1
|
Kawabe H, Stegmüller J. The role of E3 ubiquitin ligases in synapse function in the healthy and diseased brain. Mol Cell Neurosci 2021; 112:103602. [DOI: 10.1016/j.mcn.2021.103602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
|
2
|
It's not just a phase; ubiquitination in cytosolic protein quality control. Biochem Soc Trans 2021; 49:365-377. [PMID: 33634825 PMCID: PMC7924994 DOI: 10.1042/bst20200694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/04/2023]
Abstract
The accumulation of misfolded proteins is associated with numerous degenerative conditions, cancers and genetic diseases. These pathological imbalances in protein homeostasis (termed proteostasis), result from the improper triage and disposal of damaged and defective proteins from the cell. The ubiquitin-proteasome system is a key pathway for the molecular control of misfolded cytosolic proteins, co-opting a cascade of ubiquitin ligases to direct terminally damaged proteins to the proteasome via modification with chains of the small protein, ubiquitin. Despite the evidence for ubiquitination in this critical pathway, the precise complement of ubiquitin ligases and deubiquitinases that modulate this process remains under investigation. Whilst chaperones act as the first line of defence against protein misfolding, the ubiquitination machinery has a pivotal role in targeting terminally defunct cytosolic proteins for destruction. Recent work points to a complex assemblage of chaperones, ubiquitination machinery and subcellular quarantine as components of the cellular arsenal against proteinopathies. In this review, we examine the contribution of these pathways and cellular compartments to the maintenance of the cytosolic proteome. Here we will particularly focus on the ubiquitin code and the critical enzymes which regulate misfolded proteins in the cytosol, the molecular point of origin for many neurodegenerative and genetic diseases.
Collapse
|
3
|
Giles AC, Grill B. Roles of the HUWE1 ubiquitin ligase in nervous system development, function and disease. Neural Dev 2020; 15:6. [PMID: 32336296 PMCID: PMC7184716 DOI: 10.1186/s13064-020-00143-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Huwe1 is a highly conserved member of the HECT E3 ubiquitin ligase family. Here, we explore the growing importance of Huwe1 in nervous system development, function and disease. We discuss extensive progress made in deciphering how Huwe1 regulates neural progenitor proliferation and differentiation, cell migration, and axon development. We highlight recent evidence indicating that Huwe1 regulates inhibitory neurotransmission. In covering these topics, we focus on findings made using both vertebrate and invertebrate in vivo model systems. Finally, we discuss extensive human genetic studies that strongly implicate HUWE1 in intellectual disability, and heighten the importance of continuing to unravel how Huwe1 affects the nervous system.
Collapse
Affiliation(s)
- Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, 33458, USA.
| |
Collapse
|
4
|
Frints SGM, Ozanturk A, Rodríguez Criado G, Grasshoff U, de Hoon B, Field M, Manouvrier-Hanu S, E Hickey S, Kammoun M, Gripp KW, Bauer C, Schroeder C, Toutain A, Mihalic Mosher T, Kelly BJ, White P, Dufke A, Rentmeester E, Moon S, Koboldt DC, van Roozendaal KEP, Hu H, Haas SA, Ropers HH, Murray L, Haan E, Shaw M, Carroll R, Friend K, Liebelt J, Hobson L, De Rademaeker M, Geraedts J, Fryns JP, Vermeesch J, Raynaud M, Riess O, Gribnau J, Katsanis N, Devriendt K, Bauer P, Gecz J, Golzio C, Gontan C, Kalscheuer VM. Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder. Mol Psychiatry 2019; 24:1748-1768. [PMID: 29728705 DOI: 10.1038/s41380-018-0065-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/28/2018] [Indexed: 12/25/2022]
Abstract
RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.
Collapse
Affiliation(s)
- Suzanna G M Frints
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands. .,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands.
