1
|
Kuwae T, Ariga T, Kusada T, Nishie A. Dosimetric effects of small field size, dose grid size, and variable split-arc methods on gamma pass rates in radiation therapy. Radiol Phys Technol 2024; 17:620-628. [PMID: 38767777 DOI: 10.1007/s12194-024-00809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
This study investigates the influence of calculation accuracy in peripheral low-dose regions on the gamma pass rate (GPR), utilizing the Acuros XB (AXB) algorithm and ArcCHECK™ measurement. The effects of varying small field sizes, dose grid sizes, and split-arc techniques on GPR were analyzed. Various small field sizes were employed. Thirty-two single-arc plans with dose grid sizes of 2 mm and 1 mm and prescribed doses of 2, 5, 10, and 20 Gy were calculated using the AXB algorithm. In total, 128 GPR plans were examined. These plans were categorized into three sub-fields (3SF), four sub-fields (4SF), and six sub-fields (6SF). The GPR results deteriorated with smaller target sizes and a 2 mm dose grid size in a single arc. A similar degradation in GPR was observed with smaller target sizes and a 1 mm dose grid size. However, the 1 mm dose grid size generally resulted in better GPR compared with the 2 mm dose grid size for the same target sizes. The GPR improved with finer split angles and a 2 mm dose grid size in the split-arc method. However, no statistically significant improvement was observed with finer split angles and a 1 mm dose grid size. This study demonstrates that coarser dose grid sizes result in lower GPRs in peripheral low-dose regions as calculated by AXB with ArcCHECK™ measurement. To enhance GPR, employing split-arc methods and finer dose grid sizes could be beneficial.
Collapse
Affiliation(s)
- Tsunekazu Kuwae
- Department of Radiology, Yuuai Medical Center, Tomigusuku, Okinawa, Japan.
| | - Takuro Ariga
- Health Information Management Center, University of the Ryukyus Hospital, Nishihara, Okinawa, Japan
| | - Takeaki Kusada
- Department of Radiology, Yuuai Medical Center, Tomigusuku, Okinawa, Japan
| | - Akihiro Nishie
- Department of Radiology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
2
|
Ono T, Adachi T, Hirashima H, Iramina H, Kishi N, Matsuo Y, Nakamura M, Mizowaki T. Unifying gamma passing rates in patient-specific QA for VMAT lung cancer treatment based on data assimilation. Phys Eng Sci Med 2024:10.1007/s13246-024-01448-3. [PMID: 38900228 DOI: 10.1007/s13246-024-01448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
This study aimed to identify systematic errors in measurement-, calculation-, and prediction-based patient-specific quality assurance (PSQA) methods for volumetric modulated arc therapy (VMAT) on lung cancer and to standardize the gamma passing rate (GPR) by considering systematic errors during data assimilation. This study included 150 patients with lung cancer who underwent VMAT. VMAT plans were generated using a collapsed-cone algorithm. For measurement-based PSQA, ArcCHECK was employed. For calculation-based PSQA, Acuros XB was used to recalculate the plans. In prediction-based PSQA, GPR was forecasted using a previously developed GPR prediction model. The representative GPR value was estimated using the least-squares method from the three PSQA methods for each original plan. The unified GPR was computed by adjusting the original GPR to account for systematic errors. The range of limits of agreement (LoA) were assessed for the original and unified GPRs based on the representative GPR using Bland-Altman plots. For GPR (3%/2 mm), original GPRs were 94.4 ± 3.5%, 98.6 ± 2.2% and 93.3 ± 3.4% for measurement-, calculation-, and prediction-based PSQA methods and the representative GPR was 95.5 ± 2.0%. Unified GPRs were 95.3 ± 2.8%, 95.4 ± 3.5% and 95.4 ± 3.1% for measurement-, calculation-, and prediction-based PSQA methods, respectively. The range of LoA decreased from 12.8% for the original GPR to 9.5% for the unified GPR across all three PSQA methods. The study evaluated unified GPRs that corrected for systematic errors. Proposing unified criteria for PSQA can enhance safety regardless of the methods used.
Collapse
Affiliation(s)
- Tomohiro Ono
- Department of Radiation Oncology, Shiga General Hospital, 5-4-30 Moriyama, Moriyama-shi, Shiga, 524-8524, Japan.
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Takanori Adachi
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiraku Iramina
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriko Kishi
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
He L, Zhu J, Wang X, Zhang B, Hu Q, Chen L, Liu X. Preliminary study on dosimetry characteristics of a novel cylindrical dose verification system. J Appl Clin Med Phys 2023; 24:e14138. [PMID: 37665789 PMCID: PMC10562016 DOI: 10.1002/acm2.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
OBJECTIVE To develop a novel ionization chamber array dosimetry system, study its dosimetry characteristics, and perform preliminary tests for plan dose verification. METHODS The dosimetry characteristics of this new array were tested, including short-term and long-term reproducibility, dose linearity, dose rate dependence, field size dependence, and angular dependence. The open field and MLC field plans were designed for dose testing. Randomly select 30 patient treatment plans (10 intensity-modulated radiation therapy [IMRT] plans and 20 volumetric modulated arc therapy [VMAT] plans) that have undergone dose verification using Portal Dosimetry to perform verification measurement and evaluate dose verification test results. RESULTS The dosimetry characteristics of the arrays all performed well. The gamma passing rates (3%/2 mm) were more than 96% for the combined open field and MLC field plans. The average gamma pass rates were (99.54 ± 0.58)% and (96.70 ± 3.41)% for the 10 IMRT plans and (99.32 ± 0.89)% and (94.91 ± 6.01)% for the 20 VMAT plans at the 3%/2 mm and 2%/2 mm criteria, respectively, which is similar to the Portal Dosimetry's measurement results. CONCLUSIONS This novel ionization chamber array demonstrates good dosimetry characteristics and is suitable for clinical IMRT and VMAT plan verifications.
Collapse
Affiliation(s)
- Long He
- School of PhysicsSun Yat‐sen UniversityGuangzhouChina
| | - Jinhan Zhu
- Sun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuetao Wang
- Radiation Oncology DepartmentThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Bailin Zhang
- Radiation Oncology DepartmentThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Qiang Hu
- Guangzhou Raydose Medical Technology Company LimitedGuangzhouChina
| | - Lixin Chen
- Sun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xiaowei Liu
- School of PhysicsSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
4
|
Razinskas G, Schindhelm R, Sauer OA, Wegener S. Sensitivity and specificity of Varian Halcyon's portal dosimetry for plan-specific pre-treatment QA. J Appl Clin Med Phys 2023; 24:e14001. [PMID: 37086428 PMCID: PMC10402680 DOI: 10.1002/acm2.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023] Open
Abstract
PURPOSE Developed as a plan-specific pre-treatment QA tool, Varian portal dosimetry promises a fast, high-resolution, and integrated QA solution. In this study, the agreement between predicted fluence and measured cumulative portal dose was determined for the first 140 patient plans at our Halcyon linear accelerator. Furthermore, the capability of portal dosimetry to detect incorrect plan delivery was compared to that of a common QA phantom. Finally, tolerance criteria for verification of VMAT plan delivery with Varian portal dosimetry were derived. METHODS All patient plans and the corresponding verification plans were generated within the Eclipse treatment planning system. Four representative plans of different treatment sites (prostate, prostate with lymphatic drainage, rectum, and head & neck) were intentionally altered to model incorrect plan delivery. Investigated errors included both systematic and random errors. Gamma analysis was conducted on both portal dose (criteria γ2%/2 mm , γ2%/1 mm , and γ1%/1 mm ) and ArcCHECK measurements (criteria γ3%/3 mm , γ3%/2 mm , and γ2%/2 mm ) with a 10% low-dose threshold. Performance assessment of various acceptance criteria for plan-specific treatment QA utilized receiver operating characteristic (ROC) analysis. RESULTS Predicted and acquired portal dosimetry fluences demonstrated a high agreement evident by average gamma passing rates for the clinical patient plans of 99.90%, 96.64%, and 91.87% for γ2%/2 mm , γ2%/1 mm , and γ1%/1 mm , respectively. The ROC analysis demonstrated a very high capability of detecting erroneous plan delivery for portal dosimetry (area under curve (AUC) > 0.98) and in this regard outperforms QA with the ArcCHECK phantom (AUC ≈ 0.82). With the suggested optimum decision thresholds excellent sensitivity and specificity is simultaneously possible. CONCLUSIONS Owing to the high achievable spatial resolution, portal dosimetry at the Halcyon can reliably be deployed as plan-specific pre-treatment QA tool to screen for errors. It is recommended to support the fluence integrated portal dosimetry QA by independent phantom-based measurements of a random sample survey of treatment plans.
Collapse
Affiliation(s)
- Gary Razinskas
- Department of Radiation OncologyUniversity Hospital WurzburgWurzburgGermany
| | - Robert Schindhelm
- Department of Radiation OncologyUniversity Hospital WurzburgWurzburgGermany
| | - Otto A. Sauer
- Department of Radiation OncologyUniversity Hospital WurzburgWurzburgGermany
| | - Sonja Wegener
- Department of Radiation OncologyUniversity Hospital WurzburgWurzburgGermany
| |
Collapse
|
5
|
Lou Z, Cheng C, Mao R, Li D, Tian L, Li B, Lei H, Ge H. A novel automated planning approach for multi-anatomical sites cancer in Raystation treatment planning system. Phys Med 2023; 109:102586. [PMID: 37062102 DOI: 10.1016/j.ejmp.2023.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
PURPOSE To develop an automated planning approach in Raystation and evaluate its feasibility in multiple clinical application scenarios. METHODS An automated planning approach (Ruiplan) was developed by using the scripting platform of Raystation. Radiotherapy plans were re-generated both automatically by using Ruiplan and manually. 60 patients, including 20 patients with nasopharyngeal carcinoma (NPC), 20 patients with esophageal carcinoma (ESCA), and 20 patients with rectal cancer (RECA) were retrospectively enrolled in this study. Dosimetric and planning efficiency parameters of the automated plans (APs) and manual plans (MPs) were statistically compared. RESULTS For target coverage, APs yielded superior dose homogeneity in NPC and RECA, while maintaining similar dose conformity for all studied anatomical sites. For OARs sparing, APs led to significant improvement in most OARs sparing. The average planning time required for APs was reduced by more than 43% compared with MPs. Despite the increased monitor units (MUs) for NPC and RECA in APs, the beam-on time of APs and MPs had no statistical difference. Both the MUs and beam-on time of APs were significantly lower than that of MPs in ESCA. CONCLUSIONS This study developed a new automated planning approach, Ruiplan, it is feasible for multi-treatment techniques and multi-anatomical sites cancer treatment planning. The dose distributions of targets and OARs in the APs were similar or better than those in the MPs, and the planning time of APs showed a sharp reduction compared with the MPs. Thus, Ruiplan provides a promising approach for realizing automated treatment planning in the future.
Collapse
Affiliation(s)
- Zhaoyang Lou
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Chen Cheng
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ronghu Mao
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Dingjie Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lingling Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Bing Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hongchang Lei
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
6
|
Cheng B, Xu Y, Li S, Ren Q, Pei X, Men K, Dai J, Xu XG. Development and clinical application of a GPU-based Monte Carlo dose verification module and software for 1.5 T MR-LINAC. Med Phys 2023; 50:3172-3183. [PMID: 36862110 DOI: 10.1002/mp.16337] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Adaptive radiotherapy (ART) has made significant advances owing to magnetic resonance linear accelerator (MR-LINAC), which provides superior soft-tissue contrast, fast speed and rich functional magnetic resonance imaging (MRI) to guide radiotherapy. Independent dose verification plays a critical role in discovering errors, while several challenges remain in MR-LINAC. PURPOSE A Monte Carlo-based GPU-accelerated dose verification module for Unity is proposed and integrated into the commercial software ArcherQA to achieve fast and accurate quality assurance (QA) for online ART. METHODS Electron or positron motion in a magnetic field was implemented, and a material-dependent step-length limit method was used to trade off speed and accuracy. Transport was verified by dose comparison with EGSnrc in three A-B-A phantoms. Then, an accurate Monte Carlo-based Unity machine model was built in ArcherQA, including an MR-LINAC head, cryostat, coils, and treatment couch. In particular, a mixed model combining measured attenuation and homogeneous geometry was adopted for the cryostat. Several parameters in the LINAC model were tuned to commission it in the water tank. An alternating open-closed MLC plan on solid water measured with EBT-XD film was used to verify the LINAC model. Finally, the ArcherQA dose was compared with ArcCHECK measurements and GPUMCD in 30 clinical cases through the gamma test. RESULTS ArcherQA and EGSnrc were well matched in three A-B-A phantom tests, and the relative dose difference (RDD) was less than 1.6% in the homogenous region. A Unity model was commissioned in the water tank, and the RDD in the homogenous region was less than 2%. In the alternating open-closed MLC plan, the gamma result (3%/3 mm) between ArcherQA and Film was 96.55%, better than the gamma result between GPUMCD and Film (92.13%). In 30 clinical cases, the mean three-dimensional (3D) gamma result (3%/2 mm) was 99.36% ± 1.28% between ArcherQA and ArcCHECK for the QA plans and 99.27% ± 1.04% between ArcherQA and GPUMCD for the clinical patient plans. The average dose calculation time was 106 s in all clinical patient plans. CONCLUSIONS A GPU-accelerated Monte Carlo-based dose verification module was developed and built for the Unity MR-LINAC. The fast speed and high accuracy were proven by comparison with EGSnrc, commission data, the ArcCHECK measurement dose, and the GPUMCD dose. This module can achieve fast and accurate independent dose verification for Unity.
