1
|
Finsterer J. Novel genetic syndrome manifesting with cerebral atrophy, cataract, hypoacusis, diabetes, and brachy-/syndactyly. J Family Med Prim Care 2023; 12:3415-3417. [PMID: 38361886 PMCID: PMC10866254 DOI: 10.4103/jfmpc.jfmpc_642_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 02/17/2024] Open
Abstract
Genetic disorders manifest clinically in a variety of phenotypes. A patient with cataract, hypoacusis, hand and foot deformities, and diabetes was not reported. The patient is a 74-year-old male with a history of congenital foot and hand deformities manifesting as brachydactyly of fingers 4 and 5 on the right side and brachydactyly and syndactyly of the fingers 1-5 on the left side. Foot deformities required orthopedic surgery from an early age. He later developed cataract that required surgery, hypoacusis with tinnitus on the left side, and diabetes. Cerebral MRI revealed generalized atrophy. Since the family history was positive for deaf muteness in his father, a genetic defect was considered. In summary, a novel syndrome has been described that manifests itself in cerebral atrophy, cataract, hypoacusis, hand and foot deformities, and diabetes. Considering the father's deaf muteness, a genetic cause of the syndrome is likely.
Collapse
Affiliation(s)
- Josef Finsterer
- Department of Neurological, Neurology and Neurophysiology Center, Vienna, Austria
| |
Collapse
|
2
|
Paththinige CS, Sirisena ND, Escande F, Manouvrier S, Petit F, Dissanayake VHW. Split hand/foot malformation with long bone deficiency associated with BHLHA9 gene duplication: a case report and review of literature. BMC MEDICAL GENETICS 2019; 20:108. [PMID: 31200655 PMCID: PMC6570964 DOI: 10.1186/s12881-019-0839-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Background Split hand/foot malformation (SHFM) is a group of congenital skeletal disorders which may occur either as an isolated abnormality or in syndromic forms with extra-limb manifestations. Chromosomal micro-duplication or micro-triplication involving 17p13.3 region has been described as the most common cause of split hand/foot malformation with long bone deficiency (SHFLD) in several different Caucasian and Asian populations. Gene dosage effect of the extra copies of BHLHA9 gene at this locus has been implicated in the pathogenesis of SHFLD. Case presentation The proband was a female child born to non-consanguineous parents. She was referred for genetic evaluation of bilateral asymmetric ectrodactyly involving both hands and right foot along with right tibial hemimelia. The right foot had fixed clubfoot deformity with only 2 toes. The mother had bilateral ectrodactyly involving both hands, but the rest of the upper limbs and both lower limbs were normal. Neither of them had any other congenital malformations or neurodevelopmental abnormalities. Genetic testing for rearrangement of BHLHA9 gene by quantitative polymerase chain reaction confirmed the duplication of the BHLHA9 gene in both the proband and the mother. Conclusions We report the first Sri Lankan family with genetic diagnosis of BHLHA9 duplication causing SHFLD. This report along with the previously reported cases corroborate the possible etiopathogenic role of BHLHA9 gene dosage imbalances in SHFM and SHFLD across different populations.
Collapse
Affiliation(s)
- Chamara Sampath Paththinige
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka. .,Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Anuradhapura, 50008, Sri Lanka.
