1
|
Padinharayil H, George A. Small extracellular vesicles: Multi-functional aspects in non-small cell lung carcinoma. Crit Rev Oncol Hematol 2024; 198:104341. [PMID: 38575042 DOI: 10.1016/j.critrevonc.2024.104341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Extracellular vesicles (EVs) impact normal and pathological cellular signaling through bidirectional trafficking. Exosomes, a subset of EVs possess biomolecules including proteins, lipids, DNA fragments and various RNA species reflecting a speculum of their parent cells. The involvement of exosomes in bidirectional communication and their biological constituents substantiate its role in regulating both physiology and pathology, including multiple cancers. Non-small cell lung cancer (NSCLC) is the most common lung cancers (85%) with high incidence, mortality and reduced overall survival. Lack of efficient early diagnostic and therapeutic tools hurdles the management of NSCLC. Interestingly, the exosomes from body fluids similarity with parent cells or tissue offers a potential future multicomponent tool for the early diagnosis of NSCLC. The structural twinning of exosomes with a cell/tissue and the competitive tumor derived exosomes in tumor microenvironment (TME) promotes the unpinning horizons of exosomes as a drug delivery, vaccine, and therapeutic agent. Exosomes in clinical point of view assist to trace: acquired resistance caused by various therapeutic agents, early diagnosis, progression, and surveillance. In an integrated approach, EV biomarkers offer potential cutting-edge techniques for the detection and diagnosis of cancer, though the purification, characterization, and biomarker identification processes for the translational research regarding EVs need further optimization.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India.
| |
Collapse
|
2
|
Bao Z, Cheng YC, Luo MZ, Zhang JY. Analysis of aggregation profile of glucagon using SEC-HPLC and FFF-MALS methods. PLoS One 2024; 19:e0304086. [PMID: 38771849 PMCID: PMC11108154 DOI: 10.1371/journal.pone.0304086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
Recently, the first generic glucagon for injection was approved for the treatment of severe hypoglycemia. Unlike its brand name recombinant glucagon, the generic glucagon is synthetic. Since glucagon has a high propensity to form aggregates in solution, it is essential to assess the aggregation profile of the synthetic glucagon compared to the recombinant glucagon. In this study, two robust separation methods, size-exclusion chromatography (SEC-HPLC) and field-flow fractionation coupled with a multi-angle light scattering detector (FFF-MALS), were employed to characterize generic and brand glucagon aggregation in six lots (three newly released, three expired). The presence of aggregation in samples was determined from the generated chromatograms and analyzed. The study showed that both products have comparable aggregation profiles. The SEC-HPLC demonstrated that in both glucagon versions, the expired lots had a higher percentage of dimers than the newly released lots, but even at expiration, the amount was negligible (∼0.1%). The FFF-MALS method did not detect any dimers or higher molecular weight aggregates. Further evaluation of the detection limit found that FFF-MALS was unable to detect aggregates at amounts lower than 0.5% of total glucagon. The negligible amounts of dimer detected in the generic and brand glucagon indicate that both versions are physically stable and are not prone to aggregation under clinically relevant conditions.
Collapse
Affiliation(s)
- Zhongli Bao
- Amphastar Pharmaceuticals, Inc., Rancho Cucamonga, California, California, United States of America
| | - Ya-Chi Cheng
- Amphastar Pharmaceuticals, Inc., Rancho Cucamonga, California, California, United States of America
| | - Mary Ziping Luo
- Amphastar Pharmaceuticals, Inc., Rancho Cucamonga, California, California, United States of America
| | - Jack Yongfeng Zhang
- Amphastar Pharmaceuticals, Inc., Rancho Cucamonga, California, California, United States of America
| |
Collapse
|
3
|
Martins-Ribeiro A, Kizhedath A, Ahmed SS, Glassey J, Ishaq A, Freer M, Dickinson AM. A Human Skin Explant Test as a Novel In Vitro Assay for the Detection of Skin Sensitization to Aggregated Monoclonal Antibodies. TOXICS 2024; 12:332. [PMID: 38787111 PMCID: PMC11125788 DOI: 10.3390/toxics12050332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Introduction: Monoclonal antibodies (mAbs) are important therapeutics. However, the enhanced potential for aggregation has become a critical quality parameter during the production of mAbs. Furthermore, mAb aggregation may also present a potential health risk in a clinical setting during the administration of mAb therapeutics to patients. While the extent of immunotoxicity in patient populations is uncertain, reports show it can lead to immune responses via cell activation and cytokine release. In this study, an autologous in vitro skin test designed to predict adverse immune events, including skin sensitization, was used as a novel assay for the assessment of immunotoxicity caused by mAb aggregation. Material and Methods: Aggregation of mAbs was induced by a heat stress protocol, followed by characterization of protein content by analytical ultra-centrifugation and transmission electron microscopy, revealing a 4% aggregation level of total protein content. Immunotoxicity and potential skin sensitization caused by the aggregates, were then tested in a skin explant assay. Results: Aggregated Herceptin and Rituximab caused skin sensitization, as shown by histopathological damage (grade II-III positive response) together with positive staining for Heat Shock Protein 70 (HSP70). Changes in T cell proliferation were not observed. Cytokine analysis revealed a significant increase of IL-10 for the most extreme condition of aggregation (65 °C at pH3) and a trend for an overall increase of IFN-γ, especially in response to Rituximab. Conclusions: The skin explant assay demonstrated that aggregated mAbs showed adverse immune reactions, as demonstrated as skin sensitization, with histopathological grades II-III. The assay may, therefore, be a novel tool for assessing immunotoxicity and skin sensitization caused by mAb aggregation.
Collapse
Affiliation(s)
- Ana Martins-Ribeiro
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
- Translational and Clinical Research Institute Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Arathi Kizhedath
- Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Shaheda Sameena Ahmed
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
| | - Jarka Glassey
- Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Abbas Ishaq
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
| | - Matthew Freer
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
| | - Anne Mary Dickinson
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
- Translational and Clinical Research Institute Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
4
|
Tadjiki S, Sharifi S, Lavasanifar A, Mahmoudi M. Advancing In Situ Analysis of Biomolecular Corona: Opportunities and Challenges in Utilizing Field-Flow Fractionation. ACS BIO & MED CHEM AU 2024; 4:77-85. [PMID: 38645931 PMCID: PMC11027122 DOI: 10.1021/acsbiomedchemau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024]
Abstract
The biomolecular corona, a complex layer of biological molecules, envelops nanoparticles (NPs) upon exposure to biological fluids including blood. This dynamic interface is pivotal for the advancement of nanomedicine, particularly in areas of therapy and diagnostics. In situ analysis of the biomolecular corona is crucial, as it can substantially improve our ability to accurately predict the biological fate of nanomedicine and, therefore, enable development of more effective, safe, and precisely targeted nanomedicines. Despite its importance, the repertoire of techniques available for in situ analysis of the biomolecular corona is surprisingly limited. This tutorial review provides an overview of the available techniques for in situ analysis of biomolecular corona with a particular focus on exploring both the advantages and the limitations inherent in the use of field-flow fractionation (FFF) for in situ analysis of the biomolecular corona. It delves into how FFF can unravel the complexities of the corona, enhancing our understanding and guiding the design of next-generation nanomedicines for medical use.
Collapse
Affiliation(s)
- Soheyl Tadjiki
- Postnova
Analytics Inc., Salt Lake City, Utah 84102, United States
| | - Shahriar Sharifi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48864, United States
| | - Afsaneh Lavasanifar
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department
of Chemical and Material Engineering, University
of Alberta, Edmonton, Alberta T6G 2 V4, Canada
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
5
|
Farzam F, Dabirmanesh B. Experimental techniques for detecting and evaluating the amyloid fibrils. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:183-227. [PMID: 38811081 DOI: 10.1016/bs.pmbts.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Amyloid fibrils are insoluble proteins with intricate β-sheet structures associated with various human diseases, including Parkinson's, Alzheimer's, and prion diseases. Proteins can form aggregates when their structure is misfolded, resulting in highly organized amyloid fibrils or amorphous aggregates. The formation of protein aggregates is a promising research field for mitigating diseases and the pharmaceutical and food industries. It is important to monitor and minimize the appearance of aggregates in these protein products. Several methods exist to assess protein aggregation, that includes from basic investigations to advanced biophysical techniques. Physicochemical parameters such as molecular weight, conformation, structure, and dimension are examined to study aggregation. There is an urgent need to develop methods for the detection of protein aggregation and amyloid fibril formation both in vitro and in vivo. This chapter focuses on a comprehensive discussion of the methods used to characterize and evaluate aggregates and amyloid fibrils.