Collapse
Affiliation(s)
- Bo Cheng
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yuan Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shijun Li
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Qiang Ren
- Technology Development Department, Anhui Wisdom Technology Company Limited, Hefei, China
| | - Xi Pei
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China.,Technology Development Department, Anhui Wisdom Technology Company Limited, Hefei, China
| | - Kuo Men
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xie George Xu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China.,Department of Radiation Oncology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Kim C, Kim J, Lee YK, Shin HB, Han MC, Kim H, Kim JS. Evaluating Mobius3D Dose Calculation Accuracy for Small-Field Flattening- Filter-Free Photon Beams. Technol Cancer Res Treat 2022; 21:15330338221141542. [PMID: 36567632 PMCID: PMC9813500 DOI: 10.1177/15330338221141542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose: We aimed to investigate the dose calculation accuracy of Mobius3D for small-field flattening-filter-free x-rays, mainly utilized for stereotactic body radiation therapy (SBRT). The accuracy of beam modeling and multileaf collimator (MLC) modeling in Mobius3D, significantly affecting the dose calculation is investigated. Methods: The commissioning procedures of Mobius3D were performed for unflattened 6 MV and 10 MV x-ray beams of the linear accelerator, including beam model adjustment and dosimetric leaf gap (DLG) optimization. An experimental study with artificial plans was conducted to evaluate the accuracy of small-field modeling. The dose calculation accuracy of Mobius3D was also evaluated for retrospective SBRT plans with multiple targets. Results: Both studies evaluated the dose calculation accuracy through comparisons with the measured data. Relatively large differences were observed for off-axis distances over 5 cm and for small fields less than 1 cm field size. For the study with artificial plans, the maximum absolute error of 9.96% for unflattened 6 MV and 9.07% for unflattened 10 MV was observed when the field size was 1 cm. For the study with patient plans, the mean gamma passing rate with 3%/3 mm gamma criterion was 63.6% for unflattened 6 MV and 82.6% for unflattened 10 MV. The maximum of the average dose difference was -19.9% for unflattened 6MV and -10.1% for unflattened 10MV. Conclusions: The dose calculation accuracy uncertainties of Mobius3D for small-field flattening-filter-free photon beams were observed. The study results indicated that the beam and MLC modeling of Mobius3D must be improved for use in SBRT pretreatment QA in clinical practice.
Collapse
Affiliation(s)
- Changhwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of
Medicine, Seoul, South Korea
| | - Jihun Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of
Medicine, Seoul, South Korea,Jihun Kim, Department of Radiation
Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211
Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea.
Jin Sung Kim, Department of Radiation
Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1
Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Young Kyu Lee
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College
of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Han-Back Shin
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of
Medicine, Seoul, South Korea
| | - Min Cheol Han
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of
Medicine, Seoul, South Korea
| | - Hojin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of
Medicine, Seoul, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of
Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Baek SH, Choi SH, Han MJ, Cho GS, Jang W, Kim JS, Kim KB. Clinical Efficacy of an Electronic Portal Imaging Device versus a Physical Phantom Tool for Patient-Specific Quality Assurance. Life (Basel) 2022; 12:1923. [PMID: 36431058 PMCID: PMC9694583 DOI: 10.3390/life12111923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Pre-treatment patient-specific quality assurance (QA) is critical to prevent radiation accidents. The electronic portal imaging device (EPID) is a dose measurement tool with good resolution and a low volume-averaging effect. EPIbeam—an EPID-based portal dosimetry software—has been newly installed in three institutions in Korea. This study evaluated the efficacy of the EPID-based patient-specific QA tool versus the PTW729 detector (a previously used QA tool) based on gamma criteria and planning target volume (PTV). A significant difference was confirmed through the R statistical analysis software. The average gamma passing rates of PTW729 and EPIbeam were 98.73% and 99.60% on 3 mm/3% (local), 96.66% and 97.91% on 2 mm/2% (local), and 88.41% and 74.87% on 1 mm/1% (local), respectively. The p-values between them were 0.015 (3 mm/3%, local), 0.084 (2 mm/2%, local), and less than 0.01 (1 mm/1%, local). Further, the average gamma passing rates of PTW 729 and EPIbeam according to PTV size were 99.55% and 99.91% (PTV < 150 cm3) and 97.91% and 99.28% (PTV > 150 cm3), respectively. The p-values between them were 0.087 (PTV < 150 cm3) and 0.036 (PTV > 150 cm3). These results confirm that EPIbeam can be an effective patient-specific QA tool.
Collapse
Affiliation(s)
- Seung-Hyeop Baek
- Department of Integrative Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
- Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Choi
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Moo-Jae Han
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Gyu-Seok Cho
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Wonil Jang
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Jin-Sung Kim
- Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Oncosoft Inc., Seoul 03787, Republic of Korea
| | - Kum-Bae Kim
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| |
Collapse
|
9
|
Kim C, Han MC, Lee YK, Shin HB, Kim H, Kim JS. Comprehensive clinical evaluation of TomoEQA for patient-specific pre-treatment quality assurance in helical tomotherapy. Radiat Oncol 2022; 17:177. [DOI: 10.1186/s13014-022-02151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Based on a previous study on the feasibility of TomoEQA, an exit detector-based patient-specific pre-treatment quality assurance (QA) method for helical tomotherapy, an in-depth clinical evaluation was conducted.
Methods
Data of one hundred patients were analyzed to evaluate the clinical usefulness of TomoEQA for patient-specific pre-treatment QA in comparison with the conventional phantom-based method. Additional investigations were also performed under unusual measurement conditions to validate the off-axis region. In addition to the clinical evaluation of TomoEQA, a statistical analysis was conducted to determine the plan parameters that affect the pass/failure results of pre-treatment QA.
Results
The average and standard deviations of the gamma passing rate and point dose error for TomoEQA were comparable to those of the conventional QA method. For TomoEQA, the average values of the gamma passing rate and point dose error were 96.32% (standard deviation (1 sigma) = 3.94; 95% confidence interval (CI), 95.55 to 97.09) and − 1.12% (standard deviation (1 sigma) = 1.04; CI, − 1.32 to − 0.92), respectively. For the conventional QA method, the average values of the gamma passing rate and point dose error were 95.95% (standard deviation (1 sigma) = 4.35; 95% confidence interval (CI), 95.10 to 96.80) and − 1.20% (standard deviation (1 sigma) = 1.61; CI, − 1.52 to − 0.88), respectively. Further experiments on the off-axis region demonstrated that TomoEQA can provide accurate results for 3D dose analysis, which is inherently difficult in the conventional QA method. Through a statistical analysis based on the results of TomoEQA, it was validated that the total fraction (Total Fx), monitor units, beam-on-time, leaf-of-time below 100 ms, and planning target volume diameter were statistically significant for the pass/failure of the pre-treatment QA results.
Conclusions
TomoEQA is a clinically beneficial alternative to the conventional phantom-based QA method.
Collapse
|
10
|
Jeong S, Cheon W, Shin D, Lim YK, Jeong J, Kim H, Yoon M, Lee SB. Development of a dosimetry system for therapeutic X-rays using a flexible amorphous silicon thin-film solar cell with a scintillator screen. Med Phys 2022; 49:4768-4779. [PMID: 35396722 DOI: 10.1002/mp.15664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the dosimetric characteristics and applications of a dosimetry system composed of a flexible amorphous silicon thin-film solar cell and scintillator screen (STFSC-SS) for therapeutic X-rays. METHODS The real-time dosimetry system was composed of a flexible a-Si thin film solar cell (0.2-mm thick), a scintillator screen to increase its efficiency, and an electrometer to measure the generated charge. The dosimetric characteristics of the developed system were evaluated, including its energy dependence, dose linearity, and angular dependence. Calibration factors for the signal measured by the system and absorbed dose-to-water were obtained by setting reference conditions. The application and correction accuracy of the developed system were evaluated by comparing the absorbed dose-to-water measured using a patient treatment beam with that measured using the ion chamber. RESULTS The responses of STFSC-SS to energy, field size, depth, and source-to-surface distance (SSD) were more dependent on measurement conditions than were the responses of the ion chamber, although the former dependence was due to the scintillator screen, not the solar cell. The signal of STFSC-SS were also dependent on dose rate, while the responses of solar cell alone and scintillator screen were not dependent on dose rate. The scintillator screen reduced the output of solar cell 6 and 15 MV by 0.60% and 0.55%, respectively. The absorbed doses-to-water measured using STFSC-SS for patient treatment beam differed by 0.4% compared to those measured using the ionization chamber. The uncertainties of the developed system for 6 and 15 MV photon beams were 1.8% and 1.7%, respectively, confirming the accuracy and applicability of this system. CONCLUSIONS ; The thin film solar cell-based detector developed in this study can accurately measure absorbed dose-to-water. The increased signal resulting from the use of the scintillator screen is advantageous for measuring low doses and stable signal output. In addition, this system is flexible, making it applicable to curved surfaces such as a patient's body, and is cost-effective. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Seonghoon Jeong
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Wonjoong Cheon
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Dongho Shin
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Young Kyung Lim
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Jonghwi Jeong
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Haksoo Kim
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Myonggeun Yoon
- Department of Bio-convergence Engineering, Korea University, Seoul, Korea
| | - Se Byeong Lee
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| |
Collapse
|
11
|
Ono T, Nakamura M, Ono Y, Nakamura K, Mizowaki T. Development of a plan complexity mitigation algorithm based on gamma passing rate predictions for volumetric-modulated arc therapy. Med Phys 2022; 49:1793-1802. [PMID: 35064567 DOI: 10.1002/mp.15466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Volumetric-modulated arc therapy (VMAT) is a complex rotational therapy technique in which highly conformal dose distribution can be realized by varying the speed of gantry rotation, multileaf collimator (MLC) shape, and dose rate. However, the complexity of the technique creates a discrepancy between the calculated and measured doses. Thus, to mitigate the plan complexity in VMAT, this study aimed to develop an algorithm and evaluate its usefulness by conducting a feasibility study. MATERIALS AND METHODS A total of 50 patients who underwent VMAT between September 2015 and December 2020 were arbitrarily selected for this study. Specifically, patients with less than 85% gamma passing rate (GPR) at 5%/1 mm or 3%/2 mm criterion were selected randomly. Using the GPR prediction model, problematic MLC positions that contribute to a decrease in GPR were identified. Those problematic MLC positions were optimized using a limited nonlinear algorithm under mechanical limitations. Additionally, the dose prescription for the target was re-normalized. The VMAT modulated complexity score (MCSv ), averaged aperture area (AA), and monitor unit per gray (MU/Gy) were evaluated as plan complexity parameters. Calculated doses in patient geometry were evaluated for the target and its surrounding region. In addition, an ArcCHECK cylindrical diode array was used to measure the dose, and GPRs at 5%/1 mm and 3%/2 mm criteria were evaluated to analyze the difference between the mitigated and original plans. The difference was calculated using the mean ± standard deviation. RESULTS The differences between the MCSv , AA, and MU/cGy values for the mitigated and original plans were 0.8 ± 1.7 (× 10-2 ), 42.7 ± 57.9, and -5.6 ± 8.5, respectively. Regarding the calculated dose, the dose volume parameters were consistent within 1% for the target and the surrounding region. The differences between the mitigated and original plans were 1.8 ± 2.9% and 1.3 ± 1.8% for GPRs at 5%/1 mm and 3%/2 mm, respectively. CONCLUSIONS This feasibility study resulted in the development of an algorithm with the potential to mitigate plan complexity and improve the GPR for VMAT under minor leaf position modifications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tomohiro Ono
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuka Ono
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyonao Nakamura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Sakamoto T, Matsumoto K, Otsuka M, Nanbu H, Okumura M. [Gantry QA Using Three-dimensional Diode Array Detector on O-ring Linear Accelerator]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2022; 78:263-269. [PMID: 35314535 DOI: 10.6009/jjrt.780303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PURPOSE It is necessary to perform gantry quality assurance (QA) in high precision radiotherapy. However, the O-ring type linear accelerator (Halcyon) does not have a light field and laser as a reference of isocenter point. The aim of this study is to investigate the usefulness of a three-dimensional diode array detector for gantry angle QA, and an O-ring type linear accelerator. METHOD The gantry angle and rotational center were verified using the ArcCHECK 3D diode array on the general linear accelerator (TrueBeam) as a reference and Halcyon. The gantry angles were measured at 0, 90, 180, and 270°. The accuracy of the gantry rotational center was evaluated using rotational irradiation in the clockwise and counterclockwise directions between 181° and 179°. RESULTS The QA system with ArcCHECK was able to apply on the TrueBeam and Halcyon. As a result of the accuracy of the gantry angle, the maximum error of value calculated from ArcCHECK was 0.1° compared with the nominal gantry angle of Halcyon. As a result of the accuracy of the gantry rotation isocenter of Halcyon, the distance between the isocenter and the gantry rotation center was 0.45 mm and 0.41 mm in the clockwise and counterclockwise directions, respectively. CONCLUSION The QA system with ArcCHECK was useful for the gantry angle and the rotation center accuracy on the Halcyon.
