1
|
Ngolong Ngea GL, Yang Q, Xu M, Ianiri G, Dhanasekaran S, Zhang X, Bi Y, Zhang H. Revisiting the current and emerging concepts of postharvest fresh fruit and vegetable pathology for next-generation antifungal technologies. Compr Rev Food Sci Food Saf 2024; 23:e13397. [PMID: 38924311 DOI: 10.1111/1541-4337.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Fungal infections of fresh fruits and vegetables (FFVs) can lead to safety problems, including consumer poisoning by mycotoxins. Various strategies exist to control fungal infections of FFVs, but their effectiveness and sustainability are limited. Recently, new concepts based on the microbiome and pathobiome have emerged and offer a more holistic perspective for advancing postharvest pathogen control techniques. Understanding the role of the microbiome in FFV infections is essential for developing sustainable control strategies. This review examines current and emerging approaches to postharvest pathology. It reviews what is known about the initiation and development of infections in FFVs. As a promising concept, the pathobiome offers new insights into the basic mechanisms of microbial infections in FFVs. The underlying mechanisms uncovered by the pathobiome are being used to develop more relevant global antifungal strategies. This review will also focus on new technologies developed to target the microbiome and members of the pathobiome to control infections in FFVs and improve safety by limiting mycotoxin contamination. Specifically, this review stresses emerging technologies related to FFVs that are relevant for modifying the interaction between FFVs and the microbiome and include the use of microbial consortia, the use of genomic technology to manipulate host and microbial community genes, and the use of databases, deep learning, and artificial intelligence to identify pathobiome markers. Other approaches include programming the behavior of FFVs using synthetic biology, modifying the microbiome using sRNA technology, phages, quorum sensing, and quorum quenching strategies. Rapid adoption and commercialization of these technologies are recommended to further improve the overall safety of FFVs.
Collapse
Affiliation(s)
- Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Département de Transformation et Contrôle de qualité des Produits Halieutiques, Institut des Sciences Halieutiques, Université de Douala à Yabassi, Douala-Bassa, Cameroun
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Meiqiu Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | | | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Hopkins AJM, Brace AJ, Bruce JL, Hyde J, Fontaine JB, Walden L, Veber W, Ruthrof KX. Drought legacy interacts with wildfire to alter soil microbial communities in a Mediterranean climate-type forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170111. [PMID: 38232837 DOI: 10.1016/j.scitotenv.2024.170111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Mediterranean forest ecosystems will be increasingly affected by hotter drought and more frequent and severe wildfire events in the future. However, little is known about the longer-term responses of these forests to multiple disturbances and the forests' capacity to maintain ecosystem function. This is particularly so for below-ground organisms, which have received less attention than those above-ground, despite their essential contributions to forest function. We investigated rhizosphere microbial communities in a resprouting Eucalyptus marginata forest, southwestern Australia, that had experienced a severe wildfire four years previously, and a hotter drought eight years previously. Our aim was to understand how microbial communities are affected over longer-term trajectories by hotter drought and wildfire, singularly, and in combination. Fungal and bacterial DNA was extracted from soil samples, amplified, and subjected to high throughput sequencing. Richness, diversity, composition, and putative functional groups were then examined. We found a monotonic decrease in fungal, but not bacterial, richness and diversity with increasing disturbance with the greatest changes resulting from the combination of drought and wildfire. Overall fungal and bacterial community composition reflected a stronger effect of fire than drought, but the combination of both produced the greatest number of indicator taxa for fungi, and a significant negative effect on the abundance of several fungal functional groups. Key mycorrhizal fungi, fungal saprotrophs and fungal pathogens were found at lower proportions in sites affected by drought plus wildfire. Wildfire had a positive effect on bacterial hydrogen and bacterial nitrogen recyclers. Fungal community composition was positively correlated with live tree height. These results suggest that microbial communities, in particular key fungal functional groups, are highly responsive to wildfire following drought. Thus, a legacy of past climate conditions such as hotter drought can be important for mediating the responses of soil microbial communities to subsequent disturbance like wildfire.