| | | | - Fabienne Escande
- Laboratoire de Biochimie et Oncologie Moléculaire, CHU Lille, F-59000, Lille, France
| | - Sylvie Manouvrier
- Clinique de Génétique Guy Fontaine, CHU Lille, F-59000, Lille, France
| | - Florence Petit
- Clinique de Génétique Guy Fontaine, CHU Lille, F-59000, Lille, France
| | | |
Collapse
|
3
|
Cheng SSW, Chan KYK, Leung KKP, Au PKC, Tam WK, Li SKM, Luk HM, Kan ASY, Chung BHY, Lo IFM, Tang MHY. Experience of chromosomal microarray applied in prenatal and postnatal settings in Hong Kong. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:196-207. [PMID: 30903683 DOI: 10.1002/ajmg.c.31697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
Chromosomal microarray (CMA) is recommended as a first tier investigation for patients with developmental delay (DD), intellectual disability (ID), autistic spectrum disorder (ASD), and multiple congenital anomalies (MCA). It is widely used in the prenatal and postnatal settings for detection of chromosomal aberrations. This is a retrospective review of all array comparative genomic hybridization (aCGH/ array CGH) findings ascertained in two major prenatal and postnatal genetic diagnostic centers in Hong Kong from June 2012 to December 2017. Medical records were reviewed for cases with pathogenic and variants of uncertain clinical significance (VUS). Classification of copy number variants (CNVs) was based on current knowledge and experience by August 2018. The aims of this review are to study the diagnostic yield of array CGH application in prenatal and postnatal settings in Hong Kong and to describe the spectrum of abnormalities found. Prenatal indications included abnormal ultrasound findings, positive Down syndrome screening, abnormal noninvasive prenatal test results, advanced maternal age and family history of chromosomal or genetic abnormalities. Postnatal indications included unexplained DD, ID, ASD, and MCA. A total of 1,261 prenatal subjects and 3,096 postnatal patients were reviewed. The prenatal diagnostic yield of pathogenic CNV and VUS (excluding those detectable by karyotype) was 3.5%. The postnatal diagnostic yield of pathogenic CNV was 15.2%. The detection rates for well-defined microdeletion and microduplication syndromes were 4.6% in prenatal and 6.1% (1 in 16 index patients) in postnatal cases, respectively. Chromosomes 15, 16, and 22 accounted for over 21 and 25% of pathogenic CNVs detected in prenatal and postnatal cohorts, respectively. This review provides the first large scale overview of genomic imbalance of mostly Chinese patients in prenatal and postnatal settings.
Collapse
Affiliation(s)
| | - Kelvin Y K Chan
- Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | | | - Patrick K C Au
- Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | - Wai-Keung Tam
- Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | - Samuel K M Li
- Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | - Ho-Ming Luk
- Department of Health, Clinical Genetic Service, Hong Kong
| | - Anita S Y Kan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong
| | - Brian H Y Chung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, HKSAR.,Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, HKSAR
| | - Ivan F M Lo
- Department of Health, Clinical Genetic Service, Hong Kong
| | - Mary H Y Tang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, HKSAR
| |
Collapse
|
4
|
Shen Y, Si N, Liu Z, Liu F, Meng X, Zhang Y, Zhang X. 17p13.3 genomic rearrangement in a Chinese family with split-hand/foot malformation with long bone deficiency: report of a complicated duplication with marked variation in phenotype. Orphanet J Rare Dis 2018; 13:106. [PMID: 29970136 PMCID: PMC6029155 DOI: 10.1186/s13023-018-0838-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/05/2018] [Indexed: 11/29/2022] Open
Abstract
Background Split hand/foot malformation (SHFM) is a genetically heterogeneous limb malformation with variable expressivity. SHFM with tibia or femur aplasia is called SHFM with long bone deficiency (SHFLD). 