Collapse
Affiliation(s)
| | | | | | | | - Masahiko Okumura
- Department of Radiological Sciences, Morinomiya University of Medical Sciences
| |
Collapse
|
13
|
Xiao Q, Bai L, Li G, Zhang X, Li Z, Duan L, Peng R, Zhong R, Wang Q, Wang X, Bai S. A robust approach to establish tolerance limits for the gamma passing rate-based patient-specific quality assurance using the heuristic control charts. Med Phys 2021; 49:1312-1330. [PMID: 34778963 DOI: 10.1002/mp.15346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Establishing the tolerance limits of patient-specific quality assurance (PSQA) processes based on the gamma passing rate (GPR) by using normal statistical process control (SPC) methods involves certain problems. The aim of this study was threefold: (a) to show that the heuristic SPC method can replace the quantile method for establishing tolerance limits in PSQA processes and is more robust, (b) to introduce an iterative procedure of "Identify-Eliminate-Recalculate" for establishing the tolerance limits in PSQA processes with unknown states based on retrospective GPRs, and (c) to recommend a workflow to define tolerance limits based on actual clinical retrospective GPRs. MATERIALS AND METHODS A total of 1671 volumetric-modulated arc therapy (VMAT) pretreatment plans were measured on four linear accelerators (linacs) and analyzed by treatment sites using the GPRs under the 2%/2 mm, 3%/2 mm, and 3%/3 mm criteria. Normality testing was performed using the Anderson-Darling (AD) statistic and the optimal distributions of GPRs were determined using the Fitter Python package. The iterative "Identify-Eliminate-Recalculate" procedure was used to identify the PSQA outliers. The tolerance limits of the initial PSQAs, remaining PSQAs after elimination, and in-control PSQAs after correction were calculated using the conventional Shewhart method, two transformation methods, three heuristic methods, and two quantile methods. The tolerance limits of PSQA processes with different states for the respective methods, linacs, and treatment sites were comprehensively compared and analyzed. RESULTS It was found that 75% of the initial PSQA processes and 63% of the in-control processes were non-normal (AD test, p < 0.05). The optimal distributions of GPRs for the initial and in-control PSQAs varied with different linacs and treatment sites. In the implementation of the "Identify-Eliminate-Recalculate" procedure, the quantile methods could not identify the out-of-control PSQAs effectively due to the influence of outliers. The tolerance limits of the in-control PSQAs, calculated using the quantile of optimal fitting distributions, represented the ground truth. The tolerance limits of the in-control PSQAs and remaining PSQAs after elimination calculated using the heuristic methods were considerably close to the ground truth (the maximum average absolute deviations were 0.50 and 1.03%, respectively). Some transformation failures occurred under both transformation methods. For the in-control PSQAs at 3%/2 mm gamma criteria, the maximum differences in the tolerance limits for four linacs and different treatment sites were 3.10 and 5.02%, respectively. CONCLUSIONS The GPR distributions of PSQA processes vary with different linacs and treatment sites but most are skewed. In applying SPC methodologies to PSQA processes, heuristic methods are robust. For in-control PSQA processes, the tolerance limits calculated by heuristic methods are in good agreement with the ground truth. For unknown PSQA processes, the tolerance limits calculated by the heuristic methods after the iterative "Identify-Eliminate-Recalculate" procedure are closest to the ground truth. Setting linac- and treatment site-specific tolerance limits for PSQA processes is necessary for clinical applications.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Long Bai
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Guangjun Li
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Xiangbin Zhang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Zhibin Li
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Lian Duan
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ruilin Peng
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Renming Zhong
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qiang Wang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Xuetao Wang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Sen Bai
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
14
|
The impact of different optimization strategies on the agreement between planned and delivered doses during volumetric modulated arc therapy for total marrow irradiation. Contemp Oncol (Pozn) 2021; 25:100-106. [PMID: 34667436 PMCID: PMC8506427 DOI: 10.5114/wo.2021.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Aim of the study To evaluate the agreement between planned and delivered doses and its potential correlation with the plans' complexity subjected to dosimetric verification. Material and methods Four isocentre volumetric modulated arc therapy for total marrow irradiation plans optimized simultaneously with (P1) and without (P2) MU reduction were evaluated dosimetrically by γ method performed in a global mode for 4 combinations of γ-index criteria (2%/2 mm, 2%/3 mm, 3%/2 mm, and 3%/3 mm). The evaluation was conducted for 4 regions (head and neck, chest, abdomen and upper pelvis, and lower pelvis and thighs) that were determined geometrically by the isocentres. The Wilcoxon test was used to detect significant differences between γ passing rate (GPR) analysis results for the P1 and P2 plans. The Pearson correlation was used to check the relationship between GPR and the plans' complexity. Results Except for the head and neck region, the P2 plans had better GPRs than the P1 plans. Only for hard combinations of γ-index criteria (i.e. 2%/3 mm, 2%/2 mm) were the GPRs differences between P1 and P2 clinically meaningful, and they were detected in the chest, abdomen and upper pelvis, and lower pelvis and thighs regions. The highest correlations between GPR and the indices describing the plans' complexity were found for the chest region. No correlation was found for the head and neck region. Conclusions The P2 plans showed better agreement between planned and delivered doses compared to the P1 plans. The GPR and the plans' complexity depend on the anatomy region and are most important for the chest region.
Collapse
|
15
|
Frigo SP, Ohrt J, Suh Y, Balter P. Interinstitutional beam model portability study in a mixed vendor environment. J Appl Clin Med Phys 2021; 22:37-50. [PMID: 34643323 PMCID: PMC8664150 DOI: 10.1002/acm2.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/19/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
A 6 MV flattened beam model for a Varian TrueBeamSTx c‐arm treatment delivery system in RayStation, developed and validated at one institution, was implemented and validated at another institution. The only parameter value adjustments were to accommodate machine output at the second institution. Validation followed MPPG 5.a. recommendations, with particular attention paid to IMRT and VMAT deliveries. With this minimal adjustment, the model passed validation across a broad spectrum of treatment plans, measurement devices, and staff who created the test plans and executed the measurements. This work demonstrates the possibility of using a single template model in the same treatment planning system with matched machines in a mixed vendor environment.
Collapse
Affiliation(s)
- Sean P Frigo
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jared Ohrt
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yelin Suh
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Balter
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
16
|
A Multicentre Evaluation of Dosiomics Features Reproducibility, Stability and Sensitivity. Cancers (Basel) 2021; 13:cancers13153835. [PMID: 34359737 PMCID: PMC8345157 DOI: 10.3390/cancers13153835] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Dosiomics is born directly as an extension of radiomics: it entails extracting features from the patients’ three-dimensional (3D) radiotherapy dose distribution rather than from conventional medical images to obtain specific spatial and statistical information. Dosiomic studies, in a multicentre setting, require assessing the features’ stability to dose calculation settings and the features’ capability in distinguishing different dose distributions. This study provides the first multicentre evaluation of the dosiomic features in terms of reproducibility, stability and sensitivity across various dose distributions obtained from multiple technologies and techniques and considering different dose calculation algorithms of TPS and two different resolutions of the dose grid. Harmonisation strategies to account for a possible variation in the dose distribution due to these confounding factors should be adopted when investigating a correlation between dosiomic features and clinical outcomes in multicentre studies. Abstract Dosiomics is a texture analysis method to produce dose features that encode the spatial 3D distribution of radiotherapy dose. Dosiomic studies, in a multicentre setting, require assessing the features’ stability to dose calculation settings and the features’ capability in distinguishing different dose distributions. Dose distributions were generated by eight Italian centres on a shared image dataset acquired on a dedicated phantom. Treatment planning protocols, in terms of planning target volume coverage and dose–volume constraints to the organs at risk, were shared among the centres to produce comparable dose distributions for measuring reproducibility/stability and sensitivity of dosiomic features. In addition, coefficient of variation (CV) was employed to evaluate the dosiomic features’ variation. We extracted 38,160 features from 30 different dose distributions from six regions of interest, grouped by four features’ families. A selected group of features (CV < 3 for the reproducibility/stability studies, CV > 1 for the sensitivity studies) were identified to support future multicentre studies, assuring both stable features when dose distributions variation is minimal and sensitive features when dose distribution variations need to be clearly identified. Dosiomic is a promising tool that could support multicentre studies, especially for predictive models, and encode the spatial and statistical characteristics of the 3D dose distribution.
Collapse
|
17
|
Hadsell CS, Lenards N, Hunzeker A, Tallhamer MJ, Hadsell MJ. The effect of measurement geometry on patient specific QA pass/fail rates for stereotactic body radiation therapy (SBRT) Plans. Med Dosim 2021; 46:389-397. [PMID: 34176732 DOI: 10.1016/j.meddos.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022]
Abstract
Patient quality assurance (QA) is a required part of the treatment care path, and plan failure can lead to increased personnel hours or delay of treatment. The recommendation by the American Association of Physicists in Medicine is that gamma analysis be used to evaluate measured volumetric modulated arc therapy plans. Vendors have developed many different measurement geometries for patient QA devices which could yield varying pass rates when used with the recommended tolerances, normalization, and criterion. For this study, clinically treated stereotactic body radiation therapy plans were used to evaluate differences in gamma dose tolerances and sampled dose distribution complexity for centralized or peripheral measurement geometries on a cylindrical phantom. Random errors were then introduced into a subset of these plans, and the differences in pass rates between the geometries were correlated with differences in the observed mathematical differences. Finally, a single clinically relevant target coverage deviation was introduced to another subset of plans to evaluate whether a particular geometry is measurably better at identifying clinically relevant errors. It was found that centralized geometries resulted in more lenient dose tolerances and less complex sampled dose distributions compared to peripheral geometries. Pass rates were uniformly lower in the peripheral measurement geometry, and the difference in pass rates between the geometries correlated strongly with the difference in dose tolerance and weakly with the difference in the chosen complexity metrics. However, neither of the geometries were sufficiently sensitive enough to detect clinically relevant changes to target coverage when using recommended tolerances and criteria, and no statistically significant difference was found between their pass rates. Given these findings, the authors concluded that stereotactic body radiation therapy plans could fail patient QA when measured in the peripheral geometry but pass in the centralized geometry, with possibly neither having correlation to true clinical deviation.