Collapse
Affiliation(s)
- A J M Hopkins
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - A J Brace
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - J L Bruce
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - J Hyde
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia
| | - J B Fontaine
- School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - L Walden
- Soil and Landscape Science, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - W Veber
- School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - K X Ruthrof
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia; School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
3
|
Markussen Bjorbaekmo MF, Brodie J, Krabberød AK, Logares R, Fuss J, Fredriksen S, Wold-Dobbe A, Shalchian-Tabrizi K, Bass D. 18S rDNA gene metabarcoding of microeukaryotes and epi-endophytes in the holobiome of seven species of large brown algae. JOURNAL OF PHYCOLOGY 2023; 59:859-878. [PMID: 37726938 DOI: 10.1111/jpy.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/21/2023]
Abstract
Brown algae (Phaeophyceae) are habitat-forming species in coastal ecosystems and include kelp forests and seaweed beds that support a wide diversity of marine life. Host-associated microbial communities are an integral part of phaeophyte biology, and whereas the bacterial microbial partners have received considerable attention, the microbial eukaryotes associated with brown algae have hardly been studied. Here, we used broadly targeted "pan-eukaryotic" primers (metabarcoding) to investigate brown algal-associated eukaryotes (the eukaryome). Using this approach, we aimed to investigate the eukaryome of seven large brown algae that are important and common species in coastal ecosystems. We also aimed to assess whether these macroalgae harbor novel eukaryotic diversity and to ascribe putative functional roles to the host-associated eukaryome based on taxonomic affiliation and phylogenetic placement. We detected a significant diversity of microeukaryotic and algal lineages associated with the brown algal species investigated. The operational taxonomic units (OTUs) were taxonomically assigned to 10 of the eukaryotic major supergroups, including taxonomic groups known to be associated with seaweeds as epibionts, endobionts, parasites, and commensals. Additionally, we revealed previously unrecorded sequence types, including novel phaeophyte OTUs, particularly in the Fucus spp. samples, that may represent fucoid genomic variants, sequencing artifacts, or undescribed epi-/endophytes. Our results provide baseline data and technical insights that will be useful for more comprehensive seaweed eukaryome studies investigating the evidently lineage-rich and functionally diverse symbionts of brown algae.
Collapse
Affiliation(s)
- Marit F Markussen Bjorbaekmo
- Norwegian Institute for Water Research (NIVA), Section for Marine Biology, Oslo, Norway
- Natural History Museum (NHM), Science, London, UK
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | | | - Anders K Krabberød
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Janina Fuss
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | - Stein Fredriksen
- Department of Biosciences, Section for Aquatic Biology and Toxicology (AQUA), University of Oslo, Oslo, Norway
| | - Anders Wold-Dobbe
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | - Kamran Shalchian-Tabrizi
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | - David Bass
- Natural History Museum (NHM), Science, London, UK
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Dorset, UK
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
4
|
Rymer TL, Pillay N. The effects of antibiotics and illness on gut microbial composition in the fawn-footed mosaic-tailed rat (Melomys cervinipes). PLoS One 2023; 18:e0281533. [PMID: 36827295 PMCID: PMC9956021 DOI: 10.1371/journal.pone.0281533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
The gut microbiota are critical for maintaining the health and physiological function of individuals. However, illness and treatment with antibiotics can disrupt bacterial community composition, the consequences of which are largely unknown in wild animals. In this study, we described and quantified the changes in bacterial community composition in response to illness and treatment with antibiotics in a native Australian rodent, the fawn-footed mosaic-tailed rat (Melomys cervinipes). We collected faecal samples during an undiagnosed illness outbreak in a captive colony of animals, and again at least one year later, and quantified the microbiome at each time point using 16s ribosomal rRNA gene sequencing. Gut bacterial composition was quantified at different taxonomic levels, up to family. Gut bacterial composition changed between time periods, indicating that illness, treatment with antibiotics, or a combination affects bacterial communities. While some bacterial groups increased in abundance, others decreased, suggesting differential effects and possible co-adapted and synergistic interactions. Our findings provide a greater understanding of the dynamic nature of the gut microbiome of a native Australian rodent species and provides insights into the management and ethical well-being of animals kept under captive conditions.