17p13.3 duplications containing BHLHA9 are associated with SHFLD. Cases with variable SHFLD phenotype and different 17p13.3 duplicated regions are reported. The severity of long bone defect could not be simply explained by BHLHA9 overdosage or 17p13.3 duplication. Methods A four-generation Chinese SHFM family was recruited. Three family members have long bone defects, one male was severely affected with hypoplasia or aplasia in three of four limbs. Linkage analysis and direct sequencing of candidate genes were used to exclude six responsible genes/loci for isolated SHFM. Array comparative genomic hybridization (CGH) was performed to detect copy number variations on a genome-wide scale, and quantitative real-time polymerase chain reaction (qPCR) assays were designed to validate the identified copy number variation in the index and other family members. Results No mutations were found in genes or loci linked to isolated SHFM. A ~ 966 kb duplication was identified in 17p13.3 by array CGH, in which BHLHA9 surrounding region presented as triplication. The qPCR assays confirmed the indicated 17p13.3 duplication as well as BHLHA9 triplication in all available affected family members and other two asymptomatic carriers. Given the incomplete penetrance in SHFLD, those two carriers were regarded as non-penetrant, which suggested that the genomic rearrangement was co-segregated with malformation in this family. Conclusions The present study reports an additional SHFLD family case with 17p13.3 genomic rearrangement. To our knowledge, the 966 kb genomic rearrangement is larger in size than any previously reported SHFLD-associated 17p13.3 duplication, and the present family shows marked phenotypic variability with two asymptomatic carriers and one patient with an extremely severe phenotype. This rare case provides the opportunity to identify underlying genotype-phenotype correlations between SHFLD and 17p13.3 genomic rearrangement. Electronic supplementary material The online version of this article (10.1186/s13023-018-0838-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuqi Shen
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 Dong Dan San Tiao, Dongcheng District, Beijing, 100005, China
| | - Nuo Si
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 Dong Dan San Tiao, Dongcheng District, Beijing, 100005, China
| | - Zhe Liu
- Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100073, China
| | - Fang Liu
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 Dong Dan San Tiao, Dongcheng District, Beijing, 100005, China
| | - Xiaolu Meng
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 Dong Dan San Tiao, Dongcheng District, Beijing, 100005, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, 300052, China.
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 Dong Dan San Tiao, Dongcheng District, Beijing, 100005, China. .,Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100073, China.
| |
Collapse
|
5
|
Blazejewski SM, Bennison SA, Smith TH, Toyo-Oka K. Neurodevelopmental Genetic Diseases Associated With Microdeletions and Microduplications of Chromosome 17p13.3. Front Genet 2018; 9:80. [PMID: 29628935 PMCID: PMC5876250 DOI: 10.3389/fgene.2018.00080] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 01/24/2023] Open
Abstract
Chromosome 17p13.3 is a region of genomic instability that is linked to different rare neurodevelopmental genetic diseases, depending on whether a deletion or duplication of the region has occurred. Chromosome microdeletions within 17p13.3 can result in either isolated lissencephaly sequence (ILS) or Miller-Dieker syndrome (MDS). Both conditions are associated with a smooth cerebral cortex, or lissencephaly, which leads to developmental delay, intellectual disability, and seizures. However, patients with MDS have larger deletions than patients with ILS, resulting in additional symptoms such as poor muscle tone, congenital anomalies, abnormal spasticity, and craniofacial dysmorphisms. In contrast to microdeletions in 17p13.3, recent studies have attracted considerable attention to a condition known as a 17p13.3 microduplication syndrome. Depending on the genes involved in their microduplication, patients with 17p13.3 microduplication syndrome may be categorized into either class I or class II. Individuals in class I have microduplications of the YWHAE gene encoding 14-3-3ε, as well as other genes in the region. However, the PAFAH1B1 gene encoding LIS1 is never duplicated in these patients. Class I microduplications generally result in learning disabilities, autism, and developmental delays, among other disorders. Individuals in class II always have microduplications of the PAFAH1B1 gene, which may include YWHAE and other genetic microduplications. Class II microduplications generally result in smaller body size, developmental delays, microcephaly, and other brain malformations. Here, we review the phenotypes associated with copy number variations (CNVs) of chromosome 17p13.3 and detail their developmental connection to particular microdeletions or microduplications. We also focus on existing single and double knockout mouse models that have been used to study human phenotypes, since the highly limited number of patients makes a study of these conditions difficult in humans. These models are also crucial for the study of brain development at a mechanistic level since this cannot be accomplished in humans. Finally, we emphasize the usefulness of the CRISPR/Cas9 system and next generation sequencing in the study of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Trevor H Smith