Collapse
Affiliation(s)
- Courtney S Hadsell
- Medical Dosimetry Program at the University of Wisconsin, La Crosse, WI, USA.
| | - Nishele Lenards
- Medical Dosimetry Program at the University of Wisconsin, La Crosse, WI, USA
| | - Ashley Hunzeker
- Medical Dosimetry Program at the University of Wisconsin, La Crosse, WI, USA
| | | | - Michael J Hadsell
- Departments of Radiation Oncology, Centura Health, Centennial, CO, USA
| |
Collapse
|
18
|
Hanley J, Dresser S, Simon W, Flynn R, Klein EE, Letourneau D, Liu C, Yin FF, Arjomandy B, Ma L, Aguirre F, Jones J, Bayouth J, Holmes T. AAPM Task Group 198 Report: An implementation guide for TG 142 quality assurance of medical accelerators. Med Phys 2021; 48:e830-e885. [PMID: 34036590 DOI: 10.1002/mp.14992] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Accepted: 04/28/2021] [Indexed: 11/11/2022] Open
Abstract
The charges on this task group (TG) were as follows: (a) provide specific procedural guidelines for performing the tests recommended in TG 142; (b) provide estimate of the range of time, appropriate personnel, and qualifications necessary to complete the tests in TG 142; and (c) provide sample daily, weekly, monthly, or annual quality assurance (QA) forms. Many of the guidelines in this report are drawn from the literature and are included in the references. When literature was not available, specific test methods reflect the experiences of the TG members (e.g., a test method for door interlock is self-evident with no literature necessary). In other cases, the technology is so new that no literature for test methods was available. Given broad clinical adaptation of volumetric modulated arc therapy (VMAT), which is not a specific topic of TG 142, several tests and criteria specific to VMAT were added.
Collapse
Affiliation(s)
- Joseph Hanley
- Princeton Radiation Oncology, Monroe, New Jersey, 08831, USA
| | - Sean Dresser
- Winship Cancer Institute, Radiation Oncology, Emory University, Atlanta, Georgia, 30322, USA
| | | | - Ryan Flynn
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Eric E Klein
- Brown university, Rhode Island Hospital, Providence, Rhode Island, 02905, USA
| | | | - Chihray Liu
- University of Florida, Gainesville, Florida, 32610-0385, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Bijan Arjomandy
- Karmanos Cancer Institute at McLaren-Flint, Flint, Michigan, 48532, USA
| | - Lijun Ma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, 94143-0226, USA
| | | | - Jimmy Jones
- Department of Radiation Oncology, The University of Colorado Health-Poudre Valley, Fort Collins, Colorado, 80525, USA
| | - John Bayouth
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53792-0600, USA
| | - Todd Holmes
- Varian Medical Systems, Palo Alto, California, 94304, USA
| |
Collapse
|
19
|
The status of medical physics in radiotherapy in China. Phys Med 2021; 85:147-157. [PMID: 34010803 DOI: 10.1016/j.ejmp.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To present an overview of the status of medical physics in radiotherapy in China, including facilities and devices, occupation, education, research, etc. MATERIALS AND METHODS: The information about medical physics in clinics was obtained from the 9-th nationwide survey conducted by the China Society for Radiation Oncology in 2019. The data of medical physics in education and research was collected from the publications of the official and professional organizations. RESULTS By 2019, there were 1463 hospitals or institutes registered to practice radiotherapy and the number of accelerators per million population was 1.5. There were 4172 medical physicists working in clinics of radiation oncology. The ratio between the numbers of radiation oncologists and medical physicists is 3.51. Approximately, 95% of medical physicists have an undergraduate or graduate degrees in nuclear physics and biomedical engineering. 86% of medical physicists have certificates issued by the Chinese Society of Medical Physics. There has been a fast growth of publications by authors from mainland of China in the top international medical physics and radiotherapy journals since 2018. CONCLUSIONS Demand for medical physicists in radiotherapy increased quickly in the past decade. The distribution of radiotherapy facilities in China became more balanced. High quality continuing education and training programs for medical physicists are deficient in most areas. The role of medical physicists in the clinic has not been clearly defined and their contributions have not been fully recognized by the community.
Collapse
|
20
|
Yang B, Wong YS, Lam WW, Geng H, Huang CY, Tang KK, Law WK, Ho CC, Nam PH, Cheung KY, Yu SK. Initial clinical experience of patient-specific QA of treatment delivery in online adaptive radiotherapy using a 1.5 T MR-Linac. Biomed Phys Eng Express 2021; 7. [PMID: 33882471 DOI: 10.1088/2057-1976/abfa80] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/21/2021] [Indexed: 11/11/2022]
Abstract
Purpose. This study aims to evaluate the performance of a commercial 1.5 T MR-Linac by analyzing its patient-specific quality assurance (QA) data collected during one full year of clinical operation.Methods and Materials. The patient-specific QA system consisted of offline delivery QA (DQA) and online calculation-based QA. Offline DQA was based on ArcCHECK-MR combined with an ionization chamber. Online QA was performed using RadCalc that calculated and compared the point dose calculation with the treatment planning system (TPS). A total of 24 patients with 189 treatment fractions were enrolled in this study. Gamma analysis was performed and the threshold that encompassed 95% of QA results (T95) was reported. The plan complexity metric was calculated for each plan and compared with the dose measurements to determine whether any correlation existed.Results. All point dose measurements were within 5% deviation. The mean gamma passing rates of the group data were found to be 96.8 ± 4.0% and 99.6 ± 0.7% with criteria of 2%/2mm and 3%/3mm, respectively. T95 of 87.4% and 98.2% was reported for the overall group with the two passing criteria, respectively. No statistically significant difference was found between adaptive treatments with adapt-to-position (ATP) and adapt-to-shape (ATS), whilst the category of pelvis data showed a better passing rate than other sites. Online QA gave a mean deviation of 0.2 ± 2.2%. The plan complexity metric was positively correlated with the mean dose difference whilst the complexity of the ATS cohort had larger variations than the ATP cohort.Conclusions. A patient-specific QA system based on ArcCHECK-MR, solid phantom and ionization chamber has been well established and implemented for validation of treatment delivery of a 1.5 T MR-Linac. Our QA data obtained over one year confirms that good agreement between TPS calculation and treatment delivery was achieved.
Collapse
Affiliation(s)
- B Yang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - Y S Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - W W Lam
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - H Geng
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C Y Huang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - K K Tang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - W K Law
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C C Ho
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - P H Nam
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - K Y Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - S K Yu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| |
Collapse
|
21
|
Piffer S, Casati M, Marrazzo L, Arilli C, Calusi S, Desideri I, Fusi F, Pallotta S, Talamonti C. Validation of a secondary dose check tool against Monte Carlo and analytical clinical dose calculation algorithms in VMAT. J Appl Clin Med Phys 2021; 22:52-62. [PMID: 33735491 PMCID: PMC8035572 DOI: 10.1002/acm2.13209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Patient-specific quality assurance (QA) is very important in radiotherapy, especially for patients with highly conformed treatment plans like VMAT plans. Traditional QA protocols for these plans are time-consuming reducing considerably the time available for patient treatments. In this work, a new MC-based secondary dose check software (SciMoCa) is evaluated and benchmarked against well-established TPS (Monaco and Pinnacle3 ) by means of treatment plans and dose measurements. METHODS Fifty VMAT plans have been computed using same calculation parameters with SciMoCa and the two primary TPSs. Plans were validated with measurements performed with a 3D diode detector (ArcCHECK) by translating patient plans to phantom geometry. Calculation accuracy was assessed by measuring point dose differences and gamma passing rates (GPR) from a 3D gamma analysis with 3%-2 mm criteria. Comparison between SciMoCa and primary TPS calculations was made using the same estimators and using both patient and phantom geometry plans. RESULTS TPS and SciMoCa calculations were found to be in very good agreement with validation measurements with average point dose differences of 0.7 ± 1.7% and -0.2 ± 1.6% for SciMoCa and two TPSs, respectively. Comparison between SciMoCa calculations and the two primary TPS plans did not show any statistically significant difference with average point dose differences compatible with zero within error for both patient and phantom geometry plans and GPR (98.0 ± 3.0% and 99.0 ± 3.0% respectively) well in excess of the typical 95 % clinical tolerance threshold. CONCLUSION This work presents results obtained with a significantly larger sample than other similar analyses and, to the authors' knowledge, compares SciMoCa with a MC-based TPS for the first time. Results show that a MC-based secondary patient-specific QA is a clinically viable, reliable, and promising technique, that potentially allows significant time saving that can be used for patient treatment and a per-plan basis QA that effectively complements traditional commissioning and calibration protocols.
Collapse
Affiliation(s)
- Stefano Piffer
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
- National Institute of Nuclear Physics (INFN)FlorenceItaly
| | - Marta Casati
- Department of Medical PhysicsCareggi University HospitalFlorenceItaly
| | - Livia Marrazzo
- Department of Medical PhysicsCareggi University HospitalFlorenceItaly
| | - Chiara Arilli
- Department of Medical PhysicsCareggi University HospitalFlorenceItaly
| | - Silvia Calusi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Isacco Desideri
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Franco Fusi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Stefania Pallotta
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
- National Institute of Nuclear Physics (INFN)FlorenceItaly
- Department of Medical PhysicsCareggi University HospitalFlorenceItaly
| | - Cinzia Talamonti
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
- National Institute of Nuclear Physics (INFN)FlorenceItaly
- Department of Medical PhysicsCareggi University HospitalFlorenceItaly
| |
Collapse
|
22
|
Li G, Jiang W, Li Y, Wang Q, Xiao J, Zhong R, Bai S. Description and evaluation of a new volumetric-modulated arc therapy plan complexity metric. Med Dosim 2020; 46:188-194. [PMID: 33353791 DOI: 10.1016/j.meddos.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 10/14/2020] [Accepted: 11/17/2020] [Indexed: 02/05/2023]
Abstract
This study describes a new plan complexity metric for volumetric-modulated arc therapy (VMAT) and evaluates the relationship of this metric with the VMAT dosimetric accuracy. The new modulation complexity score for VMAT (NMCSv) that is based on the aperture shape and multi-leaf collimator (MLC) leaf travel is described. Its performance is evaluated through correlation and receiver operating characteristic (ROC) analyses with patient-specific gamma passing rates using 2 3-dimensional diode arrays. For comparison, the following metrics are evaluated using the same correlation analyses: average field width, average leaf travel, modulation complexity score, and leaf travel modulation complexity score. Spearman's rank correlation analysis is performed to examine any relationships between the complexity metrics and the patient-specific gamma passing rates. ROC curves are used to assess the performance of the plan metrics using a gamma passing rate of 3%/3 mm criterion with a 95% tolerance level. In both the diode arrays, the gamma passing rates (3%/3 mm and 2%/2 mm) for patient-specific dosimetric verification of VMAT plans are moderately or weakly correlated to all the complexity metrics. NMCSv demonstrates the highest correlation with the passing rates (r = 0.652, p < 0.001 for Delta4 and r = 0.499, p < 0.001 for ArcCheck) and the highest area under the curve value (0.809, p < 0.01 for Delta4 and 0.734, p < 0.01 for ArcCheck). While using the Delta4 system, NMCSv exhibits an excellent classification performance with area under the curves of 0.926 (sensitivity: 0.913; specificity: 0.860; p < 0.01) and 0.918 (sensitivity: 0.943; specificity: 0.720; p < 0.01) for rectal and cervical cancer plans, respectively. NMCSv as a novel potential clinical plan complexity metric is moderately correlated with the gamma passing rate. It demonstrates the best performance with respect to distinguishing the dosimetric accuracy of VMAT plans among the evaluated metrics. The classification performance of complexity metrics can be affected by various dosimetry verification devices and treatment sites.
Collapse
Affiliation(s)
- Guangjun Li
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wei Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Department of Radiotherapy, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, Shandong, 264000, China
| | - Yanlong Li
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiang Wang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianghong Xiao
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Renming Zhong
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Sen Bai
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
23
|
Parwaie W, Geraily G, Shirazi A, Mehri-Kakavand G, Farzin M. Evaluation of ferrous benzoic methylthymol-blue gel as a dosimeter via magnetic resonance imaging. Phys Med 2020; 80:47-56. [DOI: 10.1016/j.ejmp.2020.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/21/2020] [Accepted: 10/10/2020] [Indexed: 11/29/2022] Open
|
24
|
Jiménez-Melguizo M, Espinosa M, Montes J, Guirado D, Lallena AM. Response of the ArcCHECK® device at 6 MV and 15 MV for VMAT and IMRT quality control. Phys Med 2020; 80:373-382. [PMID: 33310373 DOI: 10.1016/j.ejmp.2020.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To study the response of the ArcCHECK® device as VMAT and IMRT verification system. METHODS Various tests analyzing the linearity, the repeatability and the angular dependence of the device response, its dependence with the pulse repetition rate and the leakage losses were performed. The long-term response in dose measurements and the uniformity of the detectors conforming the system were controlled using a statistical process control program. The Elekta Infinity™ 6 and 15MV photon beams were used. RESULTS The device showed excellent repeatability and linearity. The differences between the responses obtained for any pair of angular incidences were less than 2%. The absorbed dose increased by 3% when the pulse repetition rate varied from 50 to 600MU/min. Results are in overall agreement with those found in previous works for the ArcCHECK®, in which a reduced number of the device diodes were analyzed, and for the MapCheck®, an older 2D device that used the same diodes. Charge losses were found to be negligible except for some of the diodes of the device. The statistical process control program is a very useful tool to control the correct functioning of the device in the long term. CONCLUSIONS The results of the analysis carried out indicate that the working and stability conditions of the ArcCHECK® device are adequate for its purpose. The dependence with the pulse repetition rate should be considered when VMAT or similar treatments are evaluated. A control program for the statistical monitoring of the device would be desirable and useful.