Collapse
Affiliation(s)
- Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Hansen M, Clogston JD. Assessment of Protein Binding Using Asymmetric-Flow Field-Flow Fractionation Combined with Multi-angle Light Scattering and Dynamic Light Scattering. Methods Mol Biol 2024; 2789:31-34. [PMID: 38506988 DOI: 10.1007/978-1-0716-3786-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Asymmetric-flow field-flow fractionation (AF4) is a valuable tool to separate and assess different size populations in nanotherapeutics. When coupled with both static light scattering and dynamic light scattering, it can be used to qualitatively assess protein binding to nanoparticles by comparing the shape factors for both non-plasma-incubated samples and plasma-incubated samples. The shape factor is defined as the ratio of the derived root mean square radius (by static light scattering) to the measured hydrodynamic radius (by dynamic light scattering). The shape factor gives an idea of where the center of mass lies in a nanoparticle, and any shift in the shape factor to larger values is indicative of a mass addition to the periphery of the nanoparticle and suggests the presence of protein binding. This protocol will discuss how to set up an experiment to assess protein binding in nanoparticles using AF4, multi-angle light scattering (MALS), and dynamic light scattering (DLS).
Collapse
Affiliation(s)
- Matthew Hansen
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
7
|
Hansen M, Clogston JD. Nanoparticle Size Distribution and Stability Assessment Using Asymmetric-Flow Field-Flow Fractionation. Methods Mol Biol 2024; 2789:21-29. [PMID: 38506987 DOI: 10.1007/978-1-0716-3786-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Nanomaterials are inherently polydisperse. Traditional techniques, such as the widely used batch-mode dynamic light-scattering (DLS) analysis, are not ideal nor thoroughly descriptive enough to define the full complexity of these materials. Asymmetric-flow field-flow fractionation (AF4) with various in-line detectors, such as ultraviolet-visible (UV-vis), multi-angle light scattering (MALS), refractive index (RI), and DLS, is an alternative technique that can provide flow-mode analysis of not only size distribution but also shape, drug release/stability, and protein binding.
Collapse
Affiliation(s)
- Matthew Hansen
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
8
|
Yu S, Tan Z, Lai Y, Li Q, Liu J. Nanoparticulate pollutants in the environment: Analytical methods, formation, and transformation. ECO-ENVIRONMENT & HEALTH 2023; 2:61-73. [PMID: 38075291 PMCID: PMC10702925 DOI: 10.1016/j.eehl.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2024]
Abstract
The wide application of nanomaterials and plastic products generates a substantial number of nanoparticulate pollutants in the environment. Nanoparticulate pollutants are quite different from their bulk counterparts because of their unique physicochemical properties, which may pose a threat to environmental organisms and human beings. To accurately predict the environmental risks of nanoparticulate pollutants, great efforts have been devoted to developing reliable methods to define their occurrence and track their fate and transformation in the environment. Herein, we summarized representative studies on the preconcentration, separation, formation, and transformation of nanoparticulate pollutants in environmental samples. Finally, some perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingcun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Bian J, Gobalasingham N, Purchel A, Lin J. The Power of Field-Flow Fractionation in Characterization of Nanoparticles in Drug Delivery. Molecules 2023; 28:molecules28104169. [PMID: 37241911 DOI: 10.3390/molecules28104169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Asymmetric-flow field-flow fractionation (AF4) is a gentle, flexible, and powerful separation technique that is widely utilized for fractionating nanometer-sized analytes, which extend to many emerging nanocarriers for drug delivery, including lipid-, virus-, and polymer-based nanoparticles. To ascertain quality attributes and suitability of these nanostructures as drug delivery systems, including particle size distributions, shape, morphology, composition, and stability, it is imperative that comprehensive analytical tools be used to characterize the native properties of these nanoparticles. The capacity for AF4 to be readily coupled to multiple online detectors (MD-AF4) or non-destructively fractionated and analyzed offline make this technique broadly compatible with a multitude of characterization strategies, which can provide insight on size, mass, shape, dispersity, and many other critical quality attributes. This review will critically investigate MD-AF4 reports for characterizing nanoparticles in drug delivery, especially those reported in the last 10-15 years that characterize multiple attributes simultaneously downstream from fractionation.
Collapse
Affiliation(s)
- Juan Bian
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nemal Gobalasingham
- Wyatt Technology Corporation, 6330 Hollister Ave, Santa Barbara, CA 93117, USA
| | - Anatolii Purchel
- Wyatt Technology Corporation, 6330 Hollister Ave, Santa Barbara, CA 93117, USA
| | - Jessica Lin
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
10
|
Bohsen MS, Tychsen ST, Kadhim AAH, Grohganz H, Treusch AH, Brandl M. Interaction of liposomes with bile salts investigated by asymmetric flow field-flow fractionation (AF4): A novel approach for stability assessment of oral drug carriers. Eur J Pharm Sci 2023; 182:106384. [PMID: 36642346 DOI: 10.1016/j.ejps.2023.106384] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/05/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
For oral drug delivery the stability of liposomes against intestinal bile salts is of key importance. Here, asymmetric flow field-flow fractionation (AF4) coupled to multi-angle laser light scattering (MALLS) and a differential refractive index (dRI) detector was employed to monitor structural re-arrangement of liposomes upon exposure to the model bile salt taurocholate. For comparison, a conventional stability assay was employed using a hydrophilic marker and size exclusion chromatography (SEC) to separate released from liposome-entrapped dye. Calcein-containing liposomes with and without cholesterol were compared in terms of their in vitro stability upon exposure to bile salts by separating liposomes from co-existing colloidal species emerging after stress test using AF4/MALLS/dRI. Dynamic light scattering (DLS) was utilized in parallel. Our AF4/MALLS/dRI results suggested that exposure of egg-phospholipid liposomes to bile salts at physiological concentrations led to the formation of two new species of colloidal associates, likely (mixed) micelles. Subjecting cholesterol-containing liposomes to the same bile media did not lead to any new colloidal structures, indicating increased stability of these liposomes. Our SEC-based release assay largely confirmed these findings, indicating that AF4/MALLS/dRI is a suitable technique for prediction of in vitro oral stability of liposomal formulations. Moreover, the powerful AF4/MALLS/dRI technique appears promising to improve the understanding of the underlying mechanisms during bile salt-induced liposomal breakdown.
Collapse
Affiliation(s)
- Mette Sloth Bohsen
- Nordcee, Dpt. Biology, University of Southern Denmark, Odense DK, 5230, Denmark; Drug Transport & Delivery, Dpt. Physics, Chemistry & Pharmacy, University of Southern Denmark, Odense DK, 5230, Denmark
| | - Sofie Tandrup Tychsen
- Drug Transport & Delivery, Dpt. Physics, Chemistry & Pharmacy, University of Southern Denmark, Odense DK, 5230, Denmark
| | - Ali Abdul Hussein Kadhim
- Solid State Pharmaceutics, Dpt. Pharmacy, University of Copenhagen, Copenhagen DK, 2100, Denmark
| | - Holger Grohganz
- Solid State Pharmaceutics, Dpt. Pharmacy, University of Copenhagen, Copenhagen DK, 2100, Denmark
| | - Alexander H Treusch
- Nordcee, Dpt. Biology, University of Southern Denmark, Odense DK, 5230, Denmark
| | - Martin Brandl
- Drug Transport & Delivery, Dpt. Physics, Chemistry & Pharmacy, University of Southern Denmark, Odense DK, 5230, Denmark.
| |
Collapse
|
11
|
Svilenov HL, Arosio P, Menzen T, Tessier P, Sormanni P. Approaches to expand the conventional toolbox for discovery and selection of antibodies with drug-like physicochemical properties. MAbs 2023; 15:2164459. [PMID: 36629855 PMCID: PMC9839375 DOI: 10.1080/19420862.2022.2164459] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Antibody drugs should exhibit not only high-binding affinity for their target antigens but also favorable physicochemical drug-like properties. Such drug-like biophysical properties are essential for the successful development of antibody drug products. The traditional approaches used in antibody drug development require significant experimentation to produce, optimize, and characterize many candidates. Therefore, it is attractive to integrate new methods that can optimize the process of selecting antibodies with both desired target-binding and drug-like biophysical properties. Here, we summarize a selection of techniques that can complement the conventional toolbox used to de-risk antibody drug development. These techniques can be integrated at different stages of the antibody development process to reduce the frequency of physicochemical liabilities in antibody libraries during initial discovery and to co-optimize multiple antibody features during early-stage antibody engineering and affinity maturation. Moreover, we highlight biophysical and computational approaches that can be used to predict physical degradation pathways relevant for long-term storage and in-use stability to reduce the need for extensive experimentation.