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Kataoka K, Matsushima T, Ito Y, Sato T, Yokoyama S, Asahara H. Bhlha9 regulates apical ectodermal ridge formation during limb development. J Bone Miner Metab 2018; 36:64-72. [PMID: 28324176 PMCID: PMC6324935 DOI: 10.1007/s00774-017-0820-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/25/2017] [Indexed: 10/19/2022]
Abstract
Split hand/foot malformation (SHFM) and SHFM combined with long-bone deficiency (SHFLD) are congenital dysgeneses of the limb. Although six different loci/mutations (SHFM1-SHFM6) have been found from studies on families with SHFM, the causes and associated pathogenic mechanisms for a large number of patients remain unidentified. On the basis of the identification of a duplicated gene region involving BHLHA9 in some affected families, BHLHA9 was identified as a novel SHFM/SHFLD-related gene. Although Bhlha9 is predicted to participate in limb development as a transcription factor, its precise function is unclear. Therefore, to study its physiological function, we generated a Bhlha9-knockout mouse and investigated gene expression and the associated phenotype in the limb bud. Bhlha9-knockout mice showed syndactyly and poliosis in the limb. Moreover, some apical ectodermal ridge (AER) formation related genes, including Trp63, exhibited an aberrant expression pattern in the limb bud of Bhlha9-knockout mice; TP63 (Trp63) was regulated by Bhlha9 on the basis of in vitro analysis. These observations suggest that Bhlha9 regulates AER formation during limb/finger development by regulating the expression of some AER-formation-related genes and abnormal expression of Bhlha9 leads to SHFM and SHFLD via dysregulation of AER formation and associated gene expression.
Collapse
Affiliation(s)
- Kensuke Kataoka
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takahide Matsushima
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yoshiaki Ito
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tempei Sato
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shigetoshi Yokoyama
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-0074, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-0074, Japan.
| |
Collapse
|
7
|
Mak CCY, Chow PC, Liu APY, Chan KYK, Chu YWY, Mok GTK, Leung GKC, Yeung KS, Chau AKT, Lowther C, Scherer SW, Marshall CR, Bassett AS, Chung BHY. De novo large rare copy-number variations contribute to conotruncal heart disease in Chinese patients. NPJ Genom Med 2016; 1:16033. [PMID: 29263819 PMCID: PMC5685312 DOI: 10.1038/npjgenmed.2016.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023] Open
Abstract
Conotruncal heart anomalies (CTDs) are particularly prevalent congenital heart diseases (CHD) in Hong Kong. We surveyed large (>500 kb), rare (<1% frequency in controls) copy-number variations (CNVs) in Chinese patients with CTDs to identify potentially disease-causing variations. Adults who tested negative for 22q11.2 deletions were recruited from the adult CHD clinic in Hong Kong. Using a stringent calling criteria, high-confidence CNV calls were obtained, and a large control set comprising 3,987 Caucasian and 1,945 Singapore Chinese subjects was used to identify rare CNVs. Ten large rare CNVs were identified, and 3 in 108 individuals were confirmed to harbour de novo CNVs. All three patients were syndromic with a more complex phenotype, and each of these CNVs overlapped regions likely to be important in CHD. One was a 611 kb deletion at 17p13.3, telomeric to the Miller-Dieker syndrome (MDS) critical region, overlapping the NXN gene. Another was a 5 Mb deletion at 13q33.3, within a previously described critical region for CHD. A third CNV, previously unreported, was a large duplication at 2q22.3 overlapping the ZEB2 gene. The commonly reported 1q21.1 recurrent duplication was not observed in this Chinese cohort. We provide detailed phenotypic and genotypic descriptions of large rare genic CNVs that may represent CHD loci in the East Asian population. Larger samples of Chinese origin will be required to determine whether the genome-wide distribution differs from that found in predominantly European CHD cohorts.