Collapse
Affiliation(s)
- Miguel Jiménez-Melguizo
- Servicio de Radiofísica y Protección Radiológica, Hospital Universitario "Virgen de las Nieves", E-18014 Granada, Spain; Unidad de Radiofísica, Hospital Universitario Clínico "San Cecilio", E-18016 Granada, Spain
| | - Miguel Espinosa
- Unidad de Radiofísica, Hospital Universitario Clínico "San Cecilio", E-18016 Granada, Spain
| | - Joaquín Montes
- Unidad de Radiofísica, Hospital Universitario Clínico "San Cecilio", E-18016 Granada, Spain
| | - Damián Guirado
- Unidad de Radiofísica, Hospital Universitario Clínico "San Cecilio", E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, E-18016 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Granada, Spain
| | - Antonio M Lallena
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, E-18016 Granada, Spain; Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain
| |
Collapse
|
25
|
Verification system for intensity-modulated radiation therapy with scintillator. Phys Eng Sci Med 2020; 44:9-21. [PMID: 33206366 DOI: 10.1007/s13246-020-00946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
In the preparation of intensity-modulated radiation therapy (IMRT), patient-specific verification is widely employed to optimize the treatment. To accurately estimate the accumulated dose and obtain the field-by-field or segment-by-segment verification, an original IMRT verification tool using scintillator light and an analysis workflow was developed in this study. The raw light distribution was calibrated with respect to the irradiated field size dependency and light diffusion in the water. The calibrated distribution was converted to dose quantity and subsequently compared with the results of the clinically employed plan. A criterion of 2-mm dose-to-agreement and 3% dose difference was specified in the gamma analysis with a 10% dose threshold. By applying the light diffusion calibration, the maximum dose difference was corrected from 7.7 cGy to 3.9 cGy around the field edge for a 60 cGy dose, 7 × 7 cm2 irradiation field, and 10 MV beam energy. Equivalent performance was confirmed in the chromodynamic film. The average dose difference and gamma pass rate of the accumulated dose distributions in six patients were 0.8 ± 4.5 cGy and 97.4%, respectively. In the field-by-field analysis, the average dose difference and gamma pass rate in seven fields of Patient 1 were 0.2 ± 1.2 cGy and 93.9%, respectively. In the segment-by-segment analysis, the average dose difference and gamma pass rate in nine segments of Patient 1 and a 305° gantry angle were - 0.03 ± 0.2 cGy and 93.9%, respectively. This system allowed the simultaneous and independent analysis of each field or segment in the accumulated dose analysis.
Collapse
|
26
|
Chow VUY, Kan MWK, Chan ATC. Patient-specific quality assurance using machine log files analysis for stereotactic body radiation therapy (SBRT). J Appl Clin Med Phys 2020; 21:179-187. [PMID: 33073897 PMCID: PMC7700944 DOI: 10.1002/acm2.13053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
An in‐house trajectory log analysis program (LOGQA) was developed to evaluate the delivery accuracy of volumetric‐modulated arc therapy (VMAT) for stereotactic body radiation therapy (SBRT). Methods have been established in LOGQA to provide analysis on dose indices, gantry angles, and multi‐leaf collimator (MLC) positions. Between March 2019 and May 2020, 120 VMAT SBRT plans of various treatment sites using flattening filter‐free (FFF) mode were evaluated using both LOGQA and phantom measurements. Gantry angles, dose indices, and MLC positions were extracted from log and compared with each plan. Integrated transient fluence map (ITFM) was reconstructed from log to examine the deviation of delivered fluence against the planned one. Average correlation coefficient of dose index versus gantry angle and ITFM for all patients were 1.0000, indicating that the delivered beam parameters were in good agreement with planned values. Maximum deviation of gantry angles and monitor units (MU) of all patients were less than 0.2 degree and 0.03 % respectively. Regarding MLC positions, maximum and root‐mean‐square (RMS) deviations from planned values were less than 0.6 mm and 0.3 mm respectively, indicating that MLC positions during delivery followed planned values in precise manner. Results of LOGQA were consistent with measurement, where all gamma‐index passing rates were larger than 95 %, with 2 %/2 mm criteria. Three types of intentional errors were introduced to patient plan for software validation. LOGQA was found to recognize the introduced errors of MLC positions, gantry angles, and dose indices with magnitudes of 1 mm, 1 degree, and 5 %, respectively, which were masked in phantom measurement. LOGQA was demonstrated to have the potential to reduce or even replace patient‐specific QA measurements for SBRT plan delivery provided that the frequency and amount of measurement‐based machine‐specific QA can be increased to ensure the log files record real values of machine parameters.
Collapse
Affiliation(s)
- Vivian U Y Chow
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR, China
| | - Monica W K Kan
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR, China.,Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anthony T C Chan
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR, China.,Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
27
|
Simplification of head and neck volumetric modulated arc therapy patient-specific quality assurance, using a Delta4 PT. Rep Pract Oncol Radiother 2020; 25:793-800. [PMID: 32879621 DOI: 10.1016/j.rpor.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/19/2020] [Accepted: 07/27/2020] [Indexed: 11/23/2022] Open
Abstract
Background/Aim In many facilities, intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT) use intensity-modulated beams, formed by a multi-leaf collimator (MLC). In IMRT and VMAT, MLC and linear accelerator errors (both geometric and dose), can significantly affect the doses administered to patients. Therefore, IMRT and VMAT treatment plans must include the use of patient-specific quality assurance (QA) before treatment to confirm dose accuracy. Materials and methods In this study, we compared and analyzed the results of dose verification using a multi-dimensional dose verification system Delta4 PT, an ionization chamber dosimeter, and gafchromic film, using data from 52 patients undergoing head and neck VMAT as the test material. Result Based on the results of the absolute dose verification for the ionization chamber dosimeter and Delta4 PT, taking an axial view, the upper limit of the 95% confidence interval was 3.13%, and the lower limit was -3.67%, indicating good agreement. These results mean that as long as absolute dose verification for the axial view does not deviate from this range, Delta4 PT can be used as an alternative to an ionization chamber dosimeter for absolute dose verification. When we then reviewed dose distribution verification, the pass rate for Delta4 PT was acceptable, and was less varied than that of gafchromic film. Conclusion This results in that provided the pass rate result for Delta4 PT does not fall below 96%, it can be used as a substitute for gafchromic film in dose distribution verification. These results indicate that patient-specific QA could be simplified.
Collapse
|
28
|
Rosenfeld AB, Biasi G, Petasecca M, Lerch MLF, Villani G, Feygelman V. Semiconductor dosimetry in modern external-beam radiation therapy. Phys Med Biol 2020; 65:16TR01. [PMID: 32604077 DOI: 10.1088/1361-6560/aba163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Sun Y, Zhou G, Zhu Y, Zou L, Tian Y. Appropriate reduction of the fragmentation level of subfield sequences to improve the accuracy of field delivery in IMRT for nasopharyngeal carcinoma. Br J Radiol 2020; 93:20190767. [PMID: 32026724 PMCID: PMC7217578 DOI: 10.1259/bjr.20190767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective: Due to the influence of gravity, inertia and friction, there will be deviation between the position of multileaf collimator (MLC) in the delivered field and the initial intensity modulated radiotherapy (IMRT) plan. This study explores the effects of the fragmentation level of subfield sequences on this deviation and seeks ways to improve the accuracy of field delivery in IMRT for nasopharyngeal carcinoma (NPC). Methods: 30 patients with NPC were selected, and two groups (groups A and B) of IMRT plans were made in Pinnacle planning system. Different planning parameters were used for optimization so that the subfield sequence fragmentation level of Group B was significantly lower than that of Group A. With the MapCheck2, verification plan was implemented in two ways: 0o gantry angle and the actual treatment angle, then the differences between the two verification results of each group plan were analyzed. Results: The γ-passing rate verified at the actual treatment angle was lower than that of 0o gantry angle for each group plan, whereas the Group B plan shows small reduction. Mean change value (Δ) was decreased from 1.01% (Group A) to 0.40% (Group B) with 3%/3 mm criteria and 2.88% (Group A) to 1.52% (Group B) with 2%/2 mm criteria, respectively. The smaller the difference (Δ), the actual output dose of the field is more consistent with the original plan. There was no significant correlation between this change and the angle of the field. Conclusion: Appropriately reducing the fragmentation level of subfield sequence can reduce the effect of field angle on MLC position and improve the delivery accuracy of IMRT plan. Advances in knowledge: The fragmentation level of the subfield sequence may have an impact on the accuracy of the delivery of the plan. This study demonstrates this assumption by comparing the differences between 0° and actual angle verification. Mean change value (Δ) was decreased from Group A to Group B. The smaller the difference (Δ), the actual output dose of the field is more consistent with the original plan. The result of this study may help us to understand that appropriately increasing the subfield area and reducing the fragmentation level of the subfield sequence can reduce the difference between the two verification results, which can further improve the accuracy of the plan delivery in IMRT and tumor treatment.
Collapse
Affiliation(s)
- Yanze Sun
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Gang Zhou
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Yaqun Zhu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Li Zou
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| |
Collapse
|
30
|
Gungor G, Korkmaz L, Kayalilar N, Aydin G, Yapici B, Zoto Mustafayev T, Atalar B, Ozyar E. Multichannel Film Dosimetry for Quality Assurance of Intensity Modulated Radiotherapy Treatment Plans Under 0.35 T Magnetic Field. Cureus 2020; 12:e7334. [PMID: 32313775 PMCID: PMC7164695 DOI: 10.7759/cureus.7334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose To evaluate the intensity modulated radiotherapy (IMRT) quality assurance (QA) results of the multichannel film dosimetry analysis with single scan method by using Gafchromic™ EBT3 (Ashland Inc., Covington, KY, USA) film under 0.35 T magnetic field. Methods Between September 2018 and June 2019, 70 patients were treated with ViewRay MRIdian® (ViewRay Inc., Mountain View, CA) linear accelerator (Linac). Film dosimetry QA plans were generated for all IMRT treatments. Multichannel film dosimetry for red, green and blue (RGB) channels were compared with treatment planning system (TPS) dose maps by gamma evaluation analysis. Results The mean gamma passing rates of RGB channels are 97.3% ± 2.26%, 96.0% ± 3.27% and 96.2% ± 3.14% for gamma evaluation with 2% DD/2 mm distance to agreement (DTA), respectively. Moreover, the mean gamma passing rates of RGB channels are 99.7% ± 0.41%, 99.6% ± 0.59% and 99.5% ± 0.67% for gamma evaluation with 3% DD/3 mm DTA, respectively. Conclusion The patient specific QA using Gafchromic™ EBT3 film with multichannel film dosimetry seems to be a suitable tool to implement for MR-guided IMRT treatments under 0.35 T magnetic field. Multichannel film dosimetry with Gafchromic™ EBT3 is a consistent QA tool for gamma evaluation of the treatment plans even with 2% DD/2 mm DTA under 0.35 T magnetic field presence.
