1
|
Halman A, Conyers R, Moore C, Khatri D, Sarris J, Perkins D. Harnessing Pharmacogenomics in Clinical Research on Psychedelic-Assisted Therapy. Clin Pharmacol Ther 2025; 117:106-115. [PMID: 39345195 DOI: 10.1002/cpt.3459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Psychedelics have recently re-emerged as potential treatments for various psychiatric conditions that impose major public health costs and for which current treatment options have limited efficacy. At the same time, personalized medicine is increasingly being implemented in psychiatry to provide individualized drug dosing recommendations based on genetics. This review brings together these topics to explore the utility of pharmacogenomics (a key component of personalized medicine) in psychedelic-assisted therapies. We summarized the literature and explored the potential implications of genetic variability on the pharmacodynamics and pharmacokinetics of psychedelic drugs including lysergic acid diethylamide (LSD), psilocybin, N,N-dimethyltryptamine (DMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), ibogaine and 3,4-methylenedioxymethamphetamine (MDMA). Although existing evidence is limited, particularly concerning pharmacodynamics, studies investigating pharmacokinetics indicate that genetic variants in drug-metabolizing enzymes, such as cytochrome P450, impact the intensity of acute psychedelic effects for LSD and ibogaine, and that a dose reduction for CYP2D6 poor metabolizers may be appropriate. Furthermore, based on the preclinical evidence, it can be hypothesized that CYP2D6 metabolizer status might contribute to altered acute psychedelic experiences with 5-MeO-DMT and psilocybin when combined with monoamine oxidase inhibitors. In conclusion, considering early evidence that genetic factors can influence the effects of certain psychedelics, we suggest that pharmacogenomic testing should be further investigated in clinical research. This is necessary to evaluate its utility in improving the safety and therapeutic profile of psychedelic therapies and a potential future role in personalizing psychedelic-assisted therapies, should these treatments become available.
Collapse
Affiliation(s)
- Andreas Halman
- Psychae Therapeutics, Melbourne, Victoria, Australia
- Cancer Therapies, Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel Conyers
- Cancer Therapies, Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Claire Moore
- Cancer Therapies, Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dhrita Khatri
- Cancer Therapies, Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jerome Sarris
- Psychae Therapeutics, Melbourne, Victoria, Australia
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales, Australia
- The Florey Institute of Neuroscience and Mental Health & The Department of Psychiatry, Melbourne University, Melbourne, Victoria, Australia
| | - Daniel Perkins
- Psychae Therapeutics, Melbourne, Victoria, Australia
- School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Quiñonez-Bastidas GN, Grijalva-Contreras LE, Patiño-Camacho SI, Navarrete A. Emerging Psychotropic Drug for the Treatment of Trigeminal Pain: Salvinorin A. Pharmaceuticals (Basel) 2024; 17:1619. [PMID: 39770461 PMCID: PMC11728561 DOI: 10.3390/ph17121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Trigeminal neuralgia (TN) is chronic pain caused by damage to the somatosensorial system on the trigeminal nerve or its branches, which involves peripheral and central dysfunction pain pathways. Trigeminal pain triggers disruptive pain in regions of the face, including within and around the mouth. Besides clinical experiences, translating the language of suffering into scientific terminology presents substantial challenges. Due to the complex and multifactorial pathophysiology underlying trigeminal pain, elucidating its social impact presents significant difficulties. Carbamazepine and oxcarbazepine are first-line treatments for TN, achieving approximately 50% pain reduction in 60-70% of treated patients. However, their efficacy is often limited by common side effects, such as dizziness, vertigo, nausea, seizures, and cognitive symptoms. In some cases, patients experience severe side effects, including myelosuppression, hyponatremia, hormonal imbalances, liver toxicity, suicidal ideation, teratogenicity, and other adverse reactions. Given these clinical limitations, the search for new painkiller candidates continues. Hence, we focused this review on salvinorin A (SalA), a natural agonist of κ-opioid receptors (KORs), which demonstrated anti-nociceptive, anti-inflammatory, and anti-neuropathic properties in various experimental models of the spinal sensory system. Furthermore, preclinical evidence indicates that SalA does not induce dependence and demonstrates a favorable toxicological and safety profile in comparison with currently marketed opioid drugs. We propose Salvinorin A as a promising candidate for treating trigeminal neuralgia, offering the potential for reduced adverse effects.
