1
|
Compatibilized Biopolymer-based Core–shell Nanoparticles: A New Frontier in Malaria Combo-therapy. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Kenechukwu FC, Dias ML, Ricci-Júnior E. Biodegradable nanoparticles from prosopisylated cellulose as a platform for enhanced oral bioavailability of poorly water-soluble drugs. Carbohydr Polym 2021; 256:117492. [PMID: 33483021 DOI: 10.1016/j.carbpol.2020.117492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/18/2022]
Abstract
Bio-inspired nanotechnology-based strategies are potential platforms for enhanced dissolution and oral biovailability of poorly water-soluble drugs. In this study, a recently patented green biopolymer (Prosopis africana gum, PG) was compatibilized with microcrystalline cellulose (MCC), a conventional polysaccharide, via thermo-regulated coacervation to obtain PG-MCC (1:0, 1:1, 1:2, 2:1, and 0:1) rational blends and the nanoparticles developed with optimized (1:1) biocomposites (termed "prosopisylated cellulose") by combined homogenization-nanoprecipitation technique was engineered as a high circulating system for improved oral bioavailability of griseofulvin (GF), a model Biopharmaceutics Classification System (BCS) Class-II drug. The effects of biopolymer interaction on morphological and microstructural properties of drug-free biocomposites obtained were investigated by Fourier transform infra-red spectroscopy, scanning electron microscopy and x-ray diffractometry, while the physicochemical properties and in-vivo pharmacokinetics of GF-loaded nanoparticles were also ascertained. Optimized biocomposites revealed inter-molecular and intra-molecular hydrogen bonding between the hydroxyl group of MCC and polar components of PG, as well as reduction in crystallinity of MCC. Griseofulvin-loaded nanoparticles were stable, displayed particles with relatively smooth surfaces and average size of 26.18 ± 0.94 . nm, with zeta potential and polydispersity index of 32.1 ± 0.57 mV and 0.173 ± 0.06, respectively. Additionally, the nanoparticles showed good entrapment efficiency (86.51 ± 0.93 %), and marked improvement in griseofulvin dissolution when compared to free drug, with significantly (p < 0.05) higher GF release in basic than acidic PEG-reinforced simulated bio-microenvironments. Besides, x-ray diffractogram of GF-loaded nanoparticles showed amorphization with few characteristic peaks of GF while infra-red spectrum indicated broader principal peaks of GF and components compatibility. Furthermore, GF-loaded nanoparticles showed low plasma clearance with three-fold increase in systemic bioavailability of griseofulvin compared with free drug. These results showed that prosopisylated cellulose nanoparticles would be a facile approach to improve oral bioavailability of BCS class-II drugs and can be pursued as a new versatile drug delivery platform.
Collapse
Affiliation(s)
- Franklin Chimaobi Kenechukwu
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Instituto de Macromoléculas Professora Eloisa Mano (IMA), Programa de Ciencia e Tecnologia de Polimeros, Centro de Tecnologia, Universidade Federal do Rio de Janeiro (UFRJ), Brazil.
| | - Marcos Lopes Dias
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Programa de Ciencia e Tecnologia de Polimeros, Centro de Tecnologia, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Eduardo Ricci-Júnior
- Nanomedicines Unit, Facultade de Pharmacia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, Brazil
| |
Collapse
|
3
|
Advanced materials for drug delivery across mucosal barriers. Acta Biomater 2021; 119:13-29. [PMID: 33141051 DOI: 10.1016/j.actbio.2020.10.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Mucus is a viscoelastic gel that traps pathogens and other foreign particles to limit their penetration into the underlying epithelium. Dosage forms containing particle-based drug delivery systems are trapped in mucosal layers and will be removed by mucus turnover. Mucoadhesion avoids premature wash-off and prolongs the residence time of drugs on mucus. Moreover, mucus penetration is essential for molecules to access the underlying epithelial tissues. Various strategies have been investigated to achieve mucoadhesion and mucus penetration of drug carriers. Innovations in materials used for the construction of drug-carrier systems allowed the development of different mucoadhesion and mucus penetration delivery systems. Over the last decade, advances in the field of materials chemistry, with a focus on biocompatibility, have led to the expansion of the pool of materials available for drug delivery applications. The choice of materials in mucosal delivery is generally dependent on the intended therapeutic target and nature of the mucosa at the site of absorption. This review presents an up-to-date account of materials including synthesis, physical and chemical modifications of mucoadhesive materials, nanocarriers, viral mimics used for the construction of mucosal drug delivery systems.