Collapse
Affiliation(s)
- Gorkem Gungor
- Radiation Oncology, Acibadem Maslak Hospital, Istanbul, TUR
| | - Latif Korkmaz
- Radiation Oncology, Acibadem Maslak Hospital, Istanbul, TUR
| | | | - Gokhan Aydin
- Radiation Oncology, Acibadem Maslak Hospital, Istanbul, TUR
| | - Bulent Yapici
- Radiation Oncology, Acibadem Maslak Hospital, Istanbul, TUR
| | | | - Banu Atalar
- Radiation Oncology, Acibadem University School of Medicine, Istanbul, TUR
| | - Enis Ozyar
- Radiation Oncology, Acıbadem Hospital, Istanbul, TUR.,Radiation Oncology, Acıbadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, TUR
| |
Collapse
|
31
|
Utitsarn K, Biasi G, Stansook N, Alrowaili ZA, Petasecca M, Carolan M, Perevertaylo VL, Tomé WA, Kron T, Lerch MLF, Rosenfeld AB. Two-dimensional solid-state array detectors: A technique for in vivo dose verification in a variable effective area. J Appl Clin Med Phys 2019; 20:88-94. [PMID: 31609090 PMCID: PMC6839376 DOI: 10.1002/acm2.12744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We introduce a technique that employs a 2D detector in transmission mode (TM) to verify dose maps at a depth of dmax in Solid Water. TM measurements, when taken at a different surface-to-detector distance (SDD), allow for the area at dmax (in which the dose map is calculated) to be adjusted. METHODS We considered the detector prototype "MP512" (an array of 512 diode-sensitive volumes, 2 mm spatial resolution). Measurements in transmission mode were taken at SDDs in the range from 0.3 to 24 cm. Dose mode (DM) measurements were made at dmax in Solid Water. We considered radiation fields in the range from 2 × 2 cm2 to 10 × 10 cm2 , produced by 6 MV flattened photon beams; we derived a relationship between DM and TM measurements as a function of SDD and field size. The relationship was used to calculate, from TM measurements at 4 and 24 cm SDD, dose maps at dmax in fields of 1 × 1 cm2 and 4 × 4 cm2 , and in IMRT fields. Calculations were cross-checked (gamma analysis) with the treatment planning system and with measurements (MP512, films, ionization chamber). RESULTS In the square fields, calculations agreed with measurements to within ±2.36%. In the IMRT fields, using acceptance criteria of 3%/3 mm, 2%/2 mm, 1%/1 mm, calculations had respective gamma passing rates greater than 96.89%, 90.50%, 62.20% (for a 4 cm SSD); and greater than 97.22%, 93.80%, 59.00% (for a 24 cm SSD). Lower rates (1%/1 mm criterion) can be explained by submillimeter misalignments, dose averaging in calculations, noise artifacts in film dosimetry. CONCLUSIONS It is possible to perform TM measurements at the SSD which produces the best fit between the area at dmax in which the dose map is calculated and the size of the monitored target.
Collapse
Affiliation(s)
- Kananan Utitsarn
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
- Department of Medical ServicesLopburi Cancer HospitalLopburiThailand
| | - Giordano Biasi
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| | - Nauljun Stansook
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
- Department of RadiologyFaculty of MedicineMahidol UniversityBangkokThailand
| | - Ziyad A. Alrowaili
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
- Physics DepartmentCollege of ScienceJouf UniversitySakakaSaudi Arabia
| | - Marco Petasecca
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| | - Martin Carolan
- Illawarra Cancer Care Centre (ICCC)Wollongong HospitalWollongongNSWAustralia
| | | | - Wolfgang A. Tomé
- Department of Radiation OncologyAlbert Einstein College of MedicineNew York CityNYUSA
| | - Tomas Kron
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
- Department of Physical SciencesPeter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Cancer InstituteUniversity of MelbourneMelbourneVic.Australia
| | - Michael L. F. Lerch
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| | - Anatoly B. Rosenfeld
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| |
Collapse
|
32
|
Kubo K, Monzen H, Shimomura K, Matsumoto K, Sato T, Tamura M, Nakamatsu K, Ishii K, Kawamorita R. Comparison of patient-specific intensity modulated radiation therapy quality assurance for the prostate across multiple institutions. Rep Pract Oncol Radiother 2019; 24:600-605. [PMID: 31660052 DOI: 10.1016/j.rpor.2019.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/24/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022] Open
Abstract
Aim To evaluate the success of a patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA) practice for prostate cancer patients across multiple institutions using a questionnaire survey. Background The IMRT QA practice involves different methods of dose distribution verification and analysis at different institutions. Materials and Methods Two full-arc volumetric modulated arc therapy (VMAT) plan and 7 fixed-gantry IMRT plan with DMLC were used for patient specific QA across 22 institutions. The same computed tomography image and structure set were used for all plans. Each institution recalculated the dose distribution with fixed monitor units and without any modification. Single-point dose measurement with a cylindrical ionization chamber and dose distribution verification with a multi-detector or radiochromic film were performed, according to the QA process at each institution. Results Twenty-two institutions performed the patient-specific IMRT QA verifications. With a single-point dose measurement at the isocenter, the average difference between the calculated and measured doses was 0.5 ± 1.9%. For the comparison of dose distributions, 18 institutions used a two or three-dimensional array detector, while the others used Gafchromic film. In the γ test with dose difference/distance-to-agreement criteria of 3%-3 mm and 2%-2 mm with a 30% dose threshold, the median gamma pass rates were 99.3% (range: 41.7%-100.0%) and 96.4% (range: 29.4%-100.0%), respectively. Conclusion This survey was an informative trial to understand the verification status of patient-specific IMRT QA measurements for prostate cancer. In most institutions, the point dose measurement and dose distribution differences met the desired criteria.
Collapse
Affiliation(s)
- Kazuki Kubo
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, 377-2 Ohno-higashi, Osaka-sayama-shi, Osaka 589-8511, Japan.,Department of Radiation Oncology, Tane General Hospital, 1-12-21 Kujo-minami, Nishi-Ku Osaka-shi, Osaka 550-0025, Japan
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, 377-2 Ohno-higashi, Osaka-sayama-shi, Osaka 589-8511, Japan
| | - Kohei Shimomura
- Department of Radiological Technology, Faculty of Medical Science, Kyoto College of Medical Science, 1-3 Imakita Sonobe-cho Oyama-higashi-machi, Nantan-shi, Kyoto 622-0041, Japan
| | - Kenji Matsumoto
- Department of Central Radiology, Kindai University Hospital, 377-2 Ohno-higashi, Osaka-sayama-shi, Osaka 589-8511, Japan
| | - Tomoharu Sato
- Department of Radiation Oncology, Cancer Institute Hospital, 3-8-31, Ariake, Koto, Tokyo 135-8550, Japan
| | - Mikoto Tamura
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, 377-2 Ohno-higashi, Osaka-sayama-shi, Osaka 589-8511, Japan.,Department of Central Radiology, Kindai University Hospital, 377-2 Ohno-higashi, Osaka-sayama-shi, Osaka 589-8511, Japan
| | - Kiyoshi Nakamatsu
- Department of Radiation Oncology, Kindai University, 377-2 Ohno-higashi, Osaka-sayama-shi, Osaka 589-8511, Japan
| | - Kentaro Ishii
- Department of Radiation Oncology, Tane General Hospital, 1-12-21 Kujo-minami, Nishi-Ku Osaka-shi, Osaka 550-0025, Japan
| | - Ryu Kawamorita
- Department of Radiation Oncology, Tane General Hospital, 1-12-21 Kujo-minami, Nishi-Ku Osaka-shi, Osaka 550-0025, Japan
| |
Collapse
|
33
|
Biondi M, Vanzi E, De Otto G, Belmonte G, Banci Buonamici F. A correlation study between clinical dose distribution and gamma passing rates in pre-treatment Tomotherapy quality assurance. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab27a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Oderinde OM, Du Plessis F. Sensitivity evaluation of two commercial quality assurance systems to organ-dose variations of patient-specific VMAT plans. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1080/16878507.2019.1618080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Oluwaseyi M. Oderinde
- Department of Medical Physics, University of the Free State, Bloemfontein Republic of South Africa
| | - Freek Du Plessis
- Department of Medical Physics, University of the Free State, Bloemfontein Republic of South Africa
| |
Collapse
|
35
|
Evaluation of plan optimisers in prostate VMAT using the dose distribution index. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396919000098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractPurpose:Dose distribution index (DDI) is a treatment planning evaluation parameter, reflecting dosimetric information of target coverage that can help to spare organs at risk (OARs) and remaining volume at risk (RVR). The index has been used to evaluate and compare prostate volumetric modulated arc therapy (VMAT) plans using two different plan optimisers, namely photon optimisation (PO) and its predecessor, progressive resolution optimisation (PRO).Materials and methods:Twenty prostate VMAT treatment plans were created using the PO and PRO in this retrospective study. The 6 MV photon beams and a dose prescription of 78 Gy/39 fractions were used in plans with the same dose–volume criteria for plan optimisation. Dose–volume histograms (DVHs) of the planning target volume (PTV), as well as of OARs such as the rectum, bladder, left and right femur were determined in each plan. DDIs were calculated and compared for plans created by the PO and PRO based on DVHs of the PTV and all OARs.Results:The mean DDI values were 0·784 and 0·810 for prostate VMAT plans created by the PO and PRO, respectively. It was found that the DDI of the PRO plan was about 3·3% larger than the PO plan, which means that the dose distribution of the target coverage and sparing of OARs in the PRO plan was slightly better. Changing the weighting factors in different OARs would vary the DDI value by ∼7%. However, for plan comparison based on the same set of dose–volume criteria, the effect of weighting factor can be neglected because they were the same in the PO and PRO.Conclusions:Based on the very similar DDI values calculated from the PO and PRO plans, with the DDI value in the PRO plan slightly larger than that of the PO, it may be concluded that the PRO can create a prostate VMAT plan with slightly better dose distribution regarding the target coverage and sparing of OARs. Moreover, we found that the DDI is a simple and comprehensive dose–volume parameter for plan evaluation considering the target, OARs and RVR.
Collapse
|
36
|
Yang B, Wong WKR, Lam WW, Geng H, Kong CW, Cheung KY, Yu SK. A novel method for monitoring the constancy of beam path accuracy in CyberKnife. J Appl Clin Med Phys 2019; 20:109-119. [PMID: 31004395 PMCID: PMC6523015 DOI: 10.1002/acm2.12585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 11/24/2022] Open
Abstract
The aim of current work was to present a novel evaluation procedure implemented for checking the constancy of beam path accuracy of a CyberKnife system based on ArcCHECK. A tailor‐made Styrofoam with four implanted fiducial markers was adopted to enable the fiducial tracking during beam deliveries. A simple two‐field plan and an isocentric plan were created for determining the density override of ArcCHECK in MultiPlan and the constancy of beam path accuracy respectively. Correlation curves for all diodes involved in the study were obtained by analyzing the dose distributions calculated by MultiPlan after introducing position shifts in anteroposterior, superoinferior, and left–right directions. The ability of detecting systematic position error was also evaluated by changing the position of alignment center intentionally. The one standard deviation (SD) result for reproducibility test showed the RMS of 0.054 mm and the maximum of 0.263 mm, which was comparable to the machine self‐test result. The mean of absolute value of position errors in the constancy test was measured to 0.091 mm with a SD of 0.035 mm, while the root‐mean‐square was 0.127 mm with a SD of 0.034 mm. All introduced systematic position errors range from 0.3 to 2 mm were detected successfully. Efficient method for evaluating the constancy of beam path accuracy of CyberKnife has been developed and proven to be sensitive enough for detecting a systematic drift of robotic manipulator. Once the workflow is streamlined, our proposed method will be an effective and easy quality assurance procedure for medical physicists.
Collapse
Affiliation(s)
- Bin Yang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| | - Wing Kei Rebecca Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| | - Wai Wang Lam
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| | - Hui Geng
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| | - Chi Wah Kong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| | - Kin Yin Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| | - Siu Ki Yu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| |
Collapse
|
37
|
Patient-specific quality control for intensity-modulated radiation therapy and volumetric-modulated arc therapy using electronic portal imaging device and two-dimensional ion chamber array. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396918000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAimThe purpose of this study was to develop the patient-specific quality control (QC) process by most commonly used dosimeters in Bangladesh and recommend a suitable passing rate for QC, irrespective of the dosimetric tools used.Materials and methodsIntensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans of five head-and-neck (HN) and five prostate patients were selected for the patient-specific QC. These plans were generated using the Eclipse TPS v11·0 (Varian Medical Systems, Inc., Palo Alto, CA, USA) 6 MV X-ray from a Varian TrueBeam linear accelerator (Varian Medical Systems, Inc.) for each case. Each IMRT and VMAT plans were measured by two-dimensional (2D) ion chamber arrays (I’matriXX) and electronic portal imaging devices (EPID), respectively. The passing rates of the dosimetric tools were calculated using criteria of 3%/3 mm.ResultsThe average passing rates (±SD) of I’matriXX for prostate and HN were 97·9±0·76 and 98·88±0·24, respectively. For VMAT verification, the average passing rates of EPID for prostate for arc1 and arc2 were 96·15±0·49 and 97·8±0·70, respectively; similarly, for HN the rates were 97·85±0·63 and 97·2±0·56, respectively.ConclusionThe results showed that both the dosimeters can be used in patient-specific QC, although the EPID-based IMRT and VMAT QC is more advantageous in terms of time-saving and ease of use. Hence, for patient-specific QC, one can use the ion chamber arrays (I’matriXX) or EPID in hospital, but the systems need to be cross-checked.
