1
|
Wang HX, Chen Y, Haque Z, de Veer M, Egan G, Wang B. Sialylated milk oligosaccharides alter neurotransmitters and brain metabolites in piglets: an In vivo magnetic resonance spectroscopic (MRS) study. Nutr Neurosci 2021; 24:885-895. [PMID: 31746283 DOI: 10.1080/1028415x.2019.1691856] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background: Human milk contains high concentrations and diversity of sialylated oligosaccharides that have multifunctional health benefits, however, their potential role in optimizing neurodevelopment remains unknown.Objective: To investigate the effect of sialylated milk oligosaccharides (SMOS) intervention on neurotransmitters and brain metabolites in piglets.Methods: 3-day-old piglets were randomly allocated to one of three groups and fed either standard sow milk replacer (SMR) alone (n = 15), SMR supplemented with sialyllactose 9.5 g/kg (SL, n = 16) or a combination of SL and 6'-sialyllactosamine 9.5 g/kg (SL/SLN, n = 15) for 35 days. Brain spectra were acquired using a 3T Magnetic Resonance Spectroscopic (MRS) system.Results: SMOS fed piglets were observed to have significantly increased the absolute levels of myo-inositol (mIns) and glutamate + glutamine (Glx), in particular, the SL/SLN group. Similar findings were found in the relative amount of these metabolites calculated as ratios to creatine (Cr), choline (Cho) and N-acetylaspartate (NAA) respectively (P < .05). In addition, there were significant positive correlations of brain NAA, total NAA (TNAA), mIns, total Cho (TCho), total Cr (TCr), scyllo-Inositol (SI) and glutathione (Glth) with total white matter volume; Glu and SI with whole brain volume; and SI with whole brain weight respectively (P < .01). SLN and 3'SL intake were closely correlated with the levels of brain Glu, mlns and Glx in the treatment groups only (P < .01-.05).Conclusions: We provide in vivo evidences that milk SMOS can alter many important brain metabolites and neurotransmitters required for optimizing neurodevelopment in piglets, an animal model of human infants.
Collapse
Affiliation(s)
- Hong Xin Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, Australia
| | - Yue Chen
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, Australia
| | - Ziaul Haque
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Bing Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
2
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
3
|
Urbanik A, Kozub J, Karcz P, Ostrogórska M. Changes in the brain directly following alcohol consumption-a study of healthy male individuals, with the use of proton magnetic resonance spectroscopy (1HMRS) and diffusion (DWI). Alcohol Alcohol 2021; 56:415-424. [PMID: 33179046 DOI: 10.1093/alcalc/agaa119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 11/12/2022] Open
Abstract
AIMS To use proton magnetic resonance spectroscopy (1HMRS) and diffusion weighted imaging (DWI) to identify ethanol in the brain directly after consumption, and examine changes in brain metabolite levels and brain microstructure relative to the duration of time following exposure to alcohol. METHODS The study involved 44 male volunteers (18-55 years). All brain changes were assessed in the frontal lobes, occipital lobes, basal ganglia and cerebellum, however the detailed analyses focused on the frontal lobes. All participants were examined four times, i.e. before and 0.5-hour, 1 hour and 2 hours after consumption of 150 mL pure vodka (60 g of ethanol). RESULTS The highest ethanol levels were identified between 0.5 and 1 hour following alcohol intake. There were significant increases in the concentrations of lipids and lactates approximately one hour after alcohol consumption, and the concentration levels were found to normalise during the following two hours. Some statistically insignificant trends of changes were found for tCr, tCho, mI, GABA, Glc, Glx and tNAA. For the DWI and ADC (Apparent Diffusion Coefficient of water) values, the findings showed statistically insignificant decrease and increase, followed by a tendency towards normalisation. Similar associations in changes of metabolite concentrations and DWI and ADC values were found in the other locations investigated in the study. CONCLUSION A single dose of alcohol as used in this experiment produces increases in lipids and lactates in brain tissues that appear reversible.