Collapse
|
4
|
Mucin-Grafted Polyethylene Glycol Microparticles Enable Oral Insulin Delivery for Improving Diabetic Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, different ratios of mucin-grafted polyethylene-glycol-based microparticles were prepared and evaluated both in vitro and in vivo as carriers for the oral delivery of insulin. Characterization measurements showed that the insulin-loaded microparticles display irregular porosity and shape. The encapsulation efficiency and loading capacity of insulin were >82% and 18%, respectively. The release of insulin varied between 68% and 92% depending on the microparticle formulation. In particular, orally administered insulin-loaded microparticles resulted in a significant fall of blood glucose levels, as compared to insulin solution. Subcutaneous administration showed a faster, albeit not sustained, glucose fall within a short time as compared to the polymeric microparticle-based formulations. These results indicate the possible oral delivery of insulin using this combination of polymers.
Collapse
|
5
|
Momoh MA, Franklin KC, Agbo CP, Ugwu CE, Adedokun MO, Anthony OC, Chidozie OE, Okorie AN. Microemulsion-based approach for oral delivery of insulin: formulation design and characterization. Heliyon 2020; 6:e03650. [PMID: 32258491 PMCID: PMC7113630 DOI: 10.1016/j.heliyon.2020.e03650] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/21/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Oral delivery of insulin provides a good alternative because it is non-invasive and patient-friendly. However, multiple challenges affected this route. To overcome barriers for oral delivery of insulin, we aimed to develop a novel insulin-loaded microemulsion system based on snail mucin for oral administration. The strategy in the novel system of using mucin loading insulin into the inner core of prepared water in oil microemulsion to provide sustained released, increased in vivo stability and enhanced drug absorption in the gastrointestinal tract. We report how microemulsion composed of varying ratios of snail mucin and Tween® 80 (1:9–9:1) using oil/water emulsion preparation method influenced insulin performance after oral administration. The results obtained include an encapsulation efficiency of above 70 %; in vitro release was sustained over 10 h and in vivo evaluations in diabetic rat model shows that insulin-loaded microencapsulation effectively reduced blood glucose levels over a period >8 h after oral administration. Therefore, we suggest that the developed formulation for oral insulin can be a promising alternative dosage form for oral protein delivery.
Collapse
Affiliation(s)
- Mumuni A Momoh
- Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences University of Nigeria Nsukka, Enugu State, Nigeria
| | - Kenechukwu C Franklin
- Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences University of Nigeria Nsukka, Enugu State, Nigeria
| | - Chinazom P Agbo
- Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences University of Nigeria Nsukka, Enugu State, Nigeria
| | - Calister E Ugwu
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Musiliu O Adedokun
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy University of Uyo, Akwa-Ibom State, Nigeria
| | - Ofomata C Anthony
- National Centre for Energy Research and Development, University of Nigeria Nsukka, Nigeria
| | - Omeje E Chidozie
- Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences University of Nigeria Nsukka, Enugu State, Nigeria
| | - Augustine N Okorie
- Department of Pharmacology and Toxicology University of University of Nigeria Nsukka, Enugu State, Nigeria
| |
Collapse
|
6
|
Assaf SM, Subhi Khanfar M, Bassam Farhan A, Said Rashid I, Badwan AA. Preparation and characterization of co-processed starch/MCC/chitin hydrophilic polymers onto magnesium silicate. Pharm Dev Technol 2019; 24:761-774. [PMID: 30888873 DOI: 10.1080/10837450.2019.1596131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It was aimed to investigate the compressibility, compactibility, powder flow and tablet disintegration of a new excipient comprising magnesium (Mg) silicate co-processed (5%-85% w/w) onto chitin, microcrystalline cellulose (MCC) and starch as the hydrophilic polymers of interest. Initially, the mechanism of tablet disintegration was studied by measuring water infiltration rate, moisture sorption, swelling capacity and hydration ability. Moreover, the powders compression behavior was carried out by applying Kawakita model of compression analysis in addition to porosity and radial tensile strength measurements. In vitro drug release of compacts made of 400 mg ibuprofen and 300 mg of the hydrophilic polymers containing 30% w/w Mg silicate co-precipitate was investigated in phosphate buffer (pH 7.8). This work demonstrated that the incorporation of Mg silicate to the hydrophilic polymers lead to the improvement of powder flowability, compactibility, stability (with regard to storage conditions), compacts crushing strength, and disintegration time in addition to faster drug release. The overall findings are practically advantageous in the context of finding a low cost and multifunctional co-processed excipient of natural origins.