Collapse
Affiliation(s)
- Tasmin L. Rymer
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Queensland, Australia
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
The Porifera microeukaryome: Addressing the neglected associations between sponges and protists. Microbiol Res 2022; 265:127210. [PMID: 36183422 DOI: 10.1016/j.micres.2022.127210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
While bacterial and archaeal communities of sponges are intensively studied, given their importance to the animal's physiology as well as sources of several new bioactive molecules, the potential and roles of associated protists remain poorly known. Historically, culture-dependent approaches dominated the investigations of sponge-protist interactions. With the advances in omics techniques, these associations could be visualized at other equally important scales. Of the few existing studies, there is a strong tendency to focus on interactions with photosynthesizing taxa such as dinoflagellates and diatoms, with fewer works dissecting the interactions with other less common groups. In addition, there are bottlenecks and inherent biases in using primer pairs and bioinformatics approaches in the most commonly used metabarcoding studies. Thus, this review addresses the issues underlying this association, using the term "microeukaryome" to refer exclusively to protists associated with an animal host. We aim to highlight the diversity and community composition of protists associated with sponges and place them on the same level as other microorganisms already well studied in this context. Among other shortcomings, it could be observed that the biotechnological potential of the microeukaryome is still largely unexplored, possibly being a valuable source of new pharmacological compounds, enzymes and metabolic processes.
Collapse
|
6
|
Bateman KS, Stentiford GD, Kerr R, Hooper C, White P, Edwards M, Ross S, Hazelgrove R, Daumich C, Green MJ, Ivory D, Evans C, Bass D. Amoebic crab disease (ACD) in edible crab Cancer pagurus from the English Channel, UK. DISEASES OF AQUATIC ORGANISMS 2022; 150:1-16. [PMID: 35796507 DOI: 10.3354/dao03668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The genera Paramoeba and Neoparamoeba (Amoebozoa, Dactylopodida, Paramoebidae) include well-known opportunistic pathogens associated with fish (N. peruans; amoebic gill disease), lobsters, molluscs and sea urchins, but only rarely with crabs (grey crab disease of blue crabs). Following reports of elevated post-capture mortality in edible crabs Cancer pagurus captured from a site within the English Channel fishery in the UK, a novel disease (amoebic crab disease, ACD) was detected in significant proportions of the catch. We present histopathological, transmission electron microscopy and molecular phylogenetic data, showing that this disease is defined by colonization of haemolymph, connective tissues and fixed phagocytes by amoeboid cells, leading to tissue destruction and presumably death in severely diseased hosts. The pathology was strongly associated with a novel amoeba with a phylogenetic position on 18S rRNA gene trees robustly sister to Janickina pigmentifera (which groups within the current circumscription of Paramoeba/Neoparamoeba), herein described as Janickina feisti n. sp. We provide evidence that J. feisti is associated with ACD in 50% of C. pagurus sampled from the mortality event. A diversity of other paramoebid sequence types, clustering with known radiations of N. pemaquidensis and N. aestuarina and a novel N. aestuarina sequence type, was detected by PCR in most of the crabs investigated, but their detection was much less strongly associated with clinical signs of disease. The discovery of ACD in edible crabs from the UK is discussed relative to published historical health surveys for this species.
Collapse
Affiliation(s)
- K S Bateman
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth DT4 8UB, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bessette E, Williams B. Protists in the Insect Rearing Industry: Benign Passengers or Potential Risk? INSECTS 2022; 13:482. [PMID: 35621816 PMCID: PMC9144225 DOI: 10.3390/insects13050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023]
Abstract
As the insects for food and feed industry grows, a new understanding of the industrially reared insect microbiome is needed to better comprehend the role that it plays in both maintaining insect health and generating disease. While many microbiome projects focus on bacteria, fungi or viruses, protists (including microsporidia) can also make up an important part of these assemblages. Past experiences with intensive invertebrate rearing indicate that these parasites, whilst often benign, can rapidly sweep through populations, causing extensive damage. Here, we review the diversity of microsporidia and protist species that are found in reared insect hosts and describe the current understanding of their host spectra, life cycles and the nature of their interactions with hosts. Major entomopathogenic parasite groups with the potential to infect insects currently being reared for food and feed include the Amoebozoa, Apicomplexa, Ciliates, Chlorophyta, Euglenozoa, Ichtyosporea and Microsporidia. However, key gaps exist in the understanding of how many of these entomopathogens affect host biology. In addition, for many of them, there are very limited or even no molecular data, preventing the implementation of molecular detection methods. There is now a pressing need to develop and use novel molecular tools, coupled with standard molecular diagnostic methods, to help unlock their biology and predict the effects of these poorly studied protist parasites in intensive insect rearing systems.