| | - Aysegul Ozanturk
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | | | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Bas de Hoon
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands.,Department of Gynaecology and Obstetrics, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Michael Field
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, NSW, 2298, Australia
| | - Sylvie Manouvrier-Hanu
- Clinique de Génétique médicale Guy Fontaine, Centre de référence maladies rares Anomalies du développement Hôpital Jeanne de Flandre, Lille, 59000, France.,EA 7364 RADEME Maladies Rares du Développement et du Métabolisme, Faculté de Médecine, Université de Lille, Lille, 59000, France
| | - Scott E Hickey
- Division of Molecular & Human Genetics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Molka Kammoun
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Karen W Gripp
- Alfred I. duPont Hospital for Children Nemours, Wilmington, DE, 19803, USA
| | - Claudia Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Annick Toutain
- Service de Génétique, Hôpital Bretonneau, CHU de Tours, Tours, 37044, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, 37032, France
| | - Theresa Mihalic Mosher
- Division of Molecular & Human Genetics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Benjamin J Kelly
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Peter White
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Eveline Rentmeester
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Sungjin Moon
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | - Daniel C Koboldt
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Kees E P van Roozendaal
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Hao Hu
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Lucinda Murray
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, NSW, 2298, Australia
| | - Eric Haan
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, 5006, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Renee Carroll
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Kathryn Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, 5006, Australia
| | - Jan Liebelt
- South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, 5006, Australia
| | - Lynne Hobson
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, 5006, Australia
| | - Marjan De Rademaeker
- Centre for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), UZ Brussel, 1090, Brussels, Belgium
| | - Joep Geraedts
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Jean-Pierre Fryns
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Joris Vermeesch
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Martine Raynaud
- Service de Génétique, Hôpital Bretonneau, CHU de Tours, Tours, 37044, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, 37032, France
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Nicholas Katsanis
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | - Koen Devriendt
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Christelle Golzio
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics; Centre National de la Recherche Scientifique, UMR7104; Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, 67400, Illkirch, France
| | - Cristina Gontan
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany.
| |
Collapse
|
5
|
Opperman KJ, Mulcahy B, Giles AC, Risley MG, Birnbaum RL, Tulgren ED, Dawson-Scully K, Zhen M, Grill B. The HECT Family Ubiquitin Ligase EEL-1 Regulates Neuronal Function and Development. Cell Rep 2018; 19:822-835. [PMID: 28445732 DOI: 10.1016/j.celrep.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022] Open
Abstract
Genetic changes in the HECT ubiquitin ligase HUWE1 are associated with intellectual disability, but it remains unknown whether HUWE1 functions in post-mitotic neurons to affect circuit function. Using genetics, pharmacology, and electrophysiology, we show that EEL-1, the HUWE1 ortholog in C. elegans, preferentially regulates GABAergic presynaptic transmission. Decreasing or increasing EEL-1 function alters GABAergic transmission and the excitatory/inhibitory (E/I) balance in the worm motor circuit, which leads to impaired locomotion and increased sensitivity to electroshock. Furthermore, multiple mutations associated with intellectual disability impair EEL-1 function. Although synaptic transmission defects did not result from abnormal synapse formation, sensitizing genetic backgrounds revealed that EEL-1 functions in the same pathway as the RING family ubiquitin ligase RPM-1 to regulate synapse formation and axon termination. These findings from a simple model circuit provide insight into the molecular mechanisms required to obtain E/I balance and could have implications for the link between HUWE1 and intellectual disability.
Collapse
Affiliation(s)
- Karla J Opperman
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Monica G Risley
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Rayna L Birnbaum
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA; Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Erik D Tulgren
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
6
|
Krist DT, Foote PK, Statsyuk AV. UbFluor: A Fluorescent Thioester to Monitor HECT E3 Ligase Catalysis. ACTA ACUST UNITED AC 2017; 9:11-37. [PMID: 28253433 DOI: 10.1002/cpch.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