Collapse
Affiliation(s)
- Hristo L. Svilenov
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Tim Menzen
- Coriolis Pharma Research GmbH, Martinsried, 82152, Germany
| | - Peter Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Meggiolaro A, Moccia V, Brun P, Pierno M, Mistura G, Zappulli V, Ferraro D. Microfluidic Strategies for Extracellular Vesicle Isolation: Towards Clinical Applications. BIOSENSORS 2022; 13:bios13010050. [PMID: 36671885 PMCID: PMC9855931 DOI: 10.3390/bios13010050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 05/15/2023]
Abstract
Extracellular vesicles (EVs) are double-layered lipid membrane vesicles released by cells. Currently, EVs are attracting a lot of attention in the biological and medical fields due to their role as natural carriers of proteins, lipids, and nucleic acids. Thus, they can transport useful genomic information from their parental cell through body fluids, promoting cell-to-cell communication even between different organs. Due to their functionality as cargo carriers and their protein expression, they can play an important role as possible diagnostic and prognostic biomarkers in various types of diseases, e.g., cancers, neurodegenerative, and autoimmune diseases. Today, given the invaluable importance of EVs, there are some pivotal challenges to overcome in terms of their isolation. Conventional methods have some limitations: they are influenced by the starting sample, might present low throughput and low purity, and sometimes a lack of reproducibility, being operator dependent. During the past few years, several microfluidic approaches have been proposed to address these issues. In this review, we summarize the most important microfluidic-based devices for EV isolation, highlighting their advantages and disadvantages compared to existing technology, as well as the current state of the art from the perspective of the use of these devices in clinical applications.
Collapse
Affiliation(s)
- Alessio Meggiolaro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Matteo Pierno
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Giampaolo Mistura
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Davide Ferraro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
- Correspondence:
| |
Collapse
|
13
|
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS NANO 2022; 16:17802-17846. [PMID: 36354238 PMCID: PMC9706680 DOI: 10.1021/acsnano.2c08774] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
Exosomes are a subgroup of nanosized extracellular vesicles enclosed by a lipid bilayer membrane and secreted by most eukaryotic cells. They represent a route of intercellular communication and participate in a wide variety of physiological and pathological processes. The biological roles of exosomes rely on their bioactive cargos, including proteins, nucleic acids, and lipids, which are delivered to target cells. Their distinctive properties─innate stability, low immunogenicity, biocompatibility, and good biomembrane penetration capacity─allow them to function as superior natural nanocarriers for efficient drug delivery. Another notably favorable clinical application of exosomes is in diagnostics. They hold various biomolecules from host cells, which are indicative of pathophysiological conditions; therefore, they are considered vital for biomarker discovery in clinical diagnostics. Here, we use data from the CAS Content Collection and provide a landscape overview of the current state and delineate trends in research advancement on exosome applications in therapeutics and diagnostics across time, geography, composition, cargo loading, and development pipelines. We discuss exosome composition and pathway, from their biogenesis and secretion from host cells to recipient cell uptake. We assess methods for exosome isolation and purification, their clinical applications in therapy and diagnostics, their development pipelines, the exploration goals of the companies, the assortment of diseases they aim to treat, development stages of their research, and publication trends. We hope this review will be useful for understanding the current knowledge in the field of medical applications of exosomes, in an effort to further solve the remaining challenges in fulfilling their potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Wen-Shing Liaw
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Chun-An Chen
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| |
Collapse
|
14
|
Bai J, Wei X, Zhang X, Wu C, Wang Z, Chen M, Wang J. Microfluidic strategies for the isolation and profiling of exosomes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Tracking matricellular protein SPARC in extracellular vesicles as a non-destructive method to evaluate lipid-based antifibrotic treatments. Commun Biol 2022; 5:1155. [PMID: 36310239 PMCID: PMC9618575 DOI: 10.1038/s42003-022-04123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Uncovering the complex cellular mechanisms underlying hepatic fibrogenesis could expedite the development of effective treatments and noninvasive diagnosis for liver fibrosis. The biochemical complexity of extracellular vesicles (EVs) and their role in intercellular communication make them an attractive tool to look for biomarkers as potential alternative to liver biopsies. We developed a solid set of methods to isolate and characterize EVs from differently treated human hepatic stellate cell (HSC) line LX-2, and we investigated their biological effect onto naïve LX-2, proving that EVs do play an active role in fibrogenesis. We mined our proteomic data for EV-associated proteins whose expression correlated with HSC treatment, choosing the matricellular protein SPARC as proof-of-concept for the feasibility of fluorescence nanoparticle-tracking analysis to determine an EV-based HSCs’ fibrogenic phenotype. We thus used EVs to directly evaluate the efficacy of treatment with S80, a polyenylphosphatidylcholines-rich lipid, finding that S80 reduces the relative presence of SPARC-positive EVs. Here we correlated the cellular response to lipid-based antifibrotic treatment to the relative presence of a candidate protein marker associated with the released EVs. Along with providing insights into polyenylphosphatidylcholines treatments, our findings pave the way for precise and less invasive diagnostic analyses of hepatic fibrogenesis. A method is developed to isolate and characterize extracellular vesicles (EVs) from human hepatic stellate cells and proteomics reveals that the matricellular protein SPARC may be used as an EV marker after lipid-based antifibrotic treatment.
Collapse
|
16
|
Gao Z, Hutchins Z, Li Z, Zhong W. Offline Coupling of Asymmetrical Flow Field-Flow Fractionation and Capillary Electrophoresis for Separation of Extracellular Vesicles. Anal Chem 2022; 94:14083-14091. [PMID: 36191238 PMCID: PMC9988405 DOI: 10.1021/acs.analchem.2c03550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) play important roles in cell-to-cell communications and carry high potential as markers targeted in disease diagnosis, prognosis, and therapeutic development. The main obstacles to EV study are their high heterogeneity; low amounts present in samples; and physical similarity to the abundant, interfering matrix components. Multiple rounds of separation and purification are often needed prior to EV characterization and function assessment. Herein, we report the offline coupling of asymmetrical flow field-flow fractionation (AF4) and capillary electrophoresis (CE) for EV analysis. While AF4 provides gentle and fast EV separation by size, CE resolves EVs from contaminants with similar sizes but different surface charges. Employing Western Blotting, ELISA, and SEM, we confirmed that intact EVs were eluted within a stable time window under the optimal AF4 and CE conditions. We also proved that EVs could be resolved from free proteins and high-density lipoproteins by AF4 and be further separated from the low-density lipoproteins co-eluted in AF4. The effectiveness of the coupled AF4-CE system in EV analysis was demonstrated by monitoring the changes in EV secretion from cells and by direct injection of human serum and detection of serum EVs. We believe that coupling AF4 and CE can provide rapid EV quantification in biological samples with much reduced matrix interference and be valuable for the study of total EVs and EV subpopulations produced by cells or present in clinical samples.
Collapse
Affiliation(s)
- Ziting Gao
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Zachary Hutchins
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Zongbo Li
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| |
Collapse
|
17
|
Current status and outlook of advances in exosome isolation. Anal Bioanal Chem 2022; 414:7123-7141. [PMID: 35962791 PMCID: PMC9375199 DOI: 10.1007/s00216-022-04253-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022]
Abstract
Exosomes are extracellular vesicles with a diameter ranging from 30 to 150 nm, which are an important medium for intercellular communication and are closely related to the progression of certain diseases. Therefore, exosomes are considered promising biomarkers for the diagnosis of specific diseases, and thereby, treatments based on exosomes are being widely examined. For exosome-related research, a rapid, simple, high-purity, and recovery isolation method is the primary prerequisite for exosomal large-scale application in medical practice. Although there are no standardized methods for exosome separation and analysis, various techniques have been established to explore their biochemical and physicochemical properties. In this review, we analyzed the progress in exosomal isolation strategies and proposed our views on the development prospects of various exosomal isolation techniques.