Collapse
Affiliation(s)
- Edouard Bessette
- Living Systems Institute, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK;
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
| | - Bryony Williams
- Living Systems Institute, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK;
| |
Collapse
|
8
|
Ozkan J, Willcox M, Coroneo M. A comparative analysis of the cephalic microbiome: The ocular, aural, nasal/nasopharyngeal, oral and facial dermal niches. Exp Eye Res 2022; 220:109130. [DOI: 10.1016/j.exer.2022.109130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
|
9
|
Freudenthal J, Ju F, Bürgmann H, Dumack K. Microeukaryotic gut parasites in wastewater treatment plants: diversity, activity, and removal. MICROBIOME 2022; 10:27. [PMID: 35139924 PMCID: PMC8827150 DOI: 10.1186/s40168-022-01225-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/30/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND During wastewater treatment, the wastewater microbiome facilitates the degradation of organic matter, reduction of nutrients, and removal of gut parasites. While the latter function is essential to minimize public health risks, the range of parasites involved and how they are removed is still poorly understood. RESULTS Using shotgun metagenomic (DNA) and metatranscriptomic (RNA) sequencing data from ten wastewater treatment plants in Switzerland, we were able to assess the entire wastewater microbiome, including the often neglected microeukaryotes (protists). In the latter group, we found a surprising richness and relative abundance of active parasites, particularly in the inflow. Using network analysis, we tracked these taxa across the various treatment compartments and linked their removal to trophic interactions. CONCLUSIONS Our results indicate that the combination of DNA and RNA data is essential for assessing the full spectrum of taxa present in wastewater. In particular, we shed light on an important but poorly understood function of wastewater treatment - parasite removal. Video Abstract.
Collapse
Affiliation(s)
- Jule Freudenthal
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024 China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024 China
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| |
Collapse
|
10
|
Taerum SJ, Micciulla J, Corso G, Steven B, Gage DJ, Triplett LR. 18S rRNA gene amplicon sequencing combined with culture-based surveys of maize rhizosphere protists reveal dominant, plant-enriched and culturable community members. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:110-118. [PMID: 34957692 DOI: 10.1111/1758-2229.13038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Protists play important roles in shaping the microbial community of the rhizosphere and defining these roles will require the study of protist isolates. However, there is still a limited understanding of how well protist isolation efforts can capture the diversity and composition of rhizosphere protistan communities. Here, we report a simultaneous isolation and 18S rRNA gene amplicon sequencing survey describing the protist diversity of maize rhizospheres in two climatically and pedologically distinct sites. We demonstrated that the maize rhizosphere exerted significant and site-dependent effects on the protistan community structure and defined a set of core and rhizosphere-enriched protists. From the same root samples, we generated a library of 103 protist isolates representing 46 18S rRNA gene sequence variants from six eukaryotic supergroups. While cultured isolates represented a small proportion of total protist diversity recovered by sequencing, they included taxa enriched in rhizosphere soils across all samples, encompassing 9% of all core sequence variants. The isolation approach also captured 17 protists not detected through 18S rRNA gene amplicon sequencing. This study demonstrated that maize roots select for distinct protistan communities, and established a diverse protist culture collection that can be used for future research linking protists to rhizosphere status and plant health.