Collapse
Affiliation(s)
- Geovanna Nallely Quiñonez-Bastidas
- Centro de Investigación y Docencia en Ciencias de la Salud, Universidad Autónoma de Sinaloa, Eustaquio Buelna 91, Burócrata, Culiacan 80030, Mexico
| | - Lucia Elhy Grijalva-Contreras
- Programa de Licenciatura en Fisioterapia, Universidad Estatal de Sonora, Unidad Académica Hermosillo, Hermosillo 83100, Mexico;
| | - Selene Isabel Patiño-Camacho
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacan 80013, Mexico;
| | - Andrés Navarrete
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de Mexico 04510, Mexico;
| |
Collapse
|
3
|
Ngo I, Kumar R, Li L, Kim SW, Kwon M, Ro DK. Identification of clerodane diterpene modifying cytochrome P450 (CYP728D26) in Salvia divinorum - en route to psychotropic salvinorin A biosynthesis. PHYSIOLOGIA PLANTARUM 2024; 176:e14569. [PMID: 39377159 DOI: 10.1111/ppl.14569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Salvia divinorum is a hallucinogenic plant native to the Oaxaca in Mexico. The active ingredient for psychotropic effects in this plant is salvinorin A, a potent and highly selective κ-opioid receptor agonist. Salvinorin A is distinct from other well-known opioids, such as morphine and codeine, in that it is a non-nitrogenous diterpenoid with no affinity for μ-opioid receptor, the prime receptor of alkaloidal opioids. A terpene opioid that selectively targets a new opioid receptor (κ-opioid receptor) can be instrumental in developing alternative analgesics. Elucidation of the salvinorin A biosynthetic pathway can help bio-manufacture diverse semi-synthetic derivatives of salvinorin A but, to date, only two enzymes in the Salvinorin A pathway have been identified. Here, we identify CYP728D26 that catalyzes a C18 oxygenation on crotonolide G, which bears a clerodane backbone. Biochemical identity of CYP728D26 was validated by in vivo reconstitution in yeast, 1H- and 13C-NMR analyses of the purified product, and kinetic analysis of CYP728D26 with a Km value of 13.9 μM. Beyond the single oxygenation on C18, collision-induced dissociation analysis suggested two additional oxygenations are catalyzed by CYP728D26 to form crotonoldie G acid, although this carboxylic acid form is a minor product. Its close homologue CYP728D25 exhibited a C1-hydroxylation on the clerodane backbone in a reconstituted yeast system. However, CYP728D25 showed no activity in in vitro assays. This result implies that catalytic activities observed from overexpression systems should be interpreted cautiously. This work identified a new CYP catalyst and advanced our knowledge of salvinorin A biosynthesis.
Collapse
Affiliation(s)
- Iris Ngo
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
| | - Rahul Kumar
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
| | - Liang Li
- The Metabolomics Innovation Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
- Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, Republic of Korea
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Hill S, Dao N, Dang VQ, Stahl EL, Bohn LM, Shenvi RA. A Route to Potent, Selective, and Biased Salvinorin Chemical Space. ACS CENTRAL SCIENCE 2023; 9:1567-1574. [PMID: 37637743 PMCID: PMC10450872 DOI: 10.1021/acscentsci.3c00616] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 08/29/2023]
Abstract
The salvinorins serve as templates for next generation analgesics, antipruritics, and dissociative hallucinogens via selective and potent agonism of the kappa-opioid receptor (KOR). In contrast to most opioids, the salvinorins lack basic amines and bind with high affinity and selectivity via complex polyoxygenated scaffolds that have frustrated deep-seated modification by synthesis. Here we describe a short asymmetric synthesis that relies on a sterically confined organocatalyst to dissociate acidity from reactivity and effect Robinson annulation of an unactivated nucleophile/unstable electrophile pair. Combined with a cobalt-catalyzed polarized diene-alkyne cycloaddition, the route allows divergent access to a focused library of salvinorins. We appraise the synthesis by its generation of multiple analogs that exceed the potency, selectivity, stability, and functional bias of salvinorin A itself.