Collapse
|
38
|
Matsumoto K, Otsuka M, Nishigaito N, Saika T. [Study of Stability and Sensitivity of Three-dimensional Diode Array Detector]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019; 75:900-905. [PMID: 31548467 DOI: 10.6009/jjrt.2019_jsrt_75.9.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE Intensity modulated radiation therapy (IMRT) has become a widely accepted and efficient treatment technique for many types of cancers. Patient's specific quality assurance (QA) should be performed with QA devices. Stability and sensitivity tests conducted on the ArcCHECK (AC) 3D diode array were performed. METHODS Set-up error test with AC was performed. The set-up position moved to lateral (mm), longitudinal (mm) and rotational (°) were 0.5, 1.0, 2.0 and 3.0, respectively. Sensitivity change test of diode array with AC through 230 days was also performed. Same array calibration data was applied to all measurements of volumetric-modulated arc therapy benchmark test through 230 days. Gamma method (2 mm/2% criteria) was performed to analyze the result of all measurements. RESULTS In the results of positional error, gamma pass rate become degenerate according to positional error became larger. With 0.5 mm or 0.5° positional error, decreasing rate of the pass rate of lateral, longitudinal and rotational were 1.0%, 2.5% and 4.2%, respectively. In the sensitivity change test, the gamma pass rate decreased 2.2%/100 days with same calibration data. CONCLUSION AC has highly sensitivity against positional error. Sensitivity of AC has been changed and pass rate was decreased 2.2%/100 days through 230 days. Array calibration should be performed in consideration of change of sensitivity.
Collapse
Affiliation(s)
| | | | | | - Takahiro Saika
- Department of Central Radiology, Kindai University Hospital
| |
Collapse
|
39
|
Characterization of EPID software for VMAT transit dosimetry. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:1021-1027. [DOI: 10.1007/s13246-018-0693-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
40
|
Chamunyonga C, Burbery J, Caldwell P, Rutledge P, Hargrave C. Radiation Therapy Students as Partners in the Development of Alternative Approaches to Assessing Treatment Planning Skills. J Med Imaging Radiat Sci 2018; 49:309-315. [PMID: 32074058 DOI: 10.1016/j.jmir.2018.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/30/2022]
Abstract
AIM The involvement of undergraduate students in assessment design is not a new concept. However, there is a paucity of evidence on radiation therapy students' participation in the design of teaching and learning activities. This article reports the development and initial evaluation of alternative approaches to assessing treatment planning skills and knowledge in undergraduate radiation therapy education. METHODS A group of undergraduate radiation therapy students participated in a series of semistructured focus group meetings. The students nominated a practical examination and an oral plan critique assessment approach. The lecturers embedded two formative tasks to test the approaches in a second-year treatment planning subject. Two surveys assessed the experiences of the students, authenticity, engagement, and the practicality of the tasks in the treatment planning subject. RESULTS The responses show that 92% of participants perceived the practical treatment planning examination as an authentic or real-world assessment approach. Moreover, 96% of the participants supported the notion of incorporating the tasks into the treatment planning subject. Most students (96%) perceived an oral critique of a treatment plan as an authentic approach and also supported the notion of incorporating oral critiques as an assessment task. Student engagement was high in both the practical and oral critique tasks, suggesting that lecturers could also include such tasks as formative activities to enhance learning. CONCLUSION Involving student voices in pedagogic assessment design positively influenced the development of new assessments for the treatment planning subject. The oral critiques and practical-based approaches nominated are likely to enhance authenticity to students' learning experiences and provide opportunities for students to develop desirable professional capabilities.
Collapse
Affiliation(s)
- Crispen Chamunyonga
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Julie Burbery
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter Caldwell
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peta Rutledge
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Catriona Hargrave
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Radiation Oncology PAH, Raymond Terrace, Brisbane, Queensland, Australia
| |
Collapse
|
41
|
Tamura M, Monzen H, Matsumoto K, Kubo K, Otsuka M, Inada M, Doi H, Ishikawa K, Nakamatsu K, Sumida I, Mizuno H, Yoon DK, Nishimura Y. Mechanical performance of a commercial knowledge-based VMAT planning for prostate cancer. Radiat Oncol 2018; 13:163. [PMID: 30170614 PMCID: PMC6119260 DOI: 10.1186/s13014-018-1114-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/23/2018] [Indexed: 12/03/2022] Open
Abstract
Background This study clarified the mechanical performance of volumetric modulated arc therapy (VMAT) plans for prostate cancer generated with a commercial knowledge-based treatment planning (KBP) and whether KBP system could be applied clinically without any major problems with mechanical performance. Methods Thirty consecutive prostate cancer patients who underwent VMAT using extant clinical plans were evaluated. The mechanical performance and dosimetric accuracy of the single optimized KBPs, which were trained with other 51 clinical plans, were compared with the clinical plans. The mechanical performance metrics were mean field area (MFA), mean asymmetry distance (MAD), cross-axis score (CAS), closed leaf score (CLS), small aperture score (SAS), leaf travel (LT), modulation complexity score (MCSv), and monitor unit (MU). The γ passing rates were evaluated with ArcCheck and EBT3 film. Results The mean mechanical performance metrics (clinical plan vs. KBP) were as follows: 18.28 cm2 vs. 17.25 cm2 (MFA), 21.08 mm vs. 20.47 mm (MAD), 0.54 vs. 0.55 (CAS), 0.040 vs. 0.051 (CLS), 0.20 vs. 0.23 (SAS5mm), 458.5 mm vs. 418.8 mm (LT), 0.27 vs. 0.27 (MCSv), and 618.2 vs. 622.1 (MU), respectively. Significant differences were observed for CLS and LT. The average γ passing rates (clinical plan vs. KBP) were as follows: 99.0% vs. 99.1% (3%/3 mm) and 92.4% vs. 92.5% (2%/2 mm) with ArcCHeck, and 99.5% vs. 99.4% (3%/3 mm) and 95.2% vs. 95.4% (2%/2 mm) with EBT3 film, respectively. Conclusions The KBP used lower multileaf collimator (MLC) travel and more closed or small MLC apertures than the clinical plan. The KBP system of VMAT for the prostate cancer was acceptable for clinical use without any major problems.
Collapse
Affiliation(s)
- Mikoto Tamura
- Department of Medical Physics, Graduate School of Medical Science, Kindai University, 377-2, Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Science, Kindai University, 377-2, Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan.
| | - Kenji Matsumoto
- Department of Medical Physics, Graduate School of Medical Science, Kindai University, 377-2, Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Kazuki Kubo
- Department of Medical Physics, Graduate School of Medical Science, Kindai University, 377-2, Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Masakazu Otsuka
- Department of Medical Physics, Graduate School of Medical Science, Kindai University, 377-2, Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Masahiro Inada
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2, Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Doi
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2, Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Kazuki Ishikawa
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2, Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Kiyoshi Nakamatsu
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2, Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Iori Sumida
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0071, Japan
| | - Hirokazu Mizuno
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0071, Japan
| | - Do-Kun Yoon
- Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul, 137-701, Korea
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2, Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| |
Collapse
|
42
|
Sun WZ, Zhang DD, Peng YL, Chen L, Kang DH, Wang B, Deng XW. Retrospective dosimetry study of intensity-modulated radiation therapy for nasopharyngeal carcinoma: measurement-guided dose reconstruction and analysis. Radiat Oncol 2018; 13:42. [PMID: 29544512 PMCID: PMC5856312 DOI: 10.1186/s13014-018-0993-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Conventional phantom-based planar dosimetry (2D-PBD) quality assurance (QA) using gamma pass rate (GP (%)) is inadequate to reflect clinically relevant dose error in intensity-modulated radiation therapy (IMRT), owing to a lack of information regarding patient anatomy and volumetric dose distribution. This study aimed to evaluate the dose distribution accuracy of IMRT delivery for nasopharyngeal carcinoma (NPC), which passed the 2D-PBD verification, using a measurement-guided 3D dose reconstruction (3D-MGR) method. METHODS Radiation treatment plans of 30 NPC cases and their pre-treatment 2D-PBD data were analyzed. 3D dose distribution was reconstructed on patient computed tomography (CT) images using the 3DVH software and compared to the treatment plans. Global and organ-specific dose GP (%), and dose-volume histogram (DVH) deviation of each structure was evaluated. Interdependency between GP (%) and the deviation of the volumetric dose was studied through correlation analysis. RESULTS The 3D-MGR achieved global GP (%) similar to conventional 2D-PBD in the same criteria. However, structure-specific GP (%) significantly decreased under stricter criteria, including the planning target volume (PTV). The average deviation of all inspected dose volumes (DV) and volumetric dose (VD) parameters ranged from - 2.93% to 1.17%, with the largest negative deviation in V100% of the PTVnx of - 15.66% and positive deviation in D1cc of the spinal cord of 6.66%. There was no significant correlation between global GP (%) of 2D-PBD or 3D-MGR and the deviation of the most volumetric dosimetry parameters (DV or VD), when the Pearson's coefficient value of 0.8 was used for correlation evaluation. CONCLUSION Even upon passing the pre-treatment phantom based dosimetric QA, there could still be risk of dose error like under-dose in PTVnx and overdose in critical structures. Measurement-guided 3D volumetric dosimetry QA is recommended as the more clinically efficient verification for the complicated NPC IMRT.
Collapse
Affiliation(s)
| | | | - Ying-Lin Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Li Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - De-Hua Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Bin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xiao-Wu Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
43
|
Utilising the Virtual Environment for Radiotherapy Training System to Support Undergraduate Teaching of IMRT, VMAT, DCAT Treatment Planning, and QA Concepts. J Med Imaging Radiat Sci 2018; 49:31-38. [DOI: 10.1016/j.jmir.2017.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/22/2022]
|
44
|
Vazquez-Quino LA, Huerta-Hernandez CI, Rangaraj D. Clinical experience with machine log file software for volumetric-modulated arc therapy techniques. Proc (Bayl Univ Med Cent) 2017; 30:276-279. [PMID: 28670056 DOI: 10.1080/08998280.2017.11929614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Mobius FX, an add-on software module from Mobius Medical Systems™ for intensity-modulated radiation therapy (IMRT) quality assurance (QA), uses linac treatment logs to efficiently calculate and verify the 3D dose delivered to patients. An advantage of the Mobius FX module is that it does not require device positioning. In this study, we compared the Mobius FX with another QA option, ArcCheck, as well as with the treatment planning system (TPS) using 30 volumetric-modulated arc therapy (VMAT) plans planned and delivered on a Varian TrueBeam linac. The plans, which involved 6 and 10 MV and consisted of 2 to 3 arcs per plan, were selected to provide a clinically relevant sample. The average gamma value for all plans between Mobius FX and the TPS was 99.96% for the criterion of 3%-3 mm and 98.80% for the criterion of 2%-2 mm. Very similar results were found when comparing Mobius FX and the TPS dose calculations with those acquired by traditional methods (i.e., ArcCheck). As the gamma criterion of the analysis was narrowed, discrepancies between Mobius FX and traditional methods appeared. Profile analysis showed the production of comparable results when using the Mobius FX method or traditional QA methods. In conclusion, the Mobius FX method for pretreatment of patient-specific QA is capable of producing results similar to those obtained by traditional methods.