Collapse
Affiliation(s)
- Stephen J Taerum
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, 06511, USA
| | - Jamie Micciulla
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Gabrielle Corso
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Blaire Steven
- Department of Environmental Science, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, 06511, USA
| | - Daniel J Gage
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Lindsay R Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, 06511, USA
| |
Collapse
|
11
|
Paillard C, Gueguen Y, Wegner KM, Bass D, Pallavicini A, Vezzulli L, Arzul I. Recent advances in bivalve-microbiota interactions for disease prevention in aquaculture. Curr Opin Biotechnol 2022; 73:225-232. [PMID: 34571318 DOI: 10.1016/j.copbio.2021.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
In bivalves, no clear-cut functional role of microbiota has yet been identified, although many publications suggest that they could be involved in nutrition or immunity of their host. In the context of climate change, integrative approaches at the crossroads of disciplines have been developed to explore the environment-host-pathogen-microbiota system. Here, we attempt to synthesize work on (1) the current methodologies to analyse bivalve microbiota, (2) the comparison of microbiota between species, between host compartments and their surrounding habitat, (3) how the bivalve microbiota are governed by environmental factors and host genetics and (4) how host-associated microorganisms act as a buffer against pathogens and/or promote recovery, and could thereby play a role in the prevention of disease or mortalities.
Collapse
Affiliation(s)
| | - Yannick Gueguen
- IHPE, Univ Montpellier, CNRS, Ifremer, UPVD, Montpellier, France.
| | - K Mathias Wegner
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Coastal Ecology, Waddensea Station Sylt, D-25992 List, Germany
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, DT4 8UB Dorset, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, College of Life and Environmental Sciences, University of Exeter, EX4 4QD Exeter, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, SW7 5BD London, UK
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, 34126 Trieste, Italy; National Institute of Oceanography and Applied Geophysics, via Piccard 54, 34151 Trieste, Italy
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Isabelle Arzul
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France.
| |
Collapse
|
12
|
Zhong KX, Cho A, Deeg CM, Chan AM, Suttle CA. Revealing the composition of the eukaryotic microbiome of oyster spat by CRISPR-Cas Selective Amplicon Sequencing (CCSAS). MICROBIOME 2021; 9:230. [PMID: 34823604 PMCID: PMC8620255 DOI: 10.1186/s40168-021-01180-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The microbiome affects the health of plants and animals, including humans, and has many biological, ecological, and evolutionary consequences. Microbiome studies typically rely on sequencing ribosomal 16S RNA gene fragments, which serve as taxonomic markers for prokaryotic communities; however, for eukaryotic microbes this approach is compromised, because 18S rRNA gene sequences from microbial eukaryotes are swamped by contaminating host rRNA gene sequences. RESULTS To overcome this problem, we developed CRISPR-Cas Selective Amplicon Sequencing (CCSAS), a high-resolution and efficient approach for characterizing eukaryotic microbiomes. CCSAS uses taxon-specific single-guide RNA (sgRNA) to direct Cas9 to cut 18S rRNA gene sequences of the host, while leaving protistan and fungal sequences intact. We validated the specificity of the sgRNA on ten model organisms and an artificially constructed (mock) community of nine protistan and fungal pathogens. The results showed that > 96.5% of host rRNA gene amplicons were cleaved, while 18S rRNA gene sequences from protists and fungi were unaffected. When used to assess the eukaryotic microbiome of oyster spat from a hatchery, CCSAS revealed a diverse community of eukaryotic microbes, typically with much less contamination from oyster 18S rRNA gene sequences than other methods using non-metazoan or blocking primers. However, each method revealed taxonomic groups that were not detected using the other methods, showing that a single approach is unlikely to uncover the entire eukaryotic microbiome in complex communities. To facilitate the application of CCSAS, we designed taxon-specific sgRNA for ~16,000 metazoan and plant taxa, making CCSAS widely available for characterizing eukaryotic microbiomes that have largely been neglected. CONCLUSION CCSAS provides a high-through-put and cost-effective approach for resolving the eukaryotic microbiome of metazoa and plants with minimal contamination from host 18S rRNA gene sequences. Video Abstract.
Collapse
Affiliation(s)
- Kevin Xu Zhong
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Anna Cho
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christoph M Deeg
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy M Chan
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada.