HECT E3 ubiquitin ligases (∼28 are known) are associated with many phenotypes in eukaryotes and are important drug targets. However, assays used to screen for small molecule inhibitors of HECT E3s are complex and require ATP, Ub, E1, E2, and HECT E3 enzymes, producing three covalent thioester enzyme intermediates E1∼Ub, E2∼Ub, and HECT E3∼Ub (where ∼ indicates a thioester bond), and mixtures of polyubiquitin chains. To reduce the complexity of the assay, we developed a novel class of fluorescent probes, UbFluor, that act as mechanistically relevant pseudosubstrates of HECT E3s. These probes undergo a direct transthiolation reaction with the catalytic cysteine of HECT E3s, producing the catalytically active HECT E3∼Ub thioester accompanied by fluorophore release. Thus, a fluorescence polarization assay can continuously monitor UbFluor consumption by HECT E3s, and changes in UbFluor consumption rendered by biochemical point mutations or small molecule modulation of HECT E3 activity. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David T Krist
- Northwestern University, Department of Chemistry, Chemistry of Life Processes Institute, Evanston, Illinois
| | - Peter K Foote
- Northwestern University, Department of Chemistry, Chemistry of Life Processes Institute, Evanston, Illinois
| | - Alexander V Statsyuk
- Northwestern University, Department of Chemistry, Chemistry of Life Processes Institute, Evanston, Illinois
| |
Collapse
|
7
|
Gauthier-Vasserot A, Thauvin-Robinet C, Bruel AL, Duffourd Y, St-Onge J, Jouan T, Rivière JB, Heron D, Donadieu J, Bellanné-Chantelot C, Briandet C, Huet F, Kuentz P, Lehalle D, Duplomb-Jego L, Gautier E, Maystadt I, Pinson L, Amram D, El Chehadeh S, Melki J, Julia S, Faivre L, Thevenon J. Application of whole-exome sequencing to unravel the molecular basis of undiagnosed syndromic congenital neutropenia with intellectual disability. Am J Med Genet A 2016; 173:62-71. [DOI: 10.1002/ajmg.a.37969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Affiliation(s)
| | - Christel Thauvin-Robinet
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD); Centre Hospitalier Universitaire Dijon; Dijon France
| | - Ange-Line Bruel
- GAD EA4271; Université de Bourgogne Franche-Comté; Dijon France
| | - Yannis Duffourd
- GAD EA4271; Université de Bourgogne Franche-Comté; Dijon France
| | - Judith St-Onge
- GAD EA4271; Université de Bourgogne Franche-Comté; Dijon France
| | - Thibaud Jouan
- GAD EA4271; Université de Bourgogne Franche-Comté; Dijon France
| | | | - Delphine Heron
- Département de Génétique et Centre de Référence « Déficiences intellectuelles de causes rares »; AP-HP; Groupe Hospitalier Pitié-Salpêtrière; Paris France
| | - Jean Donadieu
- Service d'Hémato-Oncologie Pédiatrique; Registre des neutropénies congénitales; AP-HP Hôpital Trousseau; Paris France
| | | | | | - Frédéric Huet
- Service de Pédiatrie 1; Hôpital d'Enfants; CHU Dijon France
| | - Paul Kuentz
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Daphné Lehalle
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Laurence Duplomb-Jego
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Elodie Gautier
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Isabelle Maystadt
- Centre de Génétique Humaine; Institut de Pathologie et Génétique (I.P.G); Gosselies (Charleroi) Belgium
| | - Lucile Pinson
- Département de Génétique Médicale; CHRU Montpellier; Faculté de Médecine de Montpellier-Nimes; Université Montpellier 1; Inserm; Montpellier France
| | - Daniel Amram
- Unité de Génétique Clinique; CH Intercommunal de Créteil; Créteil France
| | - Salima El Chehadeh
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Judith Melki
- Unité Mixte de Recherche-1169; INSERM; France; University Paris-Sud, le Kremlin-Bicêtre; France
| | - Sophia Julia
- Service de Génétique Médicale; CHU Toulouse; Toulouse France
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD); Centre Hospitalier Universitaire Dijon; Dijon France
| | - Julien Thevenon
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD); Centre Hospitalier Universitaire Dijon; Dijon France
| |
Collapse
|
8
|
Jang ER, Galperin E. The function of Shoc2: A scaffold and beyond. Commun Integr Biol 2016; 9:e1188241. [PMID: 27574535 PMCID: PMC4988449 DOI: 10.1080/19420889.2016.1188241] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK1/2) cascade regulates a myriad of functions in multicellular organisms. Scaffold proteins provide critical spatial and temporal control over the specificity of signaling. Shoc2 is a scaffold that accelerates activity of the ERK1/2 pathway. Loss of Shoc2 expression in mice results in embryonic lethality, thus highlighting the essential role of Shoc2 in embryogenesis. In agreement, patients carrying mutated Shoc2 suffer from a wide spectrum of developmental deficiencies. Efforts to understand the mechanisms by which Shoc2 controls ERK1/2 activity revealed the intricate machinery that governs the ability of Shoc2 to transduce signals of the ERK1/2 pathway. Understanding the mechanisms by which Shoc2 contributes to a high degree of specificity of ERK1/2 signaling as well as deciphering the biological functions of Shoc2 in development and human disorders are major unresolved questions.