Collapse
Affiliation(s)
- Sarah
J. Hill
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate
School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Nathan Dao
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate
School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Vuong Q. Dang
- Department
of Molecular Medicine, The Herbert Wertheim
UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Edward L. Stahl
- Department
of Molecular Medicine, The Herbert Wertheim
UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Laura M. Bohn
- Department
of Molecular Medicine, The Herbert Wertheim
UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Ryan A. Shenvi
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate
School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Akins NS, Salahuddin MF, Pandey P, Kim SJ, Mahdi F, Khan MIH, Moss EM, Worth CJ, Keane MM, Chittiboyina AG, Doerksen RJ, Paris JJ, Le HV. Alleviation of Cocaine Withdrawal and Pertinent Interactions between Salvinorin-Based Antagonists and Kappa Opioid Receptor. ACS Chem Neurosci 2023; 14:958-976. [PMID: 36795782 DOI: 10.1021/acschemneuro.2c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The kappa opioid receptor (KOR) is involved in the regulation of both the reward and mood processes. Recent reports find that the use of drugs of abuse increases the production of dynorphin and the overall activation of KOR. Long-acting KOR antagonists, such as norbinaltorphimine (nor-BNI), JDTic, and 5'-guanidinonaltrindole (GNTI), have been shown to stop depressive and anxiety-related disorders, which are the common side effects of withdrawal that can lead to a relapse in drug use. Unfortunately, these prototypical KOR antagonists are known to induce selective KOR antagonism that is delayed by hours and extremely prolonged, and their use in humans comes with serious safety concerns because they possess a large window for potential drug-drug interactions. Furthermore, their persistent pharmacodynamic activities can hinder the ability to reverse unanticipated side effects immediately. Herein, we report our studies of the lead selective, salvinorin-based KOR antagonist (1) as well as nor-BNI on C57BL/6N male mice for spontaneous cocaine withdrawal. Assessment of pharmacokinetics showed that 1 is a short-acting compound with an average half-life of 3.75 h across different compartments (brain, spinal cord, liver, and plasma). Both 1 (5 mg/kg) and nor-BNI (5 mg/kg) were shown to reduce spontaneous withdrawal behavior in mice, with 1 producing additional anti-anxiety-like behavior in a light-dark transition test (however, no mood-related effects of 1 or nor-BNI were observed at the current dosing in an elevated plus maze or a tail suspension test). Our results support the study of selective, short-acting KOR antagonists for the treatment of psychostimulant withdrawal and the associated negative mood states that contribute to relapse. Furthermore, we identified pertinent interactions between 1 and KOR via computational studies, including induced-fit docking, mutagenesis, and molecular dynamics simulations, to gain insight into the design of future selective, potent, and short-acting salvinorin-based KOR antagonists.
Collapse
Affiliation(s)
- Nicholas S Akins
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Mohammed F Salahuddin
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Pankaj Pandey
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Seong Jong Kim
- Natural Products Utilization Research Unit, United States Department of Agriculture, Agricultural Research Service, University, Mississippi 38677, United States
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Md Imdadul H Khan
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Emaya M Moss
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Charlie J Worth
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Madeline M Keane
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Hoang V Le
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
6
|
Puls K, Wolber G. Solving an Old Puzzle: Elucidation and Evaluation of the Binding Mode of Salvinorin A at the Kappa Opioid Receptor. Molecules 2023; 28:718. [PMID: 36677775 PMCID: PMC9861206 DOI: 10.3390/molecules28020718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
The natural product Salvinorin A (SalA) was the first nitrogen-lacking agonist discovered for the opioid receptors and exhibits high selectivity for the kappa opioid receptor (KOR) turning SalA into a promising analgesic to overcome the current opioid crisis. Since SalA's suffers from poor pharmacokinetic properties, particularly the absence of gastrointestinal bioavailability, fast metabolic inactivation, and subsequent short duration of action, the rational design of new tailored analogs with improved clinical usability is highly desired. Despite being known for decades, the binding mode of SalA within the KOR remains elusive as several conflicting binding modes of SalA were proposed hindering the rational design of new analgesics. In this study, we rationally determined the binding mode of SalA to the active state KOR by in silico experiments (docking, molecular dynamics simulations, dynophores) in the context of all available mutagenesis studies and structure-activity relationship (SAR) data. To the best of our knowledge, this is the first comprehensive evaluation of SalA's binding mode since the determination of the active state KOR crystal structure. SalA binds above the morphinan binding site with its furan pointing toward the intracellular core while the C2-acetoxy group is oriented toward the extracellular loop 2 (ECL2). SalA is solely stabilized within the binding pocket by hydrogen bonds (C210ECL2, Y3127.35, Y3137.36) and hydrophobic contacts (V1182.63, I1393.33, I2946.55, I3167.39). With the disruption of this interaction pattern or the establishment of additional interactions within the binding site, we were able to rationalize the experimental data for selected analogs. We surmise the C2-substituent interactions as important for SalA and its analogs to be experimentally active, albeit with moderate frequency within MD simulations of SalA. We further identified the non-conserved residues 2.63, 7.35, and 7.36 responsible for the KOR subtype selectivity of SalA. We are confident that the elucidation of the SalA binding mode will promote the understanding of KOR activation and facilitate the development of novel analgesics that are urgently needed.