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Foster R, Peeler E, Bojko J, Clark PF, Morritt D, Roy HE, Stebbing P, Tidbury HJ, Wood LE, Bass D. Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation. NEOBIOTA 2021. [DOI: 10.3897/neobiota..71358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Invasive Non-Native Species (INNS) can co-transport externally and internally other organisms including viruses, bacteria and other eukaryotes (including metazoan parasites), collectively referred to as the symbiome. These symbiotic organisms include pathogens, a small minority of which are subject to surveillance and regulatory control, but most of which are currently unscrutinized and/or unknown. These putatively pathogenetic symbionts can potentially pose diverse risks to other species, with implications for increased epidemiological risk to agriculture and aquaculture, wildlife/ecosystems, and human health (zoonotic diseases). The risks and impacts arising from co-transported known pathogens and other symbionts of unknown pathogenic virulence, remain largely unexplored, unlegislated, and difficult to identify and quantify. Here, we propose a workflow using PubMed and Google Scholar to systematically search existing literature to determine any known and potential pathogens of aquatic INNS. This workflow acts as a prerequisite for assessing the nature and risk posed by co-transported pathogens of INNS; of which a better understanding is necessary to inform policy and INNS risk assessments. Addressing this evidence gap will be instrumental to devise an appropriate set of statutory responsibilities with respect to these symbionts, and to underpin new and more effective legislative processes relating to the disease screening and risk assessment of INNS.
Collapse
|
14
|
Foster R, Peeler E, Bojko J, Clark PF, Morritt D, Roy HE, Stebbing P, Tidbury HJ, Wood LE, Bass D. Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.71358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive Non-Native Species (INNS) can co-transport externally and internally other organisms including viruses, bacteria and other eukaryotes (including metazoan parasites), collectively referred to as the symbiome. These symbiotic organisms include pathogens, a small minority of which are subject to surveillance and regulatory control, but most of which are currently unscrutinized and/or unknown. These putatively pathogenetic symbionts can potentially pose diverse risks to other species, with implications for increased epidemiological risk to agriculture and aquaculture, wildlife/ecosystems, and human health (zoonotic diseases). The risks and impacts arising from co-transported known pathogens and other symbionts of unknown pathogenic virulence, remain largely unexplored, unlegislated, and difficult to identify and quantify. Here, we propose a workflow using PubMed and Google Scholar to systematically search existing literature to determine any known and potential pathogens of aquatic INNS. This workflow acts as a prerequisite for assessing the nature and risk posed by co-transported pathogens of INNS; of which a better understanding is necessary to inform policy and INNS risk assessments. Addressing this evidence gap will be instrumental to devise an appropriate set of statutory responsibilities with respect to these symbionts, and to underpin new and more effective legislative processes relating to the disease screening and risk assessment of INNS.
Collapse
|
15
|
Burki F, Sandin MM, Jamy M. Diversity and ecology of protists revealed by metabarcoding. Curr Biol 2021; 31:R1267-R1280. [PMID: 34637739 DOI: 10.1016/j.cub.2021.07.066] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protists are the dominant eukaryotes in the biosphere where they play key functional roles. While protists have been studied for over a century, it is the high-throughput sequencing of molecular markers from environmental samples - the approach of metabarcoding - that has revealed just how diverse, and abundant, these small organisms are. Metabarcoding is now routine to survey environmental diversity, so data have rapidly accumulated from a multitude of environments and at different sampling scales. This mass of data has provided unprecedented opportunities to study the taxonomic and functional diversity of protists, and how this diversity is organised in space and time. Here, we use metabarcoding as a common thread to discuss the state of knowledge in protist diversity research, from technical considerations of the approach to important insights gained on diversity patterns and the processes that might have structured this diversity. In addition to these insights, we conclude that metabarcoding is on the verge of an exciting added dimension thanks to the maturation of high-throughput long-read sequencing, so that a robust eco-evolutionary framework of protist diversity is within reach.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden; Science For Life Laboratory, Uppsala University, 75236 Uppsala, Sweden.