Collapse
|
18
|
Huppertsberg A, Leps C, Alberg I, Rosenauer C, Morsbach S, Landfester K, Tenzer S, Zentel R, Nuhn L. Squaric Ester-Based Nanogels Induce No Distinct Protein Corona but Entrap Plasma Proteins into their Porous Hydrogel Network. Macromol Rapid Commun 2022; 43:e2200318. [PMID: 35687083 DOI: 10.1002/marc.202200318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Indexed: 11/11/2022]
Abstract
After intravenous administration of nanocarriers, plasma proteins may rapidly adsorb onto their surfaces. This process hampers the prediction of the nanocarriers' pharmacokinetics as it determines their physiological identity in a complex biological environment. Toward clinical translation it is therefore an essential prerequisite to investigate the nanocarriers' interaction with plasma proteins. Here, this work evaluates a highly "PEGylated" squaric ester-based nanogel with inherent prolonged blood circulation properties. After incubation with human blood plasma, the nanogels are isolated by asymmetrical flow-field flow fractionation. Multiangle light scattering measurements confirm the absence of significant size increases as well as aggregation upon plasma incubation. However, proteomic analyses by gel electrophoresis find minor absolute amounts of proteins (3 wt%), whereas label-free liquid chromatography mass spectrometry identify 65 enriched proteins. Interestingly, the relative abundance of these proteins is almost similar to their proportion in pure native plasma. Due to the nanogels' hydrated and porous network morphology, it is concluded that the detected proteins rather result from passive diffusion into the nanogel network than from specific interactions at the plasma particle interface. Consequently, these results do not indicate a classical surface protein corona but rather reflect the highly outer and inner stealth-like behavior of the porous hydrogel network.
Collapse
Affiliation(s)
| | - Christian Leps
- Institute for Immunology, University Medical Center of Mainz, 55131, Mainz, Germany
| | - Irina Alberg
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | | | - Svenja Morsbach
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | | | - Stefan Tenzer
- Institute for Immunology, University Medical Center of Mainz, 55131, Mainz, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany.,Chair of Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Julius Maximilian University Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
19
|
Zhao C, Latif A, Williams KJ, Tirella A. The characterization of molecular weight distribution and aggregation by asymmetrical flow field-flow fractionation of unmodified and oxidized alginate. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Berger S, Berger M, Bantz C, Maskos M, Wagner E. Performance of nanoparticles for biomedical applications: The in vitro/ in vivo discrepancy. BIOPHYSICS REVIEWS 2022; 3:011303. [PMID: 38505225 PMCID: PMC10903387 DOI: 10.1063/5.0073494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 03/21/2024]
Abstract
Nanomedicine has a great potential to revolutionize the therapeutic landscape. However, up-to-date results obtained from in vitro experiments predict the in vivo performance of nanoparticles weakly or not at all. There is a need for in vitro experiments that better resemble the in vivo reality. As a result, animal experiments can be reduced, and potent in vivo candidates will not be missed. It is important to gain a deeper knowledge about nanoparticle characteristics in physiological environment. In this context, the protein corona plays a crucial role. Its formation process including driving forces, kinetics, and influencing factors has to be explored in more detail. There exist different methods for the investigation of the protein corona and its impact on physico-chemical and biological properties of nanoparticles, which are compiled and critically reflected in this review article. The obtained information about the protein corona can be exploited to optimize nanoparticles for in vivo application. Still the translation from in vitro to in vivo remains challenging. Functional in vitro screening under physiological conditions such as in full serum, in 3D multicellular spheroids/organoids, or under flow conditions is recommended. Innovative in vivo screening using barcoded nanoparticles can simultaneously test more than hundred samples regarding biodistribution and functional delivery within a single mouse.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Martin Berger
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Christoph Bantz
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, D-55129 Mainz, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
21
|
Ventouri IK, Loeber S, Somsen GW, Schoenmakers PJ, Astefanei A. Field-flow fractionation for molecular-interaction studies of labile and complex systems: A critical review. Anal Chim Acta 2022; 1193:339396. [DOI: 10.1016/j.aca.2021.339396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/11/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022]
|
22
|
Doda A, Sahib Azad M, Kotsuchibashi Y, Trivedi JJ, Narain R. Investigation of alkali and salt resistant copolymer of acrylic acid and N‐vinyl‐2‐pyrrolidinone for medium viscosity oil recovery. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ankit Doda
- School of Petroleum, Dept. of Civil and Environmental Engineering University of Alberta Edmonton Alberta Canada
| | - Madhar Sahib Azad
- Department of Petroleum Engineering, College of Petroleum & Geosciences King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| | - Yohei Kotsuchibashi
- National Institute for Materials Science (NIMS), Namiki 1‐1, Tsukuba Ibaraki Japan
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Japan J. Trivedi
- School of Petroleum, Dept. of Civil and Environmental Engineering University of Alberta Edmonton Alberta Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
23
|
Shakiba S, Astete CE, Cueto R, Rodrigues DF, Sabliov CM, Louie SM. Asymmetric flow field-flow fractionation (AF4) with fluorescence and multi-detector analysis for direct, real-time, size-resolved measurements of drug release from polymeric nanoparticles. J Control Release 2021; 338:410-421. [PMID: 34453956 DOI: 10.1016/j.jconrel.2021.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/16/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
Polymeric nanoparticles (NPs) are typically designed to enhance the efficiency of drug delivery by controlling the drug release rate. Hence, it is critical to obtain an accurate drug release profile. This study presents the first application of asymmetric flow field-flow fractionation (AF4) with fluorescence detection (FLD) to quantify release profiles of fluorescent drugs from polymeric NPs, specifically poly(lactic-co-glycolic acid) NPs loaded with enrofloxacin (PLGA-Enro NPs). In contrast to conventional measurements requiring separation of the NPs and dissolved drugs (typically by dialysis) prior to quantification, AF4 provides in situ removal of unincorporated drugs, while the judicious combination of online FLD and UV detection selectively provides the entrapped drug and PLGA NP concentrations, respectively, and hence the drug loading. NP size and shape factors are simultaneously obtained by online dynamic and multi-angle light scattering (DLS, MALS) detectors. The AF4 and dialysis approaches were compared to evaluate drug release from PLGA-Enro NPs containing a high proportion (≈ 94%) of unincorporated (burst release) drug at three temperatures spanning the glass transition temperature (Tg ≈ 33 °C) of the NPs. The AF4 method clearly captured the temperature dependence of the drug release relative to Tg (from no release at 20 °C to rapid release at 37 °C). In contrast, dialysis was not able to distinguish differences in the extent or rate of release of the entrapped drug because of interferences from the burst release, as well as the dialysis lag time, as supported through a diffusion model and validation experiments on purified NPs with low burst release. Finally, the multi-detector AF4 analysis yielded unique size-dependent release profiles across the entire NP size distribution, with smaller NPs showing faster release consistent with radial diffusion from the NPs. Overall, this study demonstrates the novel application and advantages of multi-detector AF4 methods, particularly AF4-FLD, to obtain direct, size-resolved release profiles of fluorescent drugs from polymeric NPs.