Collapse
Affiliation(s)
- Andrzej Urbanik
- Department of Radiology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Justyna Kozub
- Department of Radiology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Paulina Karcz
- Department of Electroradiology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Monika Ostrogórska
- Department of Radiology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
Blood myo-inositol concentrations in preterm and term infants. J Perinatol 2021; 41:247-254. [PMID: 32934363 PMCID: PMC7889639 DOI: 10.1038/s41372-020-00799-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To describe relationship between cord blood (representing fetal) myo-inositol concentrations and gestational age (GA) and to determine trends of blood concentrations in enterally and parenterally fed infants from birth to 70 days of age. DESIGN/METHODS Samples were collected in 281 fed or unfed infants born in 2005 and 2006. Myo-inositol concentrations were displayed in scatter plots and analyzed with linear regression models of natural log-transformed values. RESULTS In 441 samples obtained from 281 infants, myo-inositol concentrations varied from nondetectable to 1494 μmol/L. Cord myo-inositol concentrations decreased an estimated 11.9% per week increase in GA. Postnatal myo-inositol concentrations decreased an estimated 14.3% per week increase in postmenstrual age (PMA) and were higher for enterally fed infants compared to unfed infants (51% increase for fed vs. unfed infants). CONCLUSIONS Fetal myo-inositol concentrations decreased with increasing GA. Postnatal concentrations decreased with increasing PMA and were higher among enterally fed than unfed infants.
Collapse
|
5
|
Cecil KM, Naidu P. Advances in Pediatric Neuroimaging. MR Spectroscopy. Semin Pediatr Neurol 2020; 33:100798. [PMID: 32331612 DOI: 10.1016/j.spen.2020.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The basic principles of proton magnetic resonance spectroscopy are presented in this work to briefly familiarize the clinician and to distinguish spectroscopy from magnetic resonance imaging. For those knowledgeable about proton magnetic resonance spectroscopy, this article will also provide the reader an update on recent technical and translational developments relevant to pediatric neurologic conditions. These developments were selected for their potential impact towards the clinical care of patients in pediatric-based practices. At this point in time, these new spectroscopic approaches are currently applied to established populations with known diseases. This information will inform our knowledge about diseases and guide therapeutic options for the future.
Collapse
Affiliation(s)
- Kim M Cecil
- Professor of Radiology, Pediatrics, Neuroscience and Environmental Health, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH.
| | - Padmaja Naidu
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
6
|
Diogo MC, Glatter S, Binder J, Kiss H, Prayer D. The MRI spectrum of congenital cytomegalovirus infection. Prenat Diagn 2020; 40:110-124. [PMID: 31802515 PMCID: PMC7027449 DOI: 10.1002/pd.5591] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023]
Abstract
Human cytomegalovirus (CMV) is an ubiquitous pathogen, with a high worldwide seroprevalence. When acquired in the prenatal period, congenital CMV (cCMV) is a major cause of neurodevelopmental sequelae and hearing loss. cCMV remains an underdiagnosed condition, with no systematic screening implemented in pregnancy or in the postnatal period. Therefore, imaging takes a prominent role in prenatal diagnosis of cCMV. With the prospect of new viable therapies, accurate and timely diagnosis becomes paramount, as well as identification of fetuses at risk for neurodevelopmental sequelae. Fetal magnetic resonance imaging (MRI) provides a complementary method to ultrasound (US) in fetal brain and body imaging. Anterior temporal lobe lesions are the most specific finding, and MRI is superior to US in their detection. Other findings such as ventriculomegaly, cortical malformations and calcifications, as well as hepatosplenomegaly, liver signal changes and abnormal effusions are unspecific. However, when seen in combination these should raise the suspicion of fetal infection, highlighting the need for a full fetal assessment. Still, some fetuses deemed normal on prenatal imaging are symptomatic at birth or develop delayed cCMV-associated symptoms, leaving room for improvement of diagnostic tools. Advanced MR sequences may help in this field and in determining prognosis, but further studies are needed.