Collapse
Affiliation(s)
- Luis Alberto Vazquez-Quino
- Radiation Oncology Department, Baylor Scott & White Health and Texas A&M Health Science Center College of Medicine, Temple, Texas
| | - Claudia Ivette Huerta-Hernandez
- Radiation Oncology Department, Baylor Scott & White Health and Texas A&M Health Science Center College of Medicine, Temple, Texas
| | - Dharanipathy Rangaraj
- Radiation Oncology Department, Baylor Scott & White Health and Texas A&M Health Science Center College of Medicine, Temple, Texas
| |
Collapse
|
45
|
Cheung JP, Perez-Andujar A, Morin O. Characterization of the effect of a new commercial transmission detector on radiation therapy beams. Pract Radiat Oncol 2017; 7:e559-e567. [PMID: 28666901 DOI: 10.1016/j.prro.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/07/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
|
46
|
Mein S, Rankine L, Adamovics J, Li H, Oldham M. Development of a 3D remote dosimetry protocol compatible with MRgIMRT. Med Phys 2017; 44:6018-6028. [DOI: 10.1002/mp.12565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 11/11/2022] Open
Affiliation(s)
- Stewart Mein
- Medical Physics Graduate Program; Duke University; Durham NC 27705 USA
| | - Leith Rankine
- Department of Radiation Oncology; The University of North Carolina; Chapel Hill NC 27599 USA
- Department of Radiation Oncology; Washington University School of Medicine; Saint Louis MO 63110 USA
| | - John Adamovics
- Department of Chemistry, Biochemistry & Physics; Rider University; Lawrenceville NY 08648 USA
| | - Harold Li
- Department of Radiation Oncology; Washington University School of Medicine; Saint Louis MO 63110 USA
| | - Mark Oldham
- Medical Physics Graduate Program; Duke University; Durham NC 27705 USA
- Department of Radiation Oncology; Duke University Medical Center; Durham NC 27710 USA
| |
Collapse
|
47
|
The effect of beam interruption during FFF-VMAT plans for SBRT. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:931-938. [PMID: 28971344 DOI: 10.1007/s13246-017-0588-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
To investigate the dosimetric effect of intended beam interruption during volumetric modulated arc therapy (VMAT) with flattening filter free (FFF) beam for exploring the possibility of deep inspiration breath hold stereotactic body radiation therapy (SBRT). A total of ten SBRT plans with 6 and 10 MV FFF beams were retrospectively selected. All plans consisted of four partial arcs, except one plan with six partial arcs. We delivered the plans using a Varian Truebeam™ with three different scenarios; without interruption (0int), with one intentional interruption (1int), or with two intentional interruptions (2int), per each partial arc. The treatment log files were exported from the treatment console, and the variations in delivered MU were evaluated at the beam interruption angles. The dose distributions were also measured using a 3D cylindrical diode array detector, ArcCHECK™. The 2D global gamma evaluations were performed, compared to the planned dose distribution, with 3%/3 and 4%/2 mm passing criterion. The dose difference (DD) was also determined between uninterrupted and interrupted data with 3, 2, 1, and 0.5% of global maximum dose. The interruption caused a total increase of 0.14 ± 0.05% and 0.25 ± 0.08% of the total planned MU, ranging from 1746 to 3261 MU, at the interrupted angles in 1int and 2int, respectively. All global gamma passing rates satisfied our clinical threshold of 90%, and the differences of passing rates were less than 0.3% on average with both criterions. All measured 1int and 2int data were within 3% DD from 0int measured data. For 6 MV FFF beams, the average passing rate with 2, 1, and 0.5% DD were 99.9 ± 0.2%, 92.3 ± 12.0%, and 81.9 ± 24.9%, respectively, between 0int and 1int, and 99.8 ± 0.4%, 92.1%12.4%, and 80.7 ± 26.5%, respectively, between 0int and 2int. For 10 MV FFF beams, the average passing rate with 2, 1, and 0.5% DD were 100.0 ± 0.2%, 95.4 ± 9.4% and 87.0 ± 19.8%, respectively, between 0int and 1int, and 99.9 ± 0.3%, 95.4 ± 9.7%, and 87.2 ± 21.3% between 0int and 2int. The dosimetric impact of beam interruption was investigated with small field and high dose rate FFF-VMAT SBRT plans. The delivered dose distributions with up to 12 interruptions per plan were still clinically acceptable. Only minimal changes were observed in Gamma, DD, and log file analysis.
Collapse
|
48
|
Ohira S, Ueda Y, Isono M, Masaoka A, Hashimoto M, Miyazaki M, Takashina M, Koizumi M, Teshima T. Can clinically relevant dose errors in patient anatomy be detected by gamma passing rate or modulation complexity score in volumetric-modulated arc therapy for intracranial tumors? JOURNAL OF RADIATION RESEARCH 2017; 58:685-692. [PMID: 28339918 PMCID: PMC5737460 DOI: 10.1093/jrr/rrx006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/28/2016] [Indexed: 06/06/2023]
Abstract
We investigated whether methods conventionally used to evaluate patient-specific QA in volumetric-modulated arc therapy (VMAT) for intracranial tumors detect clinically relevant dosimetric errors. VMAT plans with coplanar arcs were designed for 37 intracranial tumors. Dosimetric accuracy was validated by using a 3D array detector. Dose deviations between the measured and planned doses were evaluated by gamma analysis. In addition, modulation complexity score for VMAT (MCSv) for each plan was calculated. Three-dimensional dose distributions in patient anatomy were reconstructed using 3DVH software, and clinical deviations in dosimetric parameters between the 3DVH doses and planned doses were calculated. The gamma passing rate (GPR)/MCSv and the clinical dose deviation were evaluated using Pearson's correlation coefficient. Significant correlation (P < 0.05) between the clinical dose deviation and GPR was observed with both the 3%/3 mm and 2%/2 mm criteria in clinical target volume (D99), brain (D2), brainstem (D2) and chiasm (D2), albeit that the correlations were not 'strong' (0.38 < |r| < 0.54). The maximum dose deviations of brainstem were up to 4.9 Gy and 2.9 Gy for Dmax and D%, respectively in the case of high GPR (98.2% with 3%/3 mm criteria). Regarding MCSv, none of the evaluated organs showed a significant correlation with clinical dose deviation, and correlations were 'weak' or absent (0.01 < |r| < 0.21). The use of high GPR and MCSv values does not always detect dosimetric errors in a patient. Therefore, in-depth analysis with the DVH for patient-specific QA is considered to be preferable for guaranteeing safe dose delivery.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Nakamichi 1-3-3, Higashinari-ku, Osaka, 537-8511, Japan
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Nakamichi 1-3-3, Higashinari-ku, Osaka, 537-8511, Japan
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masaru Isono
- Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Nakamichi 1-3-3, Higashinari-ku, Osaka, 537-8511, Japan
| | - Akira Masaoka
- Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Nakamichi 1-3-3, Higashinari-ku, Osaka, 537-8511, Japan
| | - Misaki Hashimoto
- Department of Radiation Oncology, Yao Municipal Hospital, Yao, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Nakamichi 1-3-3, Higashinari-ku, Osaka, 537-8511, Japan
| | - Masaaki Takashina
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Nakamichi 1-3-3, Higashinari-ku, Osaka, 537-8511, Japan
| |
Collapse
|
49
|
Ellefson ST, Culberson WS, Bednarz BP, DeWerd LA, Bayouth JE. An analysis of the ArcCHECK-MR diode array's performance for ViewRay quality assurance. J Appl Clin Med Phys 2017; 18:161-171. [PMID: 28681448 PMCID: PMC5874930 DOI: 10.1002/acm2.12107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 11/06/2022] Open
Abstract
The ArcCHECK-MR diode array utilizes a correction system with a virtual inclinometer to correct the angular response dependencies of the diodes. However, this correction system cannot be applied to measurements on the ViewRay MR-IGRT system due to the virtual inclinometer's incompatibility with the ViewRay's multiple simultaneous beams. Additionally, the ArcCHECK's current correction factors were determined without magnetic field effects taken into account. In the course of performing ViewRay IMRT quality assurance with the ArcCHECK, measurements were observed to be consistently higher than the ViewRay TPS predictions. The goals of this study were to quantify the observed discrepancies and test whether applying the current factors improves the ArcCHECK's accuracy for measurements on the ViewRay. Gamma and frequency analysis were performed on 19 ViewRay patient plans. Ion chamber measurements were performed at a subset of diode locations using a PMMA phantom with the same dimensions as the ArcCHECK. A new method for applying directionally dependent factors utilizing beam information from the ViewRay TPS was developed in order to analyze the current ArcCHECK correction factors. To test the current factors, nine ViewRay plans were altered to be delivered with only a single simultaneous beam and were measured with the ArcCHECK. The current correction factors were applied using both the new and current methods. The new method was also used to apply corrections to the original 19 ViewRay plans. It was found the ArcCHECK systematically reports doses higher than those actually delivered by the ViewRay. Application of the current correction factors by either method did not consistently improve measurement accuracy. As dose deposition and diode response have both been shown to change under the influence of a magnetic field, it can be concluded the current ArcCHECK correction factors are invalid and/or inadequate to correct measurements on the ViewRay system.
Collapse
Affiliation(s)
- Steven T Ellefson
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Wesley S Culberson
- School of Medicine and Public Health, Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Bryan P Bednarz
- School of Medicine and Public Health, Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Larry A DeWerd
- School of Medicine and Public Health, Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - John E Bayouth
- School of Medicine and Public Health, Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
50
|
Stansook N, Utitsarn K, Petasecca M, Newall MK, Duncan M, Nitschke K, Carolan M, Metcalfe P, Lerch MLF, Perevertaylo VL, Tomé WA, Rosenfeld AB. Technical Note: Angular dependence of a 2D monolithic silicon diode array for small field dosimetry. Med Phys 2017; 44:4313-4321. [PMID: 28556261 DOI: 10.1002/mp.12377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This study aims to investigate the 2D monolithic silicon diode array size of 52 × 52 mm2 (MP512) angular response. An angular correction method has been developed that improves the accuracy of dose measurement in a small field. METHODS The MP512 was placed at the center of a cylindrical phantom, irradiated using 6 MV and 10 MV photons and incrementing the incidence of the beam angle in 15° steps from 0° to 180°, and then in 1° steps between 85° and 95°. The MP512 response was characterized for square field sizes varying between 1 × 1 cm2 and 10 × 10 cm2 . The angular correction factor was obtained as the ratio of MP512 response to EBT3 film measured doses as a function of the incidence angle (Ɵ) and was normalized at 0° incidence angle. Beam profiles of the corrected MP512 responses were compared with the EBT3 responses to verify the effectiveness of the method adopted. RESULTS The intrinsic angular dependence of the MP512 shows maximum relative deviation from the response normalized to 0° of 18.5 ± 0.5% and 15.5 ± 0.5% for 6 MV and 10 MV, respectively, demonstrating that the angular response is sensitive to the energy. In contrast, the variation of angular response is less affected by field size. Comparison of cross-plane profiles measured by the corrected MP512 and EBT3 shows an agreement within ±2% for all field sizes when the beams irradiated the array at 0°, 45°, 135°, and 180° angles of incidence from the normal to the detector plane. At 90° incidence, corresponding to a depth dose measurement, up to a 6% discrepancy was observed for a 1 × 1 cm2 field of 6 MV. CONCLUSION An angular correction factor can be adopted for small field sizes. Measurements discrepancies could be encountered when irradiating with very small fields parallel to the detector plane. Using this approach, the MP512 is shown to be a suitable detector for 2D dose mapping of small field size photon beams.
Collapse
Affiliation(s)
- Nauljun Stansook
- Centre for Medical Radiation Physics, University of Wollongong, NSW, 2500, Australia.,Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Kananan Utitsarn
- Centre for Medical Radiation Physics, University of Wollongong, NSW, 2500, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, NSW, 2500, Australia.,Illawarra Heath Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Matthew K Newall
- Centre for Medical Radiation Physics, University of Wollongong, NSW, 2500, Australia
| | - Mitchell Duncan
- Centre for Medical Radiation Physics, University of Wollongong, NSW, 2500, Australia
| | - Kym Nitschke
- Illawarra Heath Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Martin Carolan
- Centre for Medical Radiation Physics, University of Wollongong, NSW, 2500, Australia.,Illawarra Heath Medical Research Institute, Wollongong, NSW, 2522, Australia.,Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, 2500, Australia
| | - Peter Metcalfe
- Centre for Medical Radiation Physics, University of Wollongong, NSW, 2500, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong, NSW, 2500, Australia.,Illawarra Heath Medical Research Institute, Wollongong, NSW, 2522, Australia
| | | | - Wolfgang A Tomé
- Centre for Medical Radiation Physics, University of Wollongong, NSW, 2500, Australia.,Department of Radiation Oncology, Albert Einstein College of Medicine, NY, 10461, USA
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, NSW, 2500, Australia.,Illawarra Heath Medical Research Institute, Wollongong, NSW, 2522, Australia
| |
Collapse
|