Collapse
Affiliation(s)
- Sheyda Shakiba
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Carlos E Astete
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Rafael Cueto
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Debora F Rodrigues
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Cristina M Sabliov
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Stacey M Louie
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States.
| |
Collapse
|
24
|
Application of Asymmetrical Flow Field-Flow Fractionation for Characterizing the Size and Drug Release Kinetics of Theranostic Lipid Nanovesicles. Int J Mol Sci 2021; 22:ijms221910456. [PMID: 34638795 PMCID: PMC8508677 DOI: 10.3390/ijms221910456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Liposome size and in vitro release of the active substance belong to critical quality attributes of liposomal carriers. Here, we apply asymmetric flow field-flow fractionation (AF4) to characterize theranostic liposomes prepared by thin lipid film hydration/extrusion or microfluidics. The vesicles' size was derived from multi-angle laser light scattering following fractionation (AF4) and compared to sizes derived from dynamic light scattering measurements. Additionally, we adapted a previously developed AF4 method to study zinc phthalocyanine (ZnPc) release/transfer from theranostic liposomes. To this end, theranostic liposomes were incubated with large acceptor liposomes serving as a sink (mimicking biological sinks) and were subsequently separated by AF4. During incubation, ZnPc was transferred from donor to acceptor fraction until reaching equilibrium. The process followed first-order kinetics with half-lives between 119.5-277.3 min, depending on the formulation. The release mechanism was postulated to represent a combination of Fickian diffusion and liposome relaxation. The rate constant of the transfer was proportional to the liposome size and inversely proportional to the ZnPc/POPC molar ratio. Our results confirm the usefulness of AF4 based method to study in vitro release/transfer of lipophilic payload, which may be useful to estimate the unwanted loss of drug from the liposomal carrier in vivo.
Collapse
|
25
|
Ramirez LMF, Rihouey C, Chaubet F, Le Cerf D, Picton L. Characterization of dextran particle size: How frit-inlet asymmetrical flow field-flow fractionation (FI-AF4) coupled online with dynamic light scattering (DLS) leads to enhanced size distribution. J Chromatogr A 2021; 1653:462404. [PMID: 34348206 DOI: 10.1016/j.chroma.2021.462404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/18/2023]
Abstract
Accurate determinations of particle size and particle size distribution (PSD) are essential to achieve the clinical translation of medical nanoparticles (NPs). Herein, dextran-based NPs produced via a water-in-oil emulsification/crosslinking process and developed as nanomedicines were studied. NPs were first characterized using traditional batch-mode techniques as dynamic light scattering (DLS) and laser diffraction. In a second step, their analysis by frit-inlet asymmetrical flow field-flow fractionation (FI-AF4) was explored. The major parameters of the AF4 procedure, namely, crossflow, detector flow, crossflow decay programming and relaxation time were set up. The sizes of the particle fractions eluted under optimized conditions were measured using DLS as an online detector. We demonstrate that FI-AF4 is a powerful method to characterize dextran-NPs in the 200 nm -1 µm range. It provided a more realistic and comprehensive picture of PSD, revealing its heterogenous character and clearly showing the ratio of different populations in the sample, while batch-mode light scattering techniques only detected the biggest particle sizes.
Collapse
Affiliation(s)
- Laura Marcela Forero Ramirez
- Laboratory for Vascular Translational Science, UMRS1148, INSERM, Université de Paris, Paris F-75018, France; Université Sorbonne Paris Nord, Villetaneuse F-93430, France; Normandie University, UNIROUEN, National Institute of Applied Sciences of Rouen, CNRS, PBS, UMR6270, Rouen 76000, France
| | - Christophe Rihouey
- Normandie University, UNIROUEN, National Institute of Applied Sciences of Rouen, CNRS, PBS, UMR6270, Rouen 76000, France
| | - Frédéric Chaubet
- Laboratory for Vascular Translational Science, UMRS1148, INSERM, Université de Paris, Paris F-75018, France; Université Sorbonne Paris Nord, Villetaneuse F-93430, France
| | - Didier Le Cerf
- Normandie University, UNIROUEN, National Institute of Applied Sciences of Rouen, CNRS, PBS, UMR6270, Rouen 76000, France
| | - Luc Picton
- Normandie University, UNIROUEN, National Institute of Applied Sciences of Rouen, CNRS, PBS, UMR6270, Rouen 76000, France.
| |
Collapse
|
26
|
Ding L, Yang X, Gao Z, Effah CY, Zhang X, Wu Y, Qu L. A Holistic Review of the State-of-the-Art Microfluidics for Exosome Separation: An Overview of the Current Status, Existing Obstacles, and Future Outlook. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007174. [PMID: 34047052 DOI: 10.1002/smll.202007174] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Exosomes, a class of small extracellular vesicles (30-150 nm), are secreted by almost all types of cells into virtually all body fluids. These small vesicles are attracting increasing research attention owing to their potential for disease diagnosis and therapy. However, their inherent heterogeneity and the complexity of bio-fluids pose significant challenges for their isolation. Even the "gold standard," differential centrifugation, suffers from poor yields and is time-consuming. In this context, recent developments in microfluidic technologies have provided an ideal system for exosome extraction and these devices exhibit some fascinating properties such as high speeds, good portability, and low sample volumes. In this review, the focus is on the state-of-the-art microfluidic technologies for exosome isolation and highlight potential directions for future research and development by analyzing the challenges faced by the current strategies.
Collapse
Affiliation(s)
- Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zibo Gao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
27
|
Zoratto S, Weiss VU, Friedbacher G, Buengener C, Pletzenauer R, Foettinger-Vacha A, Graninger M, Allmaier G. Adeno-associated Virus Virus-like Particle Characterization via Orthogonal Methods: Nanoelectrospray Differential Mobility Analysis, Asymmetric Flow Field-Flow Fractionation, and Atomic Force Microscopy. ACS OMEGA 2021; 6:16428-16437. [PMID: 34235314 PMCID: PMC8246466 DOI: 10.1021/acsomega.1c01443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 05/30/2023]
Abstract
Adeno-associated virus (AAV)-based virus-like particles (VLPs) are thriving vectors of choice in the biopharmaceutical field of gene therapy. Here, a method to investigate purified AAV serotype 8 (AAV8) batches via a nanoelectrospray gas-phase mobility molecular analyzer (nES GEMMA), also known as an nES differential mobility analyzer, is presented. Indeed, due to AAV's double-digit nanometer scale, nES GEMMA is an excellently suited technique to determine the surface-dry particle size termed electrophoretic mobility diameter of such VLPs in their native state at atmospheric pressure and with particle-number-based detection. Moreover, asymmetric flow field-flow fractionation (AF4, also known as AFFFF) and atomic force microscopy (AFM) techniques were employed as orthogonal techniques for VLP characterization. In addition, AF4 was implemented to size-separate as well as to enrich and collect fractions of AAV8 VLPs after inducing analyte aggregation in the liquid phase. Bionanoparticle aggregation was achieved by a combination of heat and shear stress. These fractions were later analyzed with nES GEMMA (in the gas phase) and AFM (on a solid surface). Both techniques confirm the presence of dimers, trimers, and putative VLP oligomers. Last, AFM reveals even larger AAV8 VLP aggregates, which were not detectable by nES GEMMA because their heterogeneity combined with low abundance was below the limit of detection of the instrument. Hence, the combination of the employed orthogonal sizing methods with the separation technique AF4 allow a comprehensive characterization of AAV8 VLPs applied as vectors.