Collapse
Affiliation(s)
| | - Gerhard Wolber
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| |
Collapse
|
7
|
Cui X, Xu X, Ju Z, Wang G, Xi C, Li J. Herkinorin negatively regulates NLRP3 inflammasome to alleviate neuronal ischemic injury through activating Mu opioid receptor and inhibiting the NF-κB pathway. J Cell Biochem 2021; 122:1085-1097. [PMID: 33835525 DOI: 10.1002/jcb.29929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 02/04/2023]
Abstract
Herkinorin is a novel opioid receptor agonist. Activation of opioid receptors, a member of G protein coupled receptors (GPCRs), may play an important role in Herkinorin neuroprotection. GPCRs may modulate NOD-like receptor protein 3 (NLRP3)-mediated inflammatory responses in the mechanisms of inflammation-associated disease and pathological processes. In this study, we investigated the effects of Herkinorin on NLRP3 and the underlying receptor and molecular mechanisms in oxygen-glucose deprivation/reperfusion (OGD/R)-treated rat cortex neurons. First, Western blot analysis showed that Herkinorin can inhibit the activation of NLRP3 and Caspase-1, decrease the expression of interleukin (IL)-1β, and decrease the secretion of IL-6 and tumour necrosis factor α detected by enzyme-linked immunosorbent assay in OGD/R-treated neurons. Then we found that Herkinorin downregulated NLRP3 levels by inhibiting the activation of nuclear factor kappa B (NF-κB) pathway, reducing the phosphorylation level of p65 and IκBα in OGD/R-treated neurons (p < .05 or .01, n = 3 per group). Instead, both the mu opioid receptor (MOR) inhibitor, β-funaltrexamine, and MOR knockdown reversed the effects of Herkinorin on NLRP3 (p < .05 or .01, n = 3 per group). Further, we found that the level of β-arrestin2 decreased in the cell membrane and increased in the cytoplasm after Herkinorin pretreatment in OGD/R-treated neurons. In co-immunoprecipitation experiments, Herkinorin increased the binding of IκBα with β-arrestin2, decreased the ubiquitination level of IκBα, and β-arrestin2 knockdown reversed the effects of Herkinorin on IκBα in OGD/R-treated neurons (p < .05 or .01, n = 3 per group). Our data demonstrated that Herkinorin negatively regulated NLRP3 inflammasome to alleviate neuronal ischemic injury through inhibiting NF-κB pathway mediated primarily by MOR activation. Inhibition of the NF-κB pathway by Herkinorin may be achieved by decreasing the ubiquitination level of IκBα, in which β-arrestin2 may play an important role.