Collapse
Affiliation(s)
- Mariana C. Diogo
- Department of Image Guided TherapyUniversity Clinic for Neuroradiology and Musculoskeletal Radiology, Medical University of ViennaViennaAustria
| | - Sarah Glatter
- Department of Image Guided TherapyUniversity Clinic for Neuroradiology and Musculoskeletal Radiology, Medical University of ViennaViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Julia Binder
- Department of Obstetrics and GynecologyMedical University of ViennaViennaAustria
| | - Herbert Kiss
- Department of Obstetrics and GynecologyMedical University of ViennaViennaAustria
| | - Daniela Prayer
- Department of Image Guided TherapyUniversity Clinic for Neuroradiology and Musculoskeletal Radiology, Medical University of ViennaViennaAustria
| |
Collapse
|
7
|
Counsell SJ, Arichi T, Arulkumaran S, Rutherford MA. Fetal and neonatal neuroimaging. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:67-103. [PMID: 31324329 DOI: 10.1016/b978-0-444-64029-1.00004-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) can provide detail of the soft tissues of the fetal and neonatal brain that cannot be obtained by any other imaging modality. Conventional T1 and T2 weighted sequences provide anatomic detail of the normally developing brain and can demonstrate lesions, including those associated with preterm birth, hypoxic ischemic encephalopathy, perinatal arterial stroke, infections, and congenital malformations. Specialized imaging techniques can be used to assess cerebral vasculature (magnetic resonance angiography and venography), cerebral metabolism (magnetic resonance spectroscopy), cerebral perfusion (arterial spin labeling), and function (functional MRI). A wealth of quantitative tools, most of which were originally developed for the adult brain, can be applied to study the developing brain in utero and postnatally including measures of tissue microstructure obtained from diffusion MRI, morphometric studies to measure whole brain and regional tissue volumes, and automated approaches to study cortical folding. In this chapter, we aim to describe different imaging approaches for the fetal and neonatal brain, and to discuss their use in a range of clinical applications.
Collapse
Affiliation(s)
- Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Urbanik A, Cichocka M, Kozub J, Karcz P, Herman-Sucharska I. Evaluation of changes in biochemical composition of fetal brain between 18th and 40th gestational week in proton magnetic resonance spectroscopy. J Matern Fetal Neonatal Med 2018; 32:2493-2499. [DOI: 10.1080/14767058.2018.1439009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrzej Urbanik
- Department of Radiology, Collegium Medicum of the Jagiellonian University, Kraków, Poland
| | - Monika Cichocka
- Department of Radiology, Collegium Medicum of the Jagiellonian University, Kraków, Poland
| | - Justyna Kozub
- Department of Radiology, Collegium Medicum of the Jagiellonian University, Kraków, Poland
| | - Paulina Karcz
- Department of Electroradiology, Collegium Medicum of the Jagiellonian University, Kraków, Poland
| | - Izabela Herman-Sucharska
- Department of Electroradiology, Collegium Medicum of the Jagiellonian University, Kraków, Poland
| |
Collapse
|
9
|
Urbanik A, Cichocka M, Kozub J, Karcz P, Herman-Sucharska I. Brain Maturation-Differences in Biochemical Composition of Fetal and Child's Brain. Fetal Pediatr Pathol 2017; 36:380-386. [PMID: 29144870 DOI: 10.1080/15513815.2017.1346019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION The aim of this study was to evaluate differences in 1H MRS spectra of the brain of fetuses and children from 6 to 11 years of age. MATERIAL AND METHODS 21 healthy fetuses in the third trimester and 22 children were examined using the proton nuclear magnetic resonance. The relative metabolite concentrations to the sum of all metabolites were calculated. RESULTS In the 1H MRS spectra of the brain from fetuses and children, there are the same characteristic peaks: N-acetylaspartate (NAA), creatine (Cr), choline (Cho), and myo-inositol (mI). NAA/Σ, NAA/Cr, and Cr/Σ concentrations are significantly higher and Cho/Σ, Cho/Cr, mI/Σ, and mI/Cr are significantly lower in children than in the fetuses. CONCLUSIONS It was found that the brain metabolism changes from fetal life to childhood. The results of this study may provide a valuable basis for further research on brain maturation and "healthy aging."