Collapse
Affiliation(s)
- Christopher C Y Mak
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pak Cheong Chow
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anthony P Y Liu
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kelvin Y K Chan
- Department of Obstetrics and Gynecology, Queen Mary Hospital, Hong Kong, China
| | - Yoyo W Y Chu
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Gary T K Mok
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Gordon K C Leung
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kit San Yeung
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Adolphus K T Chau
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chelsea Lowther
- The Clinical Genetics Research Program at The Centre for Addiction and Mental Health, The Dalglish Family 22q Clinic at The University Health Network, and The Department of Psychiatry at The University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christian R Marshall
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anne S Bassett
- The Clinical Genetics Research Program at The Centre for Addiction and Mental Health, The Dalglish Family 22q Clinic at The University Health Network, and The Department of Psychiatry at The University of Toronto, Toronto, ON, Canada
| | - Brian H Y Chung
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Gu S, Posey JE, Yuan B, Carvalho CMB, Luk HM, Erikson K, Lo IFM, Leung GKC, Pickering CR, Chung BHY, Lupski JR. Mechanisms for the Generation of Two Quadruplications Associated with Split-Hand Malformation. Hum Mutat 2015; 37:160-4. [PMID: 26549411 DOI: 10.1002/humu.22929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/26/2015] [Indexed: 01/03/2023]
Abstract
Germline copy-number variants (CNVs) involving quadruplications are rare and the mechanisms generating them are largely unknown. Previously, we reported a 20-week gestation fetus with split-hand malformation; clinical microarray detected two maternally inherited triplications separated by a copy-number neutral region at 17p13.3, involving BHLHA9 and part of YWHAE. Here, we describe an 18-month-old male sibling of the previously described fetus with split-hand malformation. Custom high-density microarray and digital droplet PCR revealed the copy-number gains were actually quadruplications in the mother, the fetus, and her later born son. This quadruplication-normal-quadruplication pattern was shown to be expanded from the triplication-normal-triplication CNV at the same loci in the maternal grandmother. We mapped two breakpoint junctions and demonstrated that both are mediated by Alu repetitive elements and identical in these four individuals. We propose a three-step process combining Alu-mediated replicative-repair-based mechanism(s) and intergenerational, intrachromosomal nonallelic homologous recombination to generate the quadruplications in this family.
Collapse
Affiliation(s)
- Shen Gu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Jennifer E Posey
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Bo Yuan
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Claudia M B Carvalho
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - H M Luk
- Clinical Genetic Service, Department of Health, Hong Kong, China
| | - Kelly Erikson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Ivan F M Lo
- Clinical Genetic Service, Department of Health, Hong Kong, China
| | - Gordon K C Leung
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Brian H Y Chung
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - James R Lupski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, 77030.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030.,Texas Children's Hospital, Houston, Texas, 77030
| |
Collapse
|
9
|
Gu S, Yuan B, Campbell IM, Beck CR, Carvalho CMB, Nagamani SCS, Erez A, Patel A, Bacino CA, Shaw CA, Stankiewicz P, Cheung SW, Bi W, Lupski JR. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum Mol Genet 2015; 24:4061-77. [PMID: 25908615 DOI: 10.1093/hmg/ddv146] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/20/2015] [Indexed: 01/05/2023] Open
Abstract
Alu repetitive elements are known to be major contributors to genome instability by generating Alu-mediated copy-number variants (CNVs). Most of the reported Alu-mediated CNVs are simple deletions and duplications, and the mechanism underlying Alu-Alu-mediated rearrangement has been attributed to non-allelic homologous recombination (NAHR). Chromosome 17 at the p13.3 genomic region lacks extensive low-copy repeat architecture; however, it is highly enriched for Alu repetitive elements, with a fraction of 30% of total sequence annotated in the human reference genome, compared with the 10% genome-wide and 18% on chromosome 17. We conducted mechanistic studies of the 17p13.3 CNVs by performing high-density oligonucleotide array comparative genomic hybridization, specifically interrogating the 17p13.3 region with ∼150 bp per probe density; CNV breakpoint junctions were mapped to nucleotide resolution by polymerase chain reaction and Sanger sequencing. Studied rearrangements include 5 interstitial deletions, 14 tandem duplications, 7 terminal deletions and 13 complex genomic rearrangements (CGRs). Within the 17p13.3 region, Alu-Alu-mediated rearrangements were identified in 80% of the interstitial deletions, 46% of the tandem duplications and 50% of the CGRs, indicating that this mechanism was a major contributor for formation of breakpoint junctions. Our studies suggest that Alu repetitive elements facilitate formation of non-recurrent CNVs, CGRs and other structural aberrations of chromosome 17 at p13.3. The common observation of Alu-mediated rearrangement in CGRs and breakpoint junction sequences analysis further demonstrates that this type of mechanism is unlikely attributed to NAHR, but rather may be due to a recombination-coupled DNA replicative repair process.