| | - Miguel M Sandin
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden
| | - Mahwash Jamy
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden
| |
Collapse
|
16
|
Minardi D, Ryder D, Del Campo J, Garcia Fonseca V, Kerr R, Mortensen S, Pallavicini A, Bass D. Improved high throughput protocol for targeting eukaryotic symbionts in metazoan and eDNA samples. Mol Ecol Resour 2021; 22:664-678. [PMID: 34549891 PMCID: PMC9292944 DOI: 10.1111/1755-0998.13509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
Eukaryote symbionts of animals are major drivers of ecosystems not only because of their diversity and host interactions from variable pathogenicity but also through different key roles such as commensalism and to different types of interdependence. However, molecular investigations of metazoan eukaryomes require minimising coamplification of homologous host genes. In this study we (1) identified a previously published “antimetazoan” reverse primer to theoretically enable amplification of a wider range of microeukaryotic symbionts, including more evolutionarily divergent sequence types, (2) evaluated in silico several antimetazoan primer combinations, and (3) optimised the application of the best performing primer pair for high throughput sequencing (HTS) by comparing one‐step and two‐step PCR amplification approaches, testing different annealing temperatures and evaluating the taxonomic profiles produced by HTS and data analysis. The primer combination 574*F – UNonMet_DB tested in silico showed the largest diversity of nonmetazoan sequence types in the SILVA database and was also the shortest available primer combination for broadly‐targeting antimetazoan amplification across the 18S rRNA gene V4 region. We demonstrate that the one‐step PCR approach used for library preparation produces significantly lower proportions of metazoan reads, and a more comprehensive coverage of host‐associated microeukaryote reads than the two‐step approach. Using higher PCR annealing temperatures further increased the proportion of nonmetazoan reads in all sample types tested. The resulting V4 region amplicons were taxonomically informative even when only the forward read is analysed. This region also revealed a diversity of known and putatively parasitic lineages and a wider diversity of host‐associated eukaryotes.
Collapse
Affiliation(s)
- Diana Minardi
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK
| | - David Ryder
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK
| | - Javier Del Campo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Vera Garcia Fonseca
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK
| | - Rose Kerr
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK
| | | | | | - David Bass
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK.,Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|
17
|
Pohl N, Solbach MD, Dumack K. The wastewater protist Rhogostoma minus (Thecofilosea, Rhizaria) is abundant, widespread, and hosts Legionellales. WATER RESEARCH 2021; 203:117566. [PMID: 34438261 DOI: 10.1016/j.watres.2021.117566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Wastewater is treated by concerted actions of the microbial communities within bioreactors. Although protists (unicellular eukaryotes) are good bioindicators and important players influencing denitrification, nitrification, and flocculation, they are the least known organisms in WWTPs. The few recent environmental surveys of the protistan diversity in WWTPs show that the most abundant protistan sequences in WWTPs belong to Thecofilosea (Rhizaria). We re-investigated previously published environmental sequencing data and gathered strains from seven WWTPs to determine which species dominate WWTPs worldwide. We found that all highly abundant thecofilosean sequences represent a single species - Rhogostoma minus. Considering that Thecofilosea are frequent hosts for Legionellales, i.e. bacteria linked to waterborne diseases, we confirm that Rhogostoma minus functions as a host for Legionellales in WWTPs. Whether the highly abundant Rhogostoma minus also serves as a host for known human pathogenic Legionellales requires further attention.
Collapse
Affiliation(s)
- Nina Pohl
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Marcel Dominik Solbach
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Kenneth Dumack
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
18
|
Bourret V, Gutiérrez López R, Melo M, Loiseau C. Metabarcoding options to study eukaryotic endoparasites of birds. Ecol Evol 2021; 11:10821-10833. [PMID: 34429884 PMCID: PMC8366860 DOI: 10.1002/ece3.7748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
There is growing interest in the study of avian endoparasite communities, and metabarcoding is a promising approach to complement more conventional or targeted methods. In the case of eukaryotic endoparasites, phylogenetic diversity is extreme, with parasites from 4 kingdoms and 11 phyla documented in birds. We addressed this challenge by comparing different primer sets across 16 samples from 5 bird species. Samples consisted of blood, feces, and controlled mixes with known proportions of bird and nematode DNA. Illumina sequencing revealed that a 28S primer set used in combination with a custom blocking primer allowed detection of various plasmodiid parasites and filarioid nematodes in the blood, coccidia in the feces, as well as two potentially pathogenic fungal groups. When tested on the controlled DNA mixes, these primers also increased the proportion of nematode DNA by over an order of magnitude. An 18S primer set, originally designed to exclude metazoan sequences, was the most effective at reducing the relative number of avian DNA sequences and was the only one to detect Trypanosoma in the blood. Expectedly, however, it did not allow nematode detection and also failed to detect avian malaria parasites. This study shows that a 28S set including a blocking primer allows detection of several major and very diverse bird parasite clades, while reliable amplification of all major parasite groups may require a combination of markers. It helps clarify options for bird parasite metabarcoding, according to priorities in terms of the endoparasite clades and the ecological questions researchers wish to focus on.