Collapse
Affiliation(s)
- Andrzej Urbanik
- a Department of Radiology , Uniwersytet Jagiellonski w Krakowie Collegium Medicum , Krakow , Poland
| | - Monika Cichocka
- a Department of Radiology , Uniwersytet Jagiellonski w Krakowie Collegium Medicum , Krakow , Poland
| | - Justyna Kozub
- a Department of Radiology , Uniwersytet Jagiellonski w Krakowie Collegium Medicum , Krakow , Poland
| | - Paulina Karcz
- b Department of Electroradiology , Uniwersytet Jagiellonski w Krakowie Collegium Medicum , Krakow , Poland
| | - Izabela Herman-Sucharska
- b Department of Electroradiology , Uniwersytet Jagiellonski w Krakowie Collegium Medicum , Krakow , Poland
| |
Collapse
|
10
|
Detection and assessment of brain injury in the growth-restricted fetus and neonate. Pediatr Res 2017; 82:184-193. [PMID: 28234891 DOI: 10.1038/pr.2017.37] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/14/2017] [Indexed: 11/08/2022]
Abstract
Fetal growth restriction (FGR) is a common complication of pregnancy and, in severe cases, is associated with elevated rates of perinatal mortality, neonatal morbidity, and poor neurodevelopmental outcomes. The leading cause of FGR is placental insufficiency, with the placenta failing to adequately meet the increasing oxygen and nutritional needs of the growing fetus with advancing gestation. The resultant chronic fetal hypoxia induces a decrease in fetal growth, and a redistribution of blood flow preferentially to the brain. However, this adaptation does not ensure normal brain development. Early detection of brain injury in FGR, allowing for the prediction of short- and long-term neurodevelopmental consequences, remains a significant challenge. Furthermore, in FGR infants the detection and diagnosis of neuropathology is complicated by preterm birth, the etiological heterogeneity of FGR, timing of onset of growth restriction, its severity, and coexisting complications. In this review, we examine existing and emerging diagnostic tools from human and preclinical studies for the detection and assessment of brain injury in FGR fetuses and neonates. Increased detection rates, and early detection of brain injury associated with FGR, will offer opportunities for developing and assessing interventions to improve long-term outcomes.
Collapse
|
11
|
Wang T, Chen P, Bian D, Chen J. Application of spectroscopy ( 1HMRS) to assess liver metabolite concentrations in rats with intrauterine growth restriction. J Matern Fetal Neonatal Med 2016; 30:1001-1004. [PMID: 27050741 DOI: 10.1080/14767058.2016.1174989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Proton magnetic resonance spectroscopy (1H-MRS) measurement of liver metabolism in intrauterine growth restriction rats has seldom been reported. This study investigated the application of 1H-MRS in assessing liver metabolism in newborn pups that experienced intrauterine growth restriction. METHODS Intra-uterine growth restriction was established by feeding rats low-protein diets during pregnancy. Newborn pups received conventional magnetic resonance imaging and 1H-MRS using a 3.0T whole body MR scanner at 3, 8 and 12 weeks post birth. RESULTS The success rate of 1H-MRS was 83.33%. Significantly lower body weight, BMI and body length at 3 weeks as well as significantly lower body weight, BMI and waist circumference at 8 and 12 weeks were observed in newborn pups of IUGR rats compared with pups of control rats. Significant differences in ACho/H2O, ACr/H2O, AGlx/H2O and ALipid/H2O at 3 and 8 weeks as well as significant differences in ACr/H2O, ALipid/H2O and AGlx/H2O at 12 weeks were observed between pups of control rats and pups of IUGR rats. CONCLUSION 1H-MRS allows noninvasive assessment of liver metabolism in the rat and demonstrated the poor liver development of rats that experienced IUGR.
Collapse
Affiliation(s)
- Tao Wang
- a Department of Neonatology , Children's Medical Center, Second Xiangya Hospital, Central South University , Changsha , P.R. China and
| | - Pingyang Chen
- a Department of Neonatology , Children's Medical Center, Second Xiangya Hospital, Central South University , Changsha , P.R. China and
| | - Dujun Bian
- b Department of Radiology , Second Xiangya Hospital, Central South University , Changsha , P.R. China
| | - Juncao Chen
- a Department of Neonatology , Children's Medical Center, Second Xiangya Hospital, Central South University , Changsha , P.R. China and
| |
Collapse
|
12
|
Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol 2016; 594:807-23. [PMID: 26607046 PMCID: PMC4753264 DOI: 10.1113/jp271402] [Citation(s) in RCA: 360] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
Fetal growth restriction (FGR) is a significant complication of pregnancy describing a fetus that does not grow to full potential due to pathological compromise. FGR affects 3-9% of pregnancies in high-income countries, and is a leading cause of perinatal mortality and morbidity. Placental insufficiency is the principal cause of FGR, resulting in chronic fetal hypoxia. This hypoxia induces a fetal adaptive response of cardiac output redistribution to favour vital organs, including the brain, and is in consequence called brain sparing. Despite this, it is now apparent that brain sparing does not ensure normal brain development in growth-restricted fetuses. In this review we have brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of FGR. In both humans and animals, neurodevelopmental outcomes are influenced by the timing of the onset of FGR, the severity of FGR, and gestational age at delivery. FGR is broadly associated with reduced total brain volume and altered cortical volume and structure, decreased total number of cells and myelination deficits. Brain connectivity is also impaired, evidenced by neuronal migration deficits, reduced dendritic processes, and less efficient networks with decreased long-range connections. Subsequent to these structural alterations, short- and long-term functional consequences have been described in school children who had FGR, most commonly including problems in motor skills, cognition, memory and neuropsychological dysfunctions.