Collapse
Affiliation(s)
- Shen Gu
- Department of Molecular & Human Genetics
| | - Bo Yuan
- Department of Molecular & Human Genetics
| | | | | | | | - Sandesh C S Nagamani
- Department of Molecular & Human Genetics, Texas Children's Hospital, Houston, TX 77030, USA and
| | - Ayelet Erez
- Department of Molecular & Human Genetics, Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Carlos A Bacino
- Department of Molecular & Human Genetics, Texas Children's Hospital, Houston, TX 77030, USA and
| | | | | | | | - Weimin Bi
- Department of Molecular & Human Genetics
| | - James R Lupski
- Department of Molecular & Human Genetics, Department of Pediatrics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA, Texas Children's Hospital, Houston, TX 77030, USA and
| |
Collapse
|
10
|
Japanese founder duplications/triplications involving BHLHA9 are associated with split-hand/foot malformation with or without long bone deficiency and Gollop-Wolfgang complex. Orphanet J Rare Dis 2014; 9:125. [PMID: 25351291 PMCID: PMC4205278 DOI: 10.1186/s13023-014-0125-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background Limb malformations are rare disorders with high genetic heterogeneity. Although multiple genes/loci have been identified in limb malformations, underlying genetic factors still remain to be determined in most patients. Methods This study consisted of 51 Japanese families with split-hand/foot malformation (SHFM), SHFM with long bone deficiency (SHFLD) usually affecting the tibia, or Gollop-Wolfgang complex (GWC) characterized by SHFM and femoral bifurcation. Genetic studies included genomewide array comparative genomic hybridization and exome sequencing, together with standard molecular analyses. Results We identified duplications/triplications of a 210,050 bp segment containing BHLHA9 in 29 SHFM patients, 11 SHFLD patients, two GWC patients, and 22 clinically normal relatives from 27 of the 51 families examined, as well as in 2 of 1,000 Japanese controls. Families with SHFLD- and/or GWC-positive patients were more frequent in triplications than in duplications. The fusion point was identical in all the duplications/triplications and was associated with a 4 bp microhomology. There was no sequence homology around the two breakpoints, whereas rearrangement-associated motifs were abundant around one breakpoint. The rs3951819-D17S1174 haplotype patterns were variable on the duplicated/triplicated segments. No discernible genetic alteration specific to patients was detected within or around BHLHA9, in the known causative SHFM genes, or in the exome. Conclusions These results indicate that BHLHA9 overdosage constitutes the most frequent susceptibility factor, with a dosage effect, for a range of limb malformations at least in Japan. Notably, this is the first study revealing the underlying genetic factor for the development of GWC, and demonstrating the presence of triplications involving BHLHA9. It is inferred that a Japanese founder duplication was generated through a replication-based mechanism and underwent subsequent triplication and haplotype modification through recombination-based mechanisms, and that the duplications/triplications with various haplotypes were widely spread in Japan primarily via clinically normal carriers and identified via manifesting patients. Furthermore, genotype-phenotype analyses of patients reported in this study and the previous studies imply that clinical variability is ascribed to multiple factors including the size of duplications/triplications as a critical factor. Electronic supplementary material The online version of this article (doi:10.1186/s13023-014-0125-5) contains supplementary material, which is available to authorized users.
Collapse
|