Collapse
Affiliation(s)
- Eun Ryoung Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky , Lexington, KY, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky , Lexington, KY, USA
| |
Collapse
|
9
|
Friez MJ, Brooks SS, Stevenson RE, Field M, Basehore MJ, Adès LC, Sebold C, McGee S, Saxon S, Skinner C, Craig ME, Murray L, Simensen RJ, Yap YY, Shaw MA, Gardner A, Corbett M, Kumar R, Bosshard M, van Loon B, Tarpey PS, Abidi F, Gecz J, Schwartz CE. HUWE1 mutations in Juberg-Marsidi and Brooks syndromes: the results of an X-chromosome exome sequencing study. BMJ Open 2016; 6:e009537. [PMID: 27130160 PMCID: PMC4854010 DOI: 10.1136/bmjopen-2015-009537] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND X linked intellectual disability (XLID) syndromes account for a substantial number of males with ID. Much progress has been made in identifying the genetic cause in many of the syndromes described 20-40 years ago. Next generation sequencing (NGS) has contributed to the rapid discovery of XLID genes and identifying novel mutations in known XLID genes for many of these syndromes. METHODS 2 NGS approaches were employed to identify mutations in X linked genes in families with XLID disorders. 1 involved exome sequencing of genes on the X chromosome using the Agilent SureSelect Human X Chromosome Kit. The second approach was to conduct targeted NGS sequencing of 90 known XLID genes. RESULTS We identified the same mutation, a c.12928 G>C transversion in the HUWE1 gene, which gives rise to a p.G4310R missense mutation in 2 XLID disorders: Juberg-Marsidi syndrome (JMS) and Brooks syndrome. Although the original families with these disorders were considered separate entities, they indeed overlap clinically. A third family was also found to have a novel HUWE1 mutation. CONCLUSIONS As we identified a HUWE1 mutation in an affected male from the original family reported by Juberg and Marsidi, it is evident the syndrome does not result from a mutation in ATRX as reported in the literature. Additionally, our data indicate that JMS and Brooks syndromes are allelic having the same HUWE1 mutation.
Collapse
Affiliation(s)
| | - Susan Sklower Brooks
- Department of Pediatrics, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | | | - Michael Field
- Hunter Genetics, Waratah, New South Wales, Australia
| | | | - Lesley C Adès
- Institute of Endocrinology and Diabetes, The Children's Hospital of Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Courtney Sebold
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Stephen McGee
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Samantha Saxon
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Cindy Skinner
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Maria E Craig
- Institute of Endocrinology and Diabetes, The Children's Hospital of Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Lucy Murray
- Hunter Genetics, Waratah, New South Wales, Australia
| | | | - Ying Yzu Yap
- Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Marie A Shaw
- Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Alison Gardner
- Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark Corbett
- Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Raman Kumar
- Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Matthias Bosshard
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Barbara van Loon
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland
| | | | - Fatima Abidi
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Jozef Gecz
- Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | | |
Collapse
|
10
|
Preikšaitienė E, Ambrozaitytė L, Maldžienė Ž, Morkūnienė A, Cimbalistienė L, Rančelis T, Utkus A, Kučinskas V. Identification of genetic causes of congenital neurodevelopmental disorders using genome wide molecular technologies. Acta Med Litu 2016; 23:73-85. [PMID: 28356794 PMCID: PMC5088740 DOI: 10.6001/actamedica.v23i2.3324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background. Intellectual disability affects about 1–2% of the general population worldwide, and this is the leading socio-economic problem of health care. The evaluation of the genetic causes of intellectual disability is challenging because these conditions are genetically heterogeneous with many different genetic alterations resulting in clinically indistinguishable phenotypes. Genome wide molecular technologies are effective in a research setting for establishing the new genetic basis of a disease. We describe the first Lithuanian experience in genome-wide CNV detection and whole exome sequencing, presenting the results obtained in the research project UNIGENE. Materials and methods. The patients with developmental delay/intellectual disability have been investigated (n = 66). Diagnostic screening was performed using array-CGH technology. FISH and real time-PCR were used for the confirmation of gene-dose imbalances and investigation of parental samples. Whole exome sequencing using the next generation high throughput NGS technique was used to sequence the samples of 12 selected families. Results. 14 out of 66 patients had pathogenic copy number variants, and one patient had novel likely pathogenic aberration (microdeletion at 4p15.2). Twelve families have been processed for whole exome sequencing. Two identified sequence variants could be classified as pathogenic (in MECP2, CREBBP genes). The other families had several candidate intellectual disability gene variants that are of unclear clinical significance and must be further investigated for possible effect on the molecular pathways of intellectual disability. Conclusions. The genetic heterogeneity of intellectual disability requires genome wide approaches, including detection of chromosomal aberrations by chromosomal microarrays and whole exome sequencing capable of uncovering single gene mutations. This study demonstrates the benefits and challenges that accompany the use of genome wide molecular technologies and provides genotype-phenotype information on 32 patients with chromosomal imbalances and ID candidate sequence variants.