Collapse
Affiliation(s)
- Samuele Zoratto
- Institute
of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna A-1060, Austria
| | - Victor U. Weiss
- Institute
of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna A-1060, Austria
| | - Gernot Friedbacher
- Institute
of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna A-1060, Austria
| | - Carsten Buengener
- Pharmaceutical
Sciences, Baxalta Innovations (part of Takeda), Vienna A-1221, Austria
| | - Robert Pletzenauer
- Pharmaceutical
Sciences, Baxalta Innovations (part of Takeda), Vienna A-1221, Austria
| | - Alexandra Foettinger-Vacha
- Institute
of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna A-1060, Austria
| | - Michael Graninger
- Pharmaceutical
Sciences, Baxalta Innovations (part of Takeda), Vienna A-1221, Austria
| | - Guenter Allmaier
- Institute
of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna A-1060, Austria
| |
Collapse
|
28
|
Cortez LM, Nemani SK, Duque Velásquez C, Sriraman A, Wang Y, Wille H, McKenzie D, Sim VL. Asymmetric-flow field-flow fractionation of prions reveals a strain-specific continuum of quaternary structures with protease resistance developing at a hydrodynamic radius of 15 nm. PLoS Pathog 2021; 17:e1009703. [PMID: 34181702 PMCID: PMC8270404 DOI: 10.1371/journal.ppat.1009703] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/09/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are transmissible neurodegenerative disorders that affect mammals, including humans. The central molecular event is the conversion of cellular prion glycoprotein, PrPC, into a plethora of assemblies, PrPSc, associated with disease. Distinct phenotypes of disease led to the concept of prion strains, which are associated with distinct PrPSc structures. However, the degree to which intra- and inter-strain PrPSc heterogeneity contributes to disease pathogenesis remains unclear. Addressing this question requires the precise isolation and characterization of all PrPSc subpopulations from the prion-infected brains. Until now, this has been challenging. We used asymmetric-flow field-flow fractionation (AF4) to isolate all PrPSc subpopulations from brains of hamsters infected with three prion strains: Hyper (HY) and 263K, which produce almost identical phenotypes, and Drowsy (DY), a strain with a distinct presentation. In-line dynamic and multi-angle light scattering (DLS/MALS) data provided accurate measurements of particle sizes and estimation of the shape and number of PrPSc particles. We found that each strain had a continuum of PrPSc assemblies, with strong correlation between PrPSc quaternary structure and phenotype. HY and 263K were enriched with large, protease-resistant PrPSc aggregates, whereas DY consisted primarily of smaller, more protease-sensitive aggregates. For all strains, a transition from protease-sensitive to protease-resistant PrPSc took place at a hydrodynamic radius (Rh) of 15 nm and was accompanied by a change in glycosylation and seeding activity. Our results show that the combination of AF4 with in-line MALS/DLS is a powerful tool for analyzing PrPSc subpopulations and demonstrate that while PrPSc quaternary structure is a major contributor to PrPSc structural heterogeneity, a fundamental change, likely in secondary/tertiary structure, prevents PrPSc particles from maintaining proteinase K resistance below an Rh of 15 nm, regardless of strain. This results in two biochemically distinctive subpopulations, the proportion, seeding activity, and stability of which correlate with prion strain phenotype.
Collapse
Affiliation(s)
- Leonardo M Cortez
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Satish K Nemani
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Camilo Duque Velásquez
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Aishwarya Sriraman
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - YongLiang Wang
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Valerie L Sim
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Characterization and purification of pentameric chimeric protein particles using asymmetric flow field-flow fractionation coupled with multiple detectors. Anal Bioanal Chem 2021; 413:3749-3761. [PMID: 33837800 PMCID: PMC8035888 DOI: 10.1007/s00216-021-03323-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Porcine circovirus causes the post-weaning multi-systemic wasting syndrome. Despite the existence of commercial vaccines, the development of more effective and cheaper vaccines is expected. The usage of chimeric antigens allows serological differentiation between naturally infected and vaccinated animals. In this work, recombinant pentameric vaccination protein particles spontaneously assembled from identical subunits-chimeric fusion proteins derived from circovirus capsid antigen Cap and a multimerizing subunit of mouse polyomavirus capsid protein VP1 were purified and characterized using asymmetric flow field-flow fractionation (AF4) coupled with UV and MALS/DLS (multi-angle light scattering/dynamic light scattering) detectors. Various elution profiles were tested, including constant cross-flow and decreasing cross-flow (linearly and exponentially). The optimal sample retention, separation efficiency, and resolution were assessed by the comparison of the hydrodynamic radius (Rh) measured by online DLS with the Rh values calculated from the simplified retention equation according to the AF4 theory. The results show that the use of the combined elution profiles (exponential and constant cross-flow rates) reduces the time of the separation, prevents undesirable sample-membrane interaction, and yields better resolution. Besides, the results show no self-associations of the individual pentameric particles into larger clusters and no sample degradation during the AF4 separation. The Rg/Rh ratios for different fractions are in good correlation with morphological analyses performed by transmission electron microscopy (TEM). Additionally to the online analysis, the individual fractions were subjected to offline analysis, including batch DLS, TEM, and SDS-PAGE, followed by Western blot.
Collapse
|
30
|
Asymmetric Flow Field-Flow Fractionation: Current Status, Possibilities, Analytical Limitations and Future Trends. Chromatographia 2021. [DOI: 10.1007/s10337-021-04035-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Wahlund PO, Lorenzen N, Rischel C. Screening for protein-protein interactions with asymmetrical flow field-flow fractionation. J Pharm Sci 2021; 110:2336-2339. [PMID: 33640337 DOI: 10.1016/j.xphs.2021.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
We describe a new method for screening protein-protein interaction of biopharmaceutical molecules at dilute concentrations to predict development issues at high concentration. The method is based on Asymmetrical Flow Field-Flow Fractionation (AF4) measurements using well known effects of protein-protein attraction on the fractionation profile due to elevated protein concentrations occurring close to the membrane. We explore the effect for 4 different monoclonal antibodies and show that the profiles obtained are quite different. Interestingly, we find that the recovery in AF4 correlates with the diffusion interaction parameter, which is a standard method for the analysis of protein-protein attraction. The results are insensitive to the protein concentration and buffer composition of the sample solution and only depend on the absolute amount of protein loaded and on the running buffer. This makes the method highly suitable for developability assessment in a compound discovery workflow.
Collapse
Affiliation(s)
- Per-Olof Wahlund
- Department Biophysics and Injectable Formulation 2, Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark.
| | - Nikolai Lorenzen
- Department Biophysics and Injectable Formulation 2, Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Christian Rischel
- Department Biophysics and Injectable Formulation 2, Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| |
Collapse
|
32
|
Viktor Z, Pasch H. Variable temperature asymmetric flow field-flow fractionation for the topology separation of poly(methyl methacrylate). Anal Chim Acta 2021; 1144:150-157. [DOI: 10.1016/j.aca.2020.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
|
33
|
Particle Detection and Characterization for Biopharmaceutical Applications: Current Principles of Established and Alternative Techniques. Pharmaceutics 2020; 12:pharmaceutics12111112. [PMID: 33228023 PMCID: PMC7699340 DOI: 10.3390/pharmaceutics12111112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Detection and characterization of particles in the visible and subvisible size range is critical in many fields of industrial research. Commercial particle analysis systems have proliferated over the last decade. Despite that growth, most systems continue to be based on well-established principles, and only a handful of new approaches have emerged. Identifying the right particle-analysis approach remains a challenge in research and development. The choice depends on each individual application, the sample, and the information the operator needs to obtain. In biopharmaceutical applications, particle analysis decisions must take product safety, product quality, and regulatory requirements into account. Biopharmaceutical process samples and formulations are dynamic, polydisperse, and very susceptible to chemical and physical degradation: improperly handled product can degrade, becoming inactive or in specific cases immunogenic. This article reviews current methods for detecting, analyzing, and characterizing particles in the biopharmaceutical context. The first part of our article represents an overview about current particle detection and characterization principles, which are in part the base of the emerging techniques. It is very important to understand the measuring principle, in order to be adequately able to judge the outcome of the used assay. Typical principles used in all application fields, including particle–light interactions, the Coulter principle, suspended microchannel resonators, sedimentation processes, and further separation principles, are summarized to illustrate their potentials and limitations considering the investigated samples. In the second part, we describe potential technical approaches for biopharmaceutical particle analysis as some promising techniques, such as nanoparticle tracking analysis (NTA), micro flow imaging (MFI), tunable resistive pulse sensing (TRPS), flow cytometry, and the space- and time-resolved extinction profile (STEP®) technology.
Collapse
|
34
|
Wang Y, Cuss C, Shotyk W. Application of asymmetric flow field-flow fractionation to the study of aquatic systems: Coupled methods, challenges, and future needs. J Chromatogr A 2020; 1632:461600. [DOI: 10.1016/j.chroma.2020.461600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 02/05/2023]
|
35
|
Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal 2020; 192:113642. [PMID: 33011580 DOI: 10.1016/j.jpba.2020.113642] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Lipid nanoparticles, especially liposomes and lipid/nucleic acid complexed nanoparticles have shown great success in the pharmaceutical industry. Their success is attributed to stable drug loading, extended pharmacokinetics, reduced off-target side effects, and enhanced delivery efficiency to disease targets with formidable blood-brain or plasma membrane barriers. Therefore, they offer promising formulation options for drugs limited by low therapeutic indexes in traditional dosage forms and current "undruggable" targets. Recent development of siRNA, antisense oligonucleotide, or the CRISPR complex-loaded lipid nanoparticles and liposomal vaccines also shed light on their potential in enabling versatile formulation platforms for new pharmaceutical modalities. Analytical characterization of these nanoparticles is critical to drug design, formulation development, understanding in vivo performance, as well as quality control. The multi-lipid excipients, unique core-bilayer structure, and nanoscale size all underscore their complicated critical quality attributes, including lipid species, drug encapsulation efficiency, nanoparticle characteristics, product stability, and drug release. To address these challenges and facilitate future applications of lipid nanoparticles in drug development, we summarize available analytical approaches for physicochemical characterizations of lipid nanoparticle-based pharmaceutical modalities. Furthermore, we compare advantages and challenges of different techniques, and highlight the promise of new strategies for automated high-throughput screening and future development.
