prognostic studies. The study aims to determine the prognostic significance of the preoperative prognostic nutritional index (PNI) and develop nomograms for predicting their recurrence-free and overall survival (RFS and OS). The study consisted of 282 elderly patients (aged ≥ 65 years) with early-stage HCC (China Liver Cancer Staging System: I-IIA) after curative resection (R0). They were randomly divided into a training (n = 197) and a test cohort (n = 85). The patients were stratified into two groups: PNI-low (PNI ≤ 49.05) and PNI-high (PNI > 49.05) based on a cut-off value. Most patients' demographics and perioperative outcomes were comparable, while patients in the PNI-high group were younger (P = 0.002), heavier (P < 0.001), and had lower comorbidity rates (P = 0.003). Although the tumor stages were earlier in the PNI-low group (P < 0.001), patients' OS (5-year OS: 48.9% vs. 93.1%) and RFS (5-year RFS: 27.3% vs. 75.7%) were significantly worse compared to the PNI-high group (both P < 0.0001). Patients' OS and RFS nomograms were developed by incorporating independent survival predictors including chronic obstructive pulmonary disease (COPD), age ≥ 75 years, PNI-low, tumor presence of satellite nodules, capsule, and microvascular invasion. The nomograms showed good calibration and discrimination, with all C-indexes ≥ 0.75 and calibration plots essentially coinciding with the diagonal. In conclusion, for elderly HCC patients, COPD, age ≥ 75 years, PNI-low, and tumor presence of satellite nodules, capsule, and microvascular invasion were independent prognostic factors. The nomogram could accurately predict the prognosis of these patients.
Collapse
Affiliation(s)
- Yafei Hu
- Department of Biliary Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yulong Cai
- Department of Biliary Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Wenjie Ma
- Department of Biliary Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Haijie Hu
- Department of Biliary Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Hanfei Gu
- Department of Biliary Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yanwen Jin
- Department of Biliary Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Fuyu Li
- Department of Biliary Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu, China
| |
Collapse
|
46
|
Zahoor AF, Saeed S, Rasul A, Noreen R, Irfan A, Ahmad S, Faisal S, Al-Hussain SA, Saeed MA, Muhammed MT, Muhammad ZA, Zaki MEA. Synthesis, Cytotoxic, and Computational Screening of Some Novel Indole-1,2,4-Triazole-Based S-Alkylated N-Aryl Acetamides. Biomedicines 2023; 11:3078. [PMID: 38002078 PMCID: PMC10669176 DOI: 10.3390/biomedicines11113078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Molecular hybridization has emerged as the prime and most significant approach for the development of novel anticancer chemotherapeutic agents for combating cancer. In this pursuit, a novel series of indole-1,2,4-triazol-based N-phenyl acetamide structural motifs 8a-f were synthesized and screened against the in vitro hepatocellular cancer Hep-G2 cell line. The MTT assay was applied to determine the anti-proliferative potential of novel indole-triazole compounds 8a-f, which displayed cytotoxicity potential as cell viabilities at 100 µg/mL concentration, by using ellipticine and doxorubicin as standard reference drugs. The remarkable prominent bioactive structural hybrids 8a, 8c, and 8f demonstrated good-to-excellent anti-Hep-G2 cancer chemotherapeutic potential, with a cell viability of (11.72 ± 0.53), (18.92 ± 1.48), and (12.93 ± 0.55), respectively. The excellent cytotoxicity efficacy against the liver cancer cell line Hep-G2 was displayed by the 3,4-dichloro moiety containing indole-triazole scaffold 8b, which had the lowest cell viability (10.99 ± 0.59) compared with the standard drug ellipticine (cell viability = 11.5 ± 0.55) but displayed comparable potency in comparison with the standard drug doxorubicin (cell viability = 10.8 ± 0.41). The structure-activity relationship (SAR) of indole-triazoles 8a-f revealed that the 3,4-dichlorophenyl-based indole-triazole structural hybrid 8b displayed excellent anti-Hep-G2 cancer chemotherapeutic efficacy. The in silico approaches such as molecular docking scores, molecular dynamic simulation stability data, DFT, ADMET studies, and in vitro pharmacological profile clearly indicated that indole-triazole scaffold 8b could be the lead anti-Hep-G2 liver cancer therapeutic agent and a promising anti-Hep-G2 drug candidate for further clinical evaluations.