Collapse
Affiliation(s)
- Eglė Preikšaitienė
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Živilė Maldžienė
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aušra Morkūnienė
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Loreta Cimbalistienė
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tautvydas Rančelis
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | |
Collapse
|
11
|
Taylor JC, Martin HC, Lise S, Broxholme J, Cazier JB, Rimmer A, Kanapin A, Lunter G, Fiddy S, Allan C, Aricescu AR, Attar M, Babbs C, Becq J, Beeson D, Bento C, Bignell P, Blair E, Buckle VJ, Bull K, Cais O, Cario H, Chapel H, Copley RR, Cornall R, Craft J, Dahan K, Davenport EE, Dendrou C, Devuyst O, Fenwick AL, Flint J, Fugger L, Gilbert RD, Goriely A, Green A, Greger IH, Grocock R, Gruszczyk AV, Hastings R, Hatton E, Higgs D, Hill A, Holmes C, Howard M, Hughes L, Humburg P, Johnson D, Karpe F, Kingsbury Z, Kini U, Knight JC, Krohn J, Lamble S, Langman C, Lonie L, Luck J, McCarthy D, McGowan SJ, McMullin MF, Miller KA, Murray L, Németh AH, Nesbit MA, Nutt D, Ormondroyd E, Oturai AB, Pagnamenta A, Patel SY, Percy M, Petousi N, Piazza P, Piret SE, Polanco-Echeverry G, Popitsch N, Powrie F, Pugh C, Quek L, Robbins PA, Robson K, Russo A, Sahgal N, van Schouwenburg PA, Schuh A, Silverman E, Simmons A, Sørensen PS, Sweeney E, Taylor J, Thakker RV, Tomlinson I, Trebes A, Twigg SR, Uhlig HH, Vyas P, Vyse T, Wall SA, Watkins H, Whyte MP, Witty L, Wright B, Yau C, Buck D, Humphray S, Ratcliffe PJ, Bell JI, Wilkie AO, Bentley D, Donnelly P, McVean G. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nat Genet 2015; 47:717-726. [PMID: 25985138 PMCID: PMC4601524 DOI: 10.1038/ng.3304] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 04/22/2015] [Indexed: 12/12/2022]
Abstract
To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges.
Collapse
Affiliation(s)
- Jenny C Taylor
- NIHR Comprehensive Biomedical Research Centre, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hilary C Martin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stefano Lise
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John Broxholme
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Andy Rimmer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexander Kanapin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gerton Lunter
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Simon Fiddy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chris Allan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - A Radu Aricescu
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Moustafa Attar
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christian Babbs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Celeste Bento
- Hematology Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Patricia Bignell
- Molecular Haematology Department, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Edward Blair
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Veronica J Buckle
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Katherine Bull
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, UK
| | - Ondrej Cais
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Holger Cario
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Helen Chapel
- Primary Immunodeficiency Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard R Copley
- NIHR Comprehensive Biomedical Research Centre, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Richard Cornall
- Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, UK
| | - Jude Craft
- NIHR Comprehensive Biomedical Research Centre, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Karin Dahan
- Centre de Génétique Humaine, Institut de Génétique et de Pathologie, Gosselies, Belgium
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Emma E Davenport
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Calliope Dendrou
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Olivier Devuyst
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Aimée L Fenwick
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jonathan Flint
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lars Fugger
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rodney D Gilbert
- University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, UK
| | - Anne Goriely
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Angie Green
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Anja V Gruszczyk
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Robert Hastings
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Edouard Hatton
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Doug Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adrian Hill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chris Holmes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Statistics, University of Oxford, Oxford, UK
| | - Malcolm Howard
- NIHR Comprehensive Biomedical Research Centre, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Linda Hughes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peter Humburg
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Johnson
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Fredrik Karpe
- Oxford Laboratory for Integrative Physiology, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | | | - Usha Kini
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Julian C Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jonathan Krohn
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sarah Lamble
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Craig Langman
- Kidney Diseases, Feinberg School of Medicine, Northwestern University and the Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Lorne Lonie
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Joshua Luck
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Davis McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Simon J McGowan
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Kerry A Miller
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Lisa Murray