Collapse
Affiliation(s)
- Shereen M Assaf
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| | - Mai Subhi Khanfar
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| | - Ahmed Bassam Farhan
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| | - Iyad Said Rashid
- b Jordanian Pharmaceutical Manufacturing Company , Amman , Jordan
| | - Adnan Ali Badwan
- b Jordanian Pharmaceutical Manufacturing Company , Amman , Jordan
| |
Collapse
|
7
|
Optimization of formulation processes using Design Expert ® Software for preparation of polymeric blends-artesunate-amodiaquine HCl microparticles. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Bonaccorso A, Musumeci T, Carbone C, Vicari L, Lauro MR, Puglisi G. Revisiting the role of sucrose in PLGA-PEG nanocarrier for potential intranasal delivery. Pharm Dev Technol 2017; 23:265-274. [PMID: 28128676 DOI: 10.1080/10837450.2017.1287731] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The efficient design of nanocarriers is a major challenge and must be correlated with the route of administration. Intranasal route is studied for local, systemic or cerebral treatments. In order to develop nanocarriers with suitable properties for intranasal delivery, to achieve brain and to market the product, it is extremely important the simplification of the formulation in terms of raw materials. Surfactants and cryoprotectants are often added to improve structuration and/or storage of polymeric nanoparticles. PLGA-PEG nanocarriers were prepared by nanoprecipitation method evaluating the critical role of sucrose as surfactant-like and cryoprotectant, with the aim to obtain a simpler formulation compared to those proposed in other papers. Photon correlation spectroscopy and Turbiscan analysis show that sucrose is a useful excipient during the preparation process and it effectively cryoprotects nanoparticles. Among the investigated nanocarriers with different degree of PEG, PEGylated PLGA (5%) confers weak interaction between nanoparticles and mucin as demonstrated by thermal analysis and mucin particle method. Furthermore, in vitro biological studies on HT29, as epithelium cell line, does not show cytotoxicity effect for this nanocarrier at all texted concentrations. The selected nanosystem was also studied to load docetaxel, as model drug, and characterized by a technological point of view.
Collapse
Affiliation(s)
- A Bonaccorso
- a Laboratory of Drug Delivery Technology, - Department of Drug Sciences , University of Catania , Catania , Italy
| | - T Musumeci
- a Laboratory of Drug Delivery Technology, - Department of Drug Sciences , University of Catania , Catania , Italy
| | - C Carbone
- a Laboratory of Drug Delivery Technology, - Department of Drug Sciences , University of Catania , Catania , Italy
| | - L Vicari
- b IOM Ricerca s.r.l. , Viagrande , Italy
| | - M Rosaria Lauro
- c Department of Pharmacy , University of Salerno , Fisciano , Italy
| | - G Puglisi
- a Laboratory of Drug Delivery Technology, - Department of Drug Sciences , University of Catania , Catania , Italy
| |
Collapse
|
9
|
Kenechukwu FC, Momoh MA. Formulation, characterization and evaluation of the effect of polymer concentration on the release behavior of insulin-loaded Eudragit(®)-entrapped mucoadhesive microspheres. Int J Pharm Investig 2016; 6:69-77. [PMID: 27051626 PMCID: PMC4797490 DOI: 10.4103/2230-973x.177806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Introduction: The aim of this study was to use Eudragit® RL 100 (pH-independent polymer) and magnesium stearate (a hydrophobic droplet stabilizer) in combination to improve the controlled release effect of insulin-loaded Eudragit® entrapped microspheres prepared by the emulsification-coacervation technique. Materials and Methods: Mucoadhesive insulin-loaded microspheres containing magnesium stearate and varying proportions of Eudragit® RL 100 were prepared by the emulsification-coacervation technique and evaluated for thermal properties, physicochemical performance, and in vitro dissolution in acidic and subsequently basic media. Results: Stable, spherical, brownish, discrete, free-flowing and mucoadhesive insulin-loaded microspheres with size range of 14.20 ± 0.30-19.80 ± 0.60 μm and loading efficiency of 74.55 ± 1.05-75.90 ± 1.94% were formed. After 3 h, microspheres prepared with insulin: Eudragit® RL 100 ratios of 1:4, 1:6, and 1:8 released 73.40 ± 1.38, 66.20 ± 1.59, and 71.30 ± 1.27 (%) of insulin, respectively. Conclusion: The physicochemical and physico-technical properties of the microspheres developed in this study demonstrated the effectiveness of the Eudragit® RL entrapped mucoadhesive microspheres (prepared by the emulsification-coacervation technique using varying polymer concentration) as a carrier system for oral insulin delivery.