Collapse
Affiliation(s)
- Yuchen Fan
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Maria Marioli
- Pharma Technical Development Europe Analytics, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Kelly Zhang
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
36
|
Wu B, Chen X, Wang J, Qing X, Wang Z, Ding X, Xie Z, Niu L, Guo X, Cai T, Guo X, Yang F. Separation and characterization of extracellular vesicles from human plasma by asymmetrical flow field-flow fractionation. Anal Chim Acta 2020; 1127:234-245. [DOI: 10.1016/j.aca.2020.06.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022]
|
37
|
Veziroglu EM, Mias GI. Characterizing Extracellular Vesicles and Their Diverse RNA Contents. Front Genet 2020; 11:700. [PMID: 32765582 PMCID: PMC7379748 DOI: 10.3389/fgene.2020.00700] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cells release nanometer-scale, lipid bilayer-enclosed biomolecular packages (extracellular vesicles; EVs) into their surrounding environment. EVs are hypothesized to be intercellular communication agents that regulate physiological states by transporting biomolecules between near and distant cells. The research community has consistently advocated for the importance of RNA contents in EVs by demonstrating that: (1) EV-related RNA contents can be detected in a liquid biopsy, (2) disease states significantly alter EV-related RNA contents, and (3) sensitive and specific liquid biopsies can be implemented in precision medicine settings by measuring EV-derived RNA contents. Furthermore, EVs have medical potential beyond diagnostics. Both natural and engineered EVs are being investigated for therapeutic applications such as regenerative medicine and as drug delivery agents. This review focuses specifically on EV characterization, analysis of their RNA content, and their functional implications. The NIH extracellular RNA communication (ERC) program has catapulted human EV research from an RNA profiling standpoint by standardizing the pipeline for working with EV transcriptomics data, and creating a centralized database for the scientific community. There are currently thousands of RNA-sequencing profiles hosted on the Extracellular RNA Atlas alone (Murillo et al., 2019), encompassing a variety of human biofluid types and health conditions. While a number of significant discoveries have been made through these studies individually, integrative analyses of these data have thus far been limited. A primary focus of the ERC program over the next five years is to bring higher resolution tools to the EV research community so that investigators can isolate and analyze EV sub-populations, and ultimately single EVs sourced from discrete cell types, tissues, and complex biofluids. Higher resolution techniques will be essential for evaluating the roles of circulating EVs at a level which impacts clinical decision making. We expect that advances in microfluidic technologies will drive near-term innovation and discoveries about the diverse RNA contents of EVs. Long-term translation of EV-based RNA profiling into a mainstay medical diagnostic tool will depend upon identifying robust patterns of circulating genetic material that correlate with a change in health status.
Collapse
Affiliation(s)
- Eren M. Veziroglu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
38
|
Gandham S, Su X, Wood J, Nocera AL, Alli SC, Milane L, Zimmerman A, Amiji M, Ivanov AR. Technologies and Standardization in Research on Extracellular Vesicles. Trends Biotechnol 2020; 38:1066-1098. [PMID: 32564882 PMCID: PMC7302792 DOI: 10.1016/j.tibtech.2020.05.012] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer membrane-enclosed structures containing RNAs, proteins, lipids, metabolites, and other molecules, secreted by various cells into physiological fluids. EV-mediated transfer of biomolecules is a critical component of a variety of physiological and pathological processes. Potential applications of EVs in novel diagnostic and therapeutic strategies have brought increasing attention. However, EV research remains highly challenging due to the inherently complex biogenesis of EVs and their vast heterogeneity in size, composition, and origin. There is a need for the establishment of standardized methods that address EV heterogeneity and sources of pre-analytical and analytical variability in EV studies. Here, we review technologies developed for EV isolation and characterization and discuss paths toward standardization in EV research.
Collapse
Affiliation(s)
- Srujan Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Xianyi Su
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Jacqueline Wood
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Angela L Nocera
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Sarath Chandra Alli
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Lara Milane
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alan Zimmerman
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Ventouri IK, Malheiro DBA, Voeten RLC, Kok S, Honing M, Somsen GW, Haselberg R. Probing Protein Denaturation during Size-Exclusion Chromatography Using Native Mass Spectrometry. Anal Chem 2020; 92:4292-4300. [PMID: 32107919 PMCID: PMC7081181 DOI: 10.1021/acs.analchem.9b04961] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Size-exclusion chromatography
employing aqueous mobile phases with
volatile salts at neutral pH combined with electrospray-ionization
mass spectrometry (SEC-ESI-MS) is a useful tool to study proteins
in their native state. However, whether the applied eluent conditions
actually prevent protein–stationary phase interactions, and/or
protein denaturation, often is not assessed. In this study, the effects
of volatile mobile phase additives on SEC retention and ESI of proteins
were thoroughly investigated. Myoglobin was used as the main model
protein, and eluents of varying ionic strength and pH were applied.
The degree of interaction between protein and stationary phase was
evaluated by calculating the SEC distribution coefficient. Protein-ion
charge state distributions obtained during offline and online native
ESI-MS were used to monitor alterations in protein structure. Interestingly,
most of the supposedly mild eluent compositions induced nonideal SEC
behavior and/or protein unfolding. SEC experiments revealed that the
nature, ionic strength, and pH of the eluent affected protein retention.
Protein–stationary phase interactions were effectively avoided
using ammonium acetate at ionic strengths above 0.1 M. Direct-infusion
ESI-MS showed that the tested volatile eluent salts seem to follow
the Hofmeister series: no denaturation was induced using ammonium
acetate (kosmotropic), whereas ammonium formate and bicarbonate (both
chaotropic) caused structural changes. Using a mobile phase of 0.2
M ammonium acetate (pH 6.9), several proteins (i.e., myoglobin, carbonic
anhydrase, and cytochrome c) could be analyzed by SEC-ESI-MS using
different column chemistries without compromising their native state.
Overall, with SEC-ESI-MS, the effect of nonspecific interactions between
protein and stationary phase on the protein structure can be studied,
even revealing gradual structural differences along a peak.
Collapse
Affiliation(s)
- Iro K Ventouri
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, 1098XH Amsterdam, The Netherlands.,TI-COAST, 1098 XH Amsterdam, The Netherlands.,Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94720, 1090 GE Amsterdam, The Netherlands
| | - Daniel B A Malheiro
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,TI-COAST, 1098 XH Amsterdam, The Netherlands
| | - Robert L C Voeten
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, 1098XH Amsterdam, The Netherlands.,TI-COAST, 1098 XH Amsterdam, The Netherlands
| | - Sander Kok
- DSM Materials Science Center, 6167 RD Geleen, The Netherlands
| | - Maarten Honing
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,DSM Materials Science Center, 6167 RD Geleen, The Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
40
|
Abstract
As a nanoscale subset of extracellular vehicles, exosomes represent a new pathway of intercellular communication by delivering cargos such as proteins and nucleic acids to recipient cells. Importantly, it has been well documented that exosome-mediated delivery of such cargo is involved in many pathological processes such as tumor progression, cancer metastasis, and development of drug resistance. Innately biocompatible and possessing ideal structural properties, exosomes offer distinct advantages for drug delivery over artificial nanoscale drug carriers. In this review, we summarize recent progress in methods for engineering exosomes including isolation techniques and exogenous cargo encapsulation, with a focus on applications of engineered exosomes to target cancer metastasis.