- Illumina Cambridge Limited, Saffron Walden, UK
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M Andrew Nesbit
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - David Nutt
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College, London, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Annette Bang Oturai
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alistair Pagnamenta
- NIHR Comprehensive Biomedical Research Centre, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Smita Y Patel
- Primary Immunodeficiency Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Melanie Percy
- Department of Haematology, Belfast City Hospital, Belfast, UK
| | - Nayia Petousi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paolo Piazza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sian E Piret
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | | | - Niko Popitsch
- NIHR Comprehensive Biomedical Research Centre, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Fiona Powrie
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Chris Pugh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lynn Quek
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kathryn Robson
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alexandra Russo
- Department of Pediatrics, University Hospital, Mainz, Germany
| | - Natasha Sahgal
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Anna Schuh
- NIHR Comprehensive Biomedical Research Centre, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Earl Silverman
- Division of Rheumatology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Per Soelberg Sørensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Elizabeth Sweeney
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - John Taylor
- NIHR Comprehensive Biomedical Research Centre, Oxford, UK
- Oxford NHS Regional Molecular Genetics Laboratory, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Ian Tomlinson
- NIHR Comprehensive Biomedical Research Centre, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Amy Trebes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stephen Rf Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tim Vyse
- Division of Genetics, King's College London, Guy's Hospital, London, UK
| | - Steven A Wall
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St Louis, Missouri, USA
| | - Lorna Witty
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ben Wright
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chris Yau
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Buck
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | - John I Bell
- Office of the Regius Professor of Medicine, University of Oxford, Oxford, UK
| | - Andrew Om Wilkie
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Peter Donnelly
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Statistics, University of Oxford, Oxford, UK
| | - Gilean McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Isrie M, Zamani Esteki M, Peeters H, Voet T, Van Houdt J, Van Paesschen W, Van Esch H. Homozygous missense mutation in STYXL1 associated with moderate intellectual disability, epilepsy and behavioural complexities. Eur J Med Genet 2015; 58:205-10. [PMID: 25724587 DOI: 10.1016/j.ejmg.2015.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022]
Abstract
The introduction of massive parallel sequencing has led to the identification of multiple novel genes for intellectual disability (ID) as well as epilepsy. Whereas dominant de novo mutations have been proven to be a leading cause for these disorders, they do not apply to families suggestive of an autosomal recessive inheritance pattern. In this study, we combined the use of linkage analysis with exome sequencing to elucidate the cause of moderate non-syndromic ID, epilepsy and behavioural problems in a consanguineous Asian family. A founder missense mutation was identified in STYXL1. We propose this as a novel candidate gene involved in ID, accompanied by seizures and behavioural problems. Our findings further confirm the genetic heterogeneity of cognitive disorders and genetic epilepsy.
Collapse
Affiliation(s)
- Mala Isrie
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium; Laboratory for the Genetics of Cognition, KU Leuven, Leuven, Belgium
| | - Masoud Zamani Esteki
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Hilde Peeters
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Thierry Voet
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Jeroen Van Houdt
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Wim Van Paesschen
- Department of Neurology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium; Laboratory for the Genetics of Cognition, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Srivastava AK, Schwartz CE. Intellectual disability and autism spectrum disorders: causal genes and molecular mechanisms. Neurosci Biobehav Rev 2014; 46 Pt 2:161-74. [PMID: 24709068 DOI: 10.1016/j.neubiorev.2014.02.015] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/30/2014] [Accepted: 02/12/2014] [Indexed: 12/19/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are the most common developmental disorders present in humans. Combined, they affect between 3 and 5% of the population. Additionally, they can be found together in the same individual thereby complicating treatment. The causative factors (genes, epigenetic and environmental) are quite varied and likely interact so as to further complicate the assessment of an individual patient. Nonetheless, much valuable information has been gained by identifying candidate genes for ID or ASD. Understanding the etiology of either ID or ASD is of utmost importance for families. It allows a determination of the risk of recurrence, the possibility of other comorbidity medical problems, the molecular and cellular nature of the pathobiology and hopefully potential therapeutic approaches.
Collapse
Affiliation(s)
- Anand K Srivastava
- J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA
| | - Charles E Schwartz
- J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA.
| |
Collapse
|