Collapse
Affiliation(s)
- Vincent Bourret
- CIBIO‐InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
| | - Rafael Gutiérrez López
- CIBIO‐InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
| | - Martim Melo
- CIBIO‐InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
- MHNC‐UP – Natural History and Science Museum of the University of PortoPortoPortugal
- FitzPatrick Institute of African OrnithologyUniversity of Cape TownCape TownSouth Africa
| | - Claire Loiseau
- CIBIO‐InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
- CEFEUniversité de MontpellierCNRSMontpellierFrance
| |
Collapse
|
19
|
Vaulot D, Geisen S, Mahé F, Bass D. pr2-primers: An 18S rRNA primer database for protists. Mol Ecol Resour 2021; 22:168-179. [PMID: 34251760 DOI: 10.1111/1755-0998.13465] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/31/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
Metabarcoding of microbial eukaryotes (collectively known as protists) has developed tremendously in the last decade, almost solely relying on the 18S rRNA gene. As microbial eukaryotes are extremely diverse, many primers and primer pairs have been developed. To cover a relevant and representative fraction of the protist community in a given study system, an informed primer choice is necessary, as no primer pair can target all protists equally well. As such, a smart primer choice is very difficult even for experts and there are very few online resources available to list existing primers. We built a database listing 285 primers and 83 unique primer pairs that have been used for eukaryotic 18S rRNA gene metabarcoding. In silico performance of primer pairs was tested against two sequence databases: PR2 version 4.12.0 for eukaryotes and a subset of silva version 132 for bacteria and archaea. We developed an R-based web application enabling browsing of the database, visualization of the taxonomic distribution of the amplified sequences with the number of mismatches, and testing any user-defined primer or primer set (https://app.pr2-primers.org). Taxonomic specificity of primer pairs, amplicon size and location of mismatches can also be determined. We identified universal primer sets that matched the largest number of sequences and analysed the specificity of some primer sets designed to target certain groups. This tool enables guided primer choices that will help a wide range of researchers to include protists as part of their investigations.
Collapse
Affiliation(s)
- Daniel Vaulot
- UMR 7144, ECOMAP, Station Biologique de Roscoff, CNRS, Sorbonne Université, Roscoff, France.,Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands.,Nanjing Agricultural University, Nanjing, China
| | - Frédéric Mahé
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK.,Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|
20
|
Bass D, Rueckert S, Stern R, Cleary AC, Taylor JD, Ward GM, Huys R. Parasites, pathogens, and other symbionts of copepods. Trends Parasitol 2021; 37:875-889. [PMID: 34158247 DOI: 10.1016/j.pt.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
There is a large diversity of eukaryotic symbionts of copepods, dominated by epizootic protists such as ciliates, and metazoan parasites. Eukaryotic endoparasites, copepod-associated bacteria, and viruses are less well known, partly due to technical limitations. However, new molecular techniques, combined with a range of other approaches, provide a complementary toolkit for understanding the complete symbiome of copepods and how the symbiome relates to their ecological roles, relationships with other biota, and responses to environmental change. In this review we provide the most complete overview of the copepod symbiome to date, including microeukaryotes, metazoan parasites, bacteria, and viruses, and provide extensive literature databases to inform future studies.
Collapse
Affiliation(s)
- David Bass
- International Centre of Excellence in Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Sonja Rueckert
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh EH11 4BN, UK
| | - Rowena Stern
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Alison C Cleary
- Department of Natural Sciences, University of Agder, Universitetsveien 25, Kristiansand, 4630, Norway
| | - Joe D Taylor
- School of Chemistry and Bioscience, University of Bradford, Richmond Rd, Bradford BD7 1DP, UK
| | - Georgia M Ward
- International Centre of Excellence in Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Rony Huys
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
21
|
Solomon R, Jami E. Rumen protozoa: from background actors to featured role in microbiome research. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:45-49. [PMID: 33108831 DOI: 10.1111/1758-2229.12902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Ronnie Solomon
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- Department of Life Sciences, Institute of Natural Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Elie Jami
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|