Collapse
Affiliation(s)
- Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, and The Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Petra S Huppi
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Switzerland
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Jakab A, Pogledic I, Schwartz E, Gruber G, Mitter C, Brugger PC, Langs G, Schöpf V, Kasprian G, Prayer D. Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology. Semin Ultrasound CT MR 2015; 36:465-75. [DOI: 10.1053/j.sult.2015.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Seferovic MD, Goodspeed DM, Chu DM, Krannich LA, Gonzalez-Rodriguez PJ, Cox JE, Aagaard KM. Heritable IUGR and adult metabolic syndrome are reversible and associated with alterations in the metabolome following dietary supplementation of 1-carbon intermediates. FASEB J 2015; 29:2640-52. [PMID: 25757570 PMCID: PMC4447228 DOI: 10.1096/fj.14-266387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/19/2015] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome (MetS), following intrauterine growth restriction (IUGR), is epigenetically heritable. Recently, we abrogated the F2 adult phenotype with essential nutrient supplementation (ENS) of intermediates along the 1-carbon pathway. With the use of the same grandparental uterine artery ligation model, we profiled the F2 serum metabolome at weaning [postnatal day (d)21; n = 76] and adulthood (d160; n = 12) to test if MetS is preceded by alterations in the metabolome. Indicative of developmentally programmed MetS, adult F2, formerly IUGR rats, were obese (621 vs. 461 g; P < 0.0001), dyslipidemic (133 vs. 67 mg/dl; P < 0.001), and glucose intolerant (26 vs. 15 mg/kg/min; P < 0.01). Unbiased gas chromatography-mass spectrometry (GC-MS) profiling revealed 34 peaks corresponding to 12 nonredundant metabolites and 9 unknowns to be changing at weaning [false discovery rate (FDR) < 0.05]. Markers of later-in-life MetS included citric acid, glucosamine, myoinositol, and proline (P < 0.03). Hierarchical clustering revealed grouping by IUGR lineage and supplementation at d21 and d160. Weanlings grouped distinctly for ENS and IUGR by partial least-squares discriminate analysis (PLS-DA; P < 0.01), whereas paternal and maternal IUGR (IUGR(pat)/IUGR(mat), respectively) control-fed rats, destined for MetS, had a distinct metabolome at weaning (randomForest analysis; class error < 0.1) and adulthood (PLS-DA; P < 0.05). In sum, we have found that alterations in the metabolome accompany heritable IUGR, precede adult-onset MetS, and are partially amenable to dietary intervention.
Collapse
Affiliation(s)
- Maxim D Seferovic
- Departments of *Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Molecular and Cell Biology, Molecular and Human Genetics, and Molecular Physiology and Biophysics, and Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Metabolomics Core, University of Utah, Salt Lake City, Utah, USA
| | - Danielle M Goodspeed
- Departments of *Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Molecular and Cell Biology, Molecular and Human Genetics, and Molecular Physiology and Biophysics, and Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Metabolomics Core, University of Utah, Salt Lake City, Utah, USA
| | - Derrick M Chu
- Departments of *Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Molecular and Cell Biology, Molecular and Human Genetics, and Molecular Physiology and Biophysics, and Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Metabolomics Core, University of Utah, Salt Lake City, Utah, USA
| | - Laura A Krannich
- Departments of *Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Molecular and Cell Biology, Molecular and Human Genetics, and Molecular Physiology and Biophysics, and Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Metabolomics Core, University of Utah, Salt Lake City, Utah, USA
| | - Pablo J Gonzalez-Rodriguez
- Departments of *Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Molecular and Cell Biology, Molecular and Human Genetics, and Molecular Physiology and Biophysics, and Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Metabolomics Core, University of Utah, Salt Lake City, Utah, USA
| | - James E Cox
- Departments of *Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Molecular and Cell Biology, Molecular and Human Genetics, and Molecular Physiology and Biophysics, and Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Metabolomics Core, University of Utah, Salt Lake City, Utah, USA
| | - Kjersti M Aagaard
- Departments of *Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Molecular and Cell Biology, Molecular and Human Genetics, and Molecular Physiology and Biophysics, and Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Metabolomics Core, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|