Collapse
Affiliation(s)
- Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Sadaf Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut P.O. Box 36, Lebanon
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Muhammad Athar Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta 32000, Türkiye
| | - Zeinab A. Muhammad
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
47
|
Zaki WA, El-Sayed SM, Alswah M, El-Morsy A, Bayoumi AH, Mayhoub AS, Moustafa WH, Awaji AA, Roh EJ, Hassan AH, Mahmoud K. Design, Synthesis, In Vitro, and In Silico Studies of New N5-Substituted-pyrazolo[3,4- d]pyrimidinone Derivatives as Anticancer CDK2 Inhibitors. Pharmaceuticals (Basel) 2023; 16:1593. [PMID: 38004458 PMCID: PMC10674233 DOI: 10.3390/ph16111593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
CDK2 is a key player in cell cycle processes. It has a crucial role in the progression of various cancers. Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) are two common cancers that affect humans worldwide. The available therapeutic options suffer from many drawbacks including high toxicity and decreased specificity. Therefore, there is a need for more effective and safer therapeutic agents. A series of new pyrazolo[3,4-d]pyrimidine analogs was designed, synthesized, and evaluated as anticancer agents against the CRC and HCC cells, HCT116, and HepG2, respectively. Pyrazolo[3,4-d]pyrimidinone derivatives bearing N5-2-(4-halophenyl) acetamide substituents were identified as the most potent amongst evaluated compounds. Further evaluation of CDK2 kinase inhibition of two potential cytotoxic compounds 4a and 4b confirmed their CDK2 inhibitory activity. Compound 4a was more potent than the reference roscovitine regarding the CDK2 inhibitory activity (IC50 values: 0.21 and 0.25 µM, respectively). In silico molecular docking provided insights into the molecular interactions of compounds 4a and 4b with important amino acids within the ATP-binding site of CDK2 (Ile10, Leu83, and Leu134). Overall, compounds 4a and 4b were identified as interesting CDK2 inhibitors eliciting antiproliferative activity against the CRC and HCC cells, HCT116 and HepG2, respectively, for future further investigations and development.
Collapse
Affiliation(s)
- Waheed A. Zaki
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Selwan M. El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Alswah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed El-Morsy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Ashraf H. Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Abrahman S. Mayhoub
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
- Nanoscience Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| | - Walaa H. Moustafa
- Microbiology and Immunology Department, Faculty of Pharmacy, Helwan University, Cairo 19448, Egypt
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ahmed H.E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Kazem Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| |
Collapse
|
48
|
Elmetwalli A, Hashish SM, Hassan MG, El-Magd MA, El-Naggar SA, Tolba AM, Salama AF. Modulation of the oxidative damage, inflammation, and apoptosis-related genes by dicinnamoyl-L-tartaric acid in liver cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3087-3099. [PMID: 37160480 PMCID: PMC10567854 DOI: 10.1007/s00210-023-02511-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Cancer cells can become resistant to existing treatments over time, so it is important to develop new treatments that target different pathways to stay ahead of this resistance. Many cancer treatments have severe side effects that can be debilitating and even life-threatening. Developing drugs that can effectively treat cancer while minimizing the risks of these side effects is essential for improving the quality of life of cancer patients. The study was designed to explore whether the combination of dicinnamoyl-L-tartaric (CLT) and sorafenib ((SOR), an anti-cancer drug)) could be used to treat hepatocellular carcinoma (HCC) in the animal model and to assess whether this combination would lead to changes in certain biomarkers associated with the tumour. In this study, 120 male mice were divided into 8 groups of 15 mice each. A number of biochemical parameters were measured, including liver functions, oxidative stress (malondialdehyde, (MDA); nitric oxide (NO)), and antioxidative activity (superoxide dismutase (SOD), and glutathione peroxidase (GPx)). Furthermore, the hepatic expressions of Bax, Beclin1, TNF-α, IL1β, and BCl-2 genes were evaluated by qRT-PCR. The combination of SOR and CLT was found to reduce the levels of liver enzymes, such as AST, ALT, ALP, and GGT, and reduce the pathological changes caused by DAB and PB. The upregulation of TNF-α, IL1β, and Bcl-2 genes suggests that the CLT was able to initiate an inflammatory response to combat the tumor, while the downregulation of the Bax and Beclin1 genes indicates that the CLT was able to reduce the risk of apoptosis in the liver. Furthermore, the combination therapy led to increased expression of cytokines, resulting in an enhanced anti-tumor effect.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Shimaa Mustafa Hashish
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mervat G Hassan
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 33516, Egypt
| | - Mohammed Abu El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Amina M Tolba
- Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Afrah Fatthi Salama
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
49
|