Collapse
Affiliation(s)
- Zhenjiang Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Jenna A. Dombroski
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| |
Collapse
|
41
|
Advanced nanomedicine characterization by DLS and AF4-UV-MALS: Application to a HIV nanovaccine. J Pharm Biomed Anal 2019; 179:113017. [PMID: 31816470 DOI: 10.1016/j.jpba.2019.113017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
Nanoformulations are complex systems where physicochemical properties determine their therapeutic efficacy and safety. In the case of nanovaccines, particle size and shape play a crucial role on the immune response generated. Furthermore, the antigen's integrity is also a key aspect to control when producing a nanovaccine. The determination of all those physicochemical properties is still an analytical challenge and the lack of well-established methods hinders the access of new therapeutics to the market. In this work, robust methods for the characterization of a novel HIV nanoparticle-based vaccine produced in good manufacturing practice (GMPs)-like environment were developed. With slightly polydisperse particles (< 0.2) close to 180 nm of size, batch-mode Dynamic Light Scattering (DLS) was validated to be used as a quality control technique in the pilot production plant. In addition, a high size resolution method using Asymmetrical Flow Field Flow Fractionation (AF4) demonstrated its ability to determine not only size and size distribution but also shape modification across the size and accurate quantification of the free active ingredient. Results showed a monomodal distribution of particles from 60 to 700 nm, most of them (> 90%) with size lower than 250 nm, consistent with more traditional techniques, and revealed a slight change in the structure of the particles induced by the presence of the antigen. Finally, a batch to batch variability lower than 20% was obtained by both DLS and AF4 methods indicating that preparation method was highly reproducible.
Collapse
|
42
|
Zhang C, Springall JS, Wang X, Barman I. Rapid, quantitative determination of aggregation and particle formation for antibody drug conjugate therapeutics with label-free Raman spectroscopy. Anal Chim Acta 2019; 1081:138-145. [PMID: 31446951 PMCID: PMC6750807 DOI: 10.1016/j.aca.2019.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/21/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022]
Abstract
Lot release and stability testing of biologics are essential parts of the quality control strategy for ensuring therapeutic material dosed to patients is safe and efficacious, and consistent with previous clinical and toxicological experience. Characterization of protein aggregation is of particular significance, as aggregates may lose the intrinsic pharmaceutical properties as well as engage with the immune system instigating undesirable downstream immunogenicity. While important, real-time identification and quantification of subvisible particles in the monoclonal antibody (mAb) drug products remains inaccessible with existing techniques due to limitations in measurement time, sensitivity or experimental conditions. Here, owing to its exquisite molecular specificity, non-perturbative nature and lack of sample preparation requirements, we propose label-free Raman spectroscopy in conjunction with multivariate analysis as a solution to this unmet need. By leveraging subtle, but consistent, differences in vibrational modes of the biologics, we have developed a support vector machine-based regression model that provides fast, accurate prediction for a wide range of protein aggregations. Moreover, in blinded experiments, the model shows the ability to precisely differentiate between aggregation levels in mAb like product samples pre- and post-isothermal incubation, where an increase in aggregate levels was experimentally determined. In addition to offering fresh insights into mAb like product-specific aggregation mechanisms that can improve engineering of new protein therapeutics, our results highlight the potential of Raman spectroscopy as an in-line analytical tool for monitoring protein particle formation.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy S Springall
- AstraZeneca, R&D Biopharmaceuticals, Biopharmaceutical Product Development, Analytical Sciences, Gaithersburg, MD, USA.
| | - Xiangyang Wang
- AstraZeneca, R&D Biopharmaceuticals, Biopharmaceutical Product Development, Analytical Sciences, Gaithersburg, MD, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
43
|
Nwoko KC, Raab A, Cheyne L, Dawson D, Krupp E, Feldmann J. Matrix-dependent size modifications of iron oxide nanoparticles (Ferumoxytol) spiked into rat blood cells and plasma: Characterisation with TEM, AF4-UV-MALS-ICP-MS/MS and spICP-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:356-365. [DOI: 10.1016/j.jchromb.2019.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/29/2019] [Accepted: 06/23/2019] [Indexed: 01/19/2023]
|
44
|
Kumar S, Rao R. Analytical tools for cyclodextrin nanosponges in pharmaceutical field: a review. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00903-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Zhang H, Lyden D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat Protoc 2019; 14:1027-1053. [PMID: 30833697 DOI: 10.1038/s41596-019-0126-x] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022]
Abstract
We describe the protocol development and optimization of asymmetric-flow field-flow fractionation (AF4) technology for separating and characterizing extracellular nanoparticles (ENPs), particularly small extracellular vesicles (sEVs), known as exosomes, and even smaller novel nanoparticles, known as exomeres. This technique fractionates ENPs on the basis of hydrodynamic size and demonstrates a unique capability to separate nanoparticles with sizes ranging from a few nanometers to an undefined level of micrometers. ENPs are resolved by two perpendicular flows-channel flow and cross-flow-in a thin, flat channel with a semi-permissive bottom wall membrane. The AF4 separation method offers several advantages over other isolation methods for ENP analysis, including being label-free, gentle, rapid (<1 h) and highly reproducible, as well as providing efficient recovery of analytes. Most importantly, in contrast to other available techniques, AF4 can separate ENPs at high resolution (1 nm) and provide a large dynamic range of size-based separation. In conjunction with real-time monitors, such as UV absorbance and dynamic light scattering (DLS), and an array of post-separation characterizations, AF4 facilitates the successful separation of distinct subsets of exosomes and the identification of exomeres. Although the whole procedure of cell culture and ENP isolation from the conditioned medium by ultracentrifugation (UC) can take ~3 d, the AF4 fractionation step takes only 1 h. Users of this technology will require expertise in the working principle of AF4 to operate and customize protocol applications. AF4 can contribute to the development of high-quality, exosome- and exomere-based molecular diagnostics and therapeutics.
Collapse
Affiliation(s)
- Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics and Department of Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics and Department of Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
46
|
Hwang JY, Youn S, Yang IH. Gravitational field flow fractionation: Enhancing the resolution power by using an acoustic force field. Anal Chim Acta 2019; 1047:238-247. [DOI: 10.1016/j.aca.2018.09.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
|
47
|
Chuo STY, Chien JCY, Lai CPK. Imaging extracellular vesicles: current and emerging methods. J Biomed Sci 2018; 25:91. [PMID: 30580764 PMCID: PMC6304785 DOI: 10.1186/s12929-018-0494-5] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles released by cells. They range from 30 nm to several micrometers in diameter, and ferry biological cargos such as proteins, lipids, RNAs and DNAs for local and distant intercellular communications. EVs have since been found to play a role in development, as well as in diseases including cancers. To elucidate the roles of EVs, researchers have established different methods to visualize and study their spatiotemporal properties. However, since EV are nanometer-sized, imaging them demands a full understanding of each labeling strategy to ensure accurate monitoring. This review covers current and emerging strategies for EV imaging for prospective studies.
Collapse
Affiliation(s)
- Steven Ting-Yu Chuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Roosevelt Rd., Sec. 4, Taipei, 10617 Taiwan
| | - Jasper Che-Yung Chien
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Roosevelt Rd., Sec. 4, Taipei, 10617 Taiwan
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Roosevelt Rd., Sec. 4, Taipei, 10617 Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
48
|
Swarnakar NK, Venkatesan N, Betageri G. Critical In Vitro Characterization Methods of Lipid-Based Formulations for Oral Delivery: a Comprehensive Review. AAPS PharmSciTech 2018; 20:16. [PMID: 30569266 DOI: 10.1208/s12249-018-1239-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022] Open
Abstract
Lipids have been extensively used in formulations to enhance dissolution and bioavailability of poorly water-soluble as well as water-soluble drug molecules. The digestion of lipid-based formulations, in the presence of bile salts, phospholipids, and cholesterol, changes the lipid composition in vivo, resulting in the formation of different colloidal phases in the intestine. Therefore, in vitro characterization and evaluation of such formulations are critical in developing a successful formulation. This review covers comprehensive discussion on in vitro characterization techniques such as solubility, drug entrapment, thermal characterization, dissolution, and digestion of lipid-based formulations.
Collapse
|
49
|
Zhang X, Li Y, Shen S, Lee S, Dou H. Field-flow fractionation: A gentle separation and characterization technique in biomedicine. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Co-existing colloidal phases in artificial intestinal fluids assessed by AF4/MALLS and DLS: A systematic study into cholate & (lyso-) phospholipid blends, incorporating celecoxib as a model drug. Eur J Pharm Sci 2018; 120:61-72. [DOI: 10.1016/j.ejps.2018.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/24/2022]
|