Collapse
Affiliation(s)
- Franklin C Kenechukwu
- Drug Delivery and Nanomedicines Research Unit, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Mumuni A Momoh
- Drug Delivery and Nanomedicines Research Unit, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
10
|
Momoh MA, Kenechukwu FC, Nnamani PO, Umetiti JC. Influence of magnesium stearate on the physicochemical and pharmacodynamic characteristics of insulin-loaded Eudragit entrapped mucoadhesive microspheres. Drug Deliv 2014; 22:837-48. [PMID: 24670092 DOI: 10.3109/10717544.2014.898108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Effective oral insulin delivery has remained a challenge to the pharmaceutical industry. This study was designed to evaluate the effect of magnesium stearate on the properties of insulin-loaded Eudragit® RL 100 entrapped mucoadhesive microspheres. Microspheres containing Eudragit® RL 100, insulin, and varying concentrations of magnesium stearate (agglomeration-preventing agent) were prepared by emulsification-coacervation method and characterized with respect to differential scanning calorimetry (DSC), morphology, particle size, loading efficiency, mucoadhesive and micromeritics properties. The in vitro release of insulin from the microspheres was performed in simulated intestinal fluid (SIF, pH 7.2) while the in vivo hypoglycemic effect was investigated by monitoring the plasma glucose level of the alloxan-induced diabetic rats after oral administration. Stable, spherical, brownish, mucoadhesive, discrete and free flowing insulin-loaded microspheres were formed. While the average particle size and mucoadhesiveness of the microspheres increased with an increase in the proportion of magnesium stearate, loading efficiency generally decreased. After 12 h, microspheres prepared with Eudragit® RL 100: magnesium stearate ratios of 15:1, 15:2, 15:3 and 15:4 released 68.20 ± 1.57, 79.40 ± 1.52, 76.60 ± 1.93 and 70.00 ± 1.00 (%) of insulin, respectively. Reduction in the blood glucose level for the subcutaneously (sc) administered insulin was significantly (p ≤ 0.05) higher than for most of the formulations. However, the blood glucose reduction effect produced by the orally administered insulin-loaded microspheres prepared with four parts of magnesium stearate and fifteen parts of Eudragit® RL 100 after 12 h was equal to that produced by subcutaneously administered insulin solution. The results of this study can suggest that this carrier system could be an alternative for the delivery of insulin.
Collapse
Affiliation(s)
- Mumuni A Momoh
- a Drug Delivery Research Unit, Department of Pharmaceutics , University of Nigeria , Nsukka , Enugu State , Nigeria
| | - Franklin C Kenechukwu
- a Drug Delivery Research Unit, Department of Pharmaceutics , University of Nigeria , Nsukka , Enugu State , Nigeria
| | - Petra O Nnamani
- a Drug Delivery Research Unit, Department of Pharmaceutics , University of Nigeria , Nsukka , Enugu State , Nigeria
| | - Jennifer C Umetiti
- a Drug Delivery Research Unit, Department of Pharmaceutics , University of Nigeria , Nsukka , Enugu State , Nigeria
| |
Collapse
|
11
|
Singh I, Rana V. Enhancement of Mucoadhesive Property of Polymers for Drug Delivery Applications. ACTA ACUST UNITED AC 2013. [DOI: 10.7569/raa.2013.097307] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Hypolipidemic applications of microcrystalline cellulose composite synthesized from different agricultural residues. Int J Biol Macromol 2012; 51:1091-102. [DOI: 10.1016/j.ijbiomac.2012.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 02/02/2023]
|
13
|
Bandgar BP, Sarangdhar RJ, Khan F, Mookkan J, Shetty P, Singh G. Synthesis and biological evaluation of orally active hypolipidemic agents. J Med Chem 2011; 54:5915-26. [PMID: 21770455 DOI: 10.1021/jm200704f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of novel fenofibric acid ester prodrugs 1c-1h were synthesized and evaluated with the aim of obtaining potent hypolipidemic agents. Prodrugs 1c and 1d exhibited potent hypochlolesterolemic activity, lowering the mice plasma triglyceride level up to 47% in Swiss albino mice after oral administration of 50 mg/kg/day for 8 days. Fenofibric acid ester prodrugs 1c-1h were found lipophilic like fenofibrate (1b), indicated by partition coefficients measured in octanol-buffer system at pH 7.4. On the basis of in vivo studies, prodrugs 1c and 1d emerged as potent hypolipidemic agents.
Collapse
Affiliation(s)
- Babasaheb P. Bandgar
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur-413 255, India
| | - Rajendra J. Sarangdhar
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur-413 255, India
| | - Fruthous Khan
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur-413 255, India
| | - Jeyamurugan Mookkan
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur-413 255, India
| | - Pranesha Shetty
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur-413 255, India
| | - Gajendra Singh
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur-413 255, India
| |
Collapse
|
14
|
Builders PF, Bonaventure AM, Tiwalade A, Okpako LC, Attama AA. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose–starch microparticulate composites prepared by compatibilized reactive polymer blending. Int J Pharm 2010; 388:159-67. [DOI: 10.1016/j.ijpharm.2009.12.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/22/2009] [Accepted: 12/24/2009] [Indexed: 11/26/2022]
|