Tan X, Ma X, Dai Y, An J, Yu X, Li S, Liao Y, Pei T, Tang Y, Gui Y, Zhou S, Guo D, Deng Y, Hu K, Wang D. A large-scale transcriptional analysis reveals herb-derived ginsenoside F2 suppressing hepatocellular carcinoma via inhibiting STAT3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155031. [PMID: 37666060 DOI: 10.1016/j.phymed.2023.155031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/15/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common type of cancer that shows great morbidity and mortality rates. However, there are limited available drugs to treat HCC. AIM The present work focused on discovering the potential anti-HCC compounds from traditional Chinese medicine (TCM) by employing high-throughput sequencing-based high-throughput screening (HTS2) together with the liver cancer pathway-associated gene signature. METHODS HTS2 assay was adopted for identifying herbs. Protein-protein interaction (PPI) network analysis and computer-aided drug design (CADD) were used to identify key targets and screen the candidate natural products of herbs. Molecular docking, network pharmacology analysis, western blotting, immunofluorescent staining, subcellular fractionation experiment, dual-luciferase reporter gene assay, surface plasmon resonance (SPR) as well as nuclear magnetic resonance (NMR) were performed to validate the ability of compound binding with key target and inhibiting its function. Moreover, cell viability, colony-forming, cell cycle assay and animal experiments were performed to examine the inhibitory effect of compound on HCC. RESULTS We examined the perturbation of 578 herb extracts on the expression of 84 genes from the liver cancer pathway, and identified the top 20 herbs significantly reverting the gene expression of this pathway. Signal transducer and activator of transcription 3 (STAT3) was identified as one of the key targets of the liver cancer pathway by PPI network analysis. Then, by analyzing compounds from top 20 herbs utilizing CADD, we found ginsenoside F2 (GF2) binds to STAT3 with high affinity, which was further validated by the results from molecular docking, SPR and NMR. Additionally, our results showed that GF2 suppresses the phosphorylation of Y705 of STAT3, inhibits its nuclear translocation, decreases its transcriptional activity and inhibits the growth of HCC in vitro and in vivo. CONCLUSION Based on this large-scale transcriptional study, a number of anti-HCC herbs were identified. GF2, a compound derived from TCM, was found to be a chemical basis of these herbs in treating HCC. The present work also discovered that GF2 is a new STAT3 inhibitor, which is able to suppress HCC. As such, GF2 represents a new potential anti-HCC therapeutic strategy.
Collapse
Affiliation(s)
- Xue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Ma
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yifei Dai
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jun An
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiankuo Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shengrong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yile Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianli Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuqin Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yu Gui
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiyi Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dale Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaifeng Hu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
50
|
Rahnama S, Tehrankhah ZM, Mohajerani F, Mohammadi FS, Yeganeh ZY, Najafi F, Babashah S, Sadeghizadeh M. Milk thistle nano-micelle formulation promotes cell cycle arrest and apoptosis in hepatocellular carcinoma cells through modulating miR-155-3p /SOCS2 /PHLDA1 signaling axis. BMC Complement Med Ther 2023; 23:337. [PMID: 37749575 PMCID: PMC10521506 DOI: 10.1186/s12906-023-04168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is a prevalent form of liver cancer that causes significant mortality in numerous individuals worldwide. This study compared the effects of milk thistle (MT) and nano-milk thistle (N-MT) on the expression of the genes that participate in apoptosis and cell cycle pathways in Huh-7 and HepG2 cells. METHODS IC50 values of MT and N-MT were determined using the MTT assay. Huh-7 and HepG2 cell lines (containing mutant and wild-type TP53 gene, respectively) were incubated with MT and N-MT for 24h and 48h and the impact of MT and N-MT on the proliferation of these cell lines was evaluated through a comparative analysis. Cell cycle and apoptosis were assessed by flow cytometry after 24h and 48h treatment in the cell lines mentioned. Real-time PCR was used to analyze miR-155-3p, PHLDA1, SOCS2, TP53, P21, BAX, and BCL-2 expression in the cell lines that were being treated. RESULTS N-MT reduces cancer cell growth in a time and concentration-dependent manner, which is more toxic compared to MT. Huh-7 was observed to have IC50 values of 2.35 and 1.7 μg/ml at 24h and 48h, and HepG2 was observed to have IC50 values of 3.4 and 2.6 μg/ml at 24 and 48h, respectively. N-MT arrested Huh-7 and HepG2 cells in the Sub-G1 phase and induced apoptosis. N-MT led to a marked reduction in the expression of miR-155-3p and BCL-2 after 24h and 48h treatments. Conversely, PHLDA1, SOCS2, BAX, and P21 were upregulated in the treated cells compared to untreated cells, which suggests that milk thistle has the potential to regulate these genes. N-MT reduced the expression of TP53 in Huh-7 cells after mentioned time points, while there was a significant increase in the expression of the TP53 gene in HepG2 cells. No gene expression changes were observed in MT-treated cells after 24h and 48h. CONCLUSION N-MT can regulate cancer cell death by arresting cell cycle and inducing apoptosis. This occurs through the alteration of apoptotic genes expression. A reduction in the expression of miR-155-3p and increase in the expression of SOCS2 and PHLDA1 after N-MT treatment showed the correlation between miR-155-3p and PHLDA1/SOCS2 found in bioinformatics analysis. While N-MT increased TP53 expression in HepG2, reduced it in Huh-7. The findings indicate that N-MT can function intelligently in cancer cells and can be a helpful complement to cancer treatment.
Collapse
Affiliation(s)
- Saghar Rahnama
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Moazezi Tehrankhah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mohajerani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Faezeh Shah Mohammadi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Yousefi Yeganeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|