Collapse
Affiliation(s)
- Xu Cui
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xin Xu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhihai Ju
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chunhua Xi
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, School of Basic Medical Science, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Wu L, Wu D, Chen J, Chen C, Yao T, He X, Ma Y, Zhi X, Liu R, Ji X. Intranasal salvinorin A improves neurological outcome in rhesus monkey ischemic stroke model using autologous blood clot. J Cereb Blood Flow Metab 2021; 41:723-730. [PMID: 32615886 PMCID: PMC7983500 DOI: 10.1177/0271678x20938137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Salvinorin A (SA) exerts neuroprotection and improves neurological outcomes in ischemic stroke models in rodents. In this study, we investigated whether intranasal SA administration could improve neurological outcomes in a monkey ischemic stroke model. The stroke model was induced in adult male rhesus monkeys by occluding the middle cerebral artery M2 segment with an autologous blood clot. Eight adult rhesus monkeys were randomly administered SA or 10% dimethyl sulfoxide as control 20 min after ischemia. Magnetic resonance imaging was used to confirm the ischemia and extent of injury. Neurological function was evaluated using the Non-Human Primate Stroke Scale (NHPSS) over a 28-day observation period. SA significantly reduced infarct volume (3.9 ± 0.7 cm3 vs. 7.2 ± 1.0 cm3; P = 0.002), occupying effect (0.3 ± 0.2% vs. 1.4 ± 0.3%; P = 0.002), and diffusion limitation in the lesion (-28.2 ± 11.0% vs. -51.5 ± 7.1%; P = 0.012) when compared to the control group. SA significantly reduced the NHPSS scores to almost normal in a 28-day observation period as compared to the control group (P = 0.005). Intranasal SA reduces infarct volume and improves neurological outcomes in a rhesus monkey ischemic stroke model using autologous blood clot.
Collapse
Affiliation(s)
- Longfei Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianqi Yao
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoduo He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanqin Ma
- Nhwa Pharmaceutical Co. Ltd., Xuzhou, China
| | - Xinglong Zhi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Renyu Liu, Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
9
|
Pharmacokinetics and Pharmacodynamics of Salvinorin A and Salvia divinorum: Clinical and Forensic Aspects. Pharmaceuticals (Basel) 2021; 14:ph14020116. [PMID: 33546518 PMCID: PMC7913753 DOI: 10.3390/ph14020116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/13/2023] Open
Abstract
Salvia divinorum Epling and Játiva is a perennial mint from the Lamiaceae family, endemic to Mexico, predominantly from the state of Oaxaca. Due to its psychoactive properties, S. divinorum had been used for centuries by Mazatecans for divinatory, religious, and medicinal purposes. In recent years, its use for recreational purposes, especially among adolescents and young adults, has progressively increased. The main bioactive compound underlying the hallucinogenic effects, salvinorin A, is a non-nitrogenous diterpenoid with high affinity and selectivity for the κ-opioid receptor. The aim of this work is to comprehensively review and discuss the toxicokinetics and toxicodynamics of S. divinorum and salvinorin A, highlighting their psychological, physiological, and toxic effects. Potential therapeutic applications and forensic aspects are also covered in this review. The leaves of S. divinorum can be chewed, drunk as an infusion, smoked, or vaporised. Absorption of salvinorin A occurs through the oral mucosa or the respiratory tract, being rapidly broken down in the gastrointestinal system to its major inactive metabolite, salvinorin B, when swallowed. Salvinorin A is rapidly distributed, with accumulation in the brain, and quickly eliminated. Its pharmacokinetic parameters parallel well with the short-lived psychoactive and physiological effects. No reports on toxicity or serious adverse outcomes were found. A variety of therapeutic applications have been proposed for S. divinorum which includes the treatment of chronic pain, gastrointestinal and mood disorders, neurological diseases, and treatment of drug dependence. Notwithstanding, there is still limited knowledge regarding the pharmacology and toxicology features of S. divinorum and salvinorin A, and this is needed due to its widespread use. Additionally, the clinical acceptance of salvinorin A has been hampered, especially due to the psychotropic side effects and misuse, turning the scientific community to the development of analogues with better pharmacological profiles.
Collapse
|
10
|
Hernández-Alvarado RB, Madariaga-Mazón A, Ortega A, Martinez-Mayorga K. DARK Classics in Chemical Neuroscience: Salvinorin A. ACS Chem Neurosci 2020; 11:3979-3992. [PMID: 33164503 DOI: 10.1021/acschemneuro.0c00608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Salvinorin A is the main bioactive compound in Salvia divinorum, an endemic plant with ancestral use by the inhabitants of the Mazateca mountain range (Sierra Mazateca) in Oaxaca, México. The main use of la pastora, as locally known, is in spiritual rites due to its extraordinary hallucinogenic effects. Being the first known nonalkaloidal opioid-mediated psychotropic molecule, salvinorin A set new research areas in neuroscience. The absence of a protonated amine group, common to all previously known opioids, results in a fast metabolism with the concomitant fast elimination and swift loss of activity. The worldwide spread and psychotropic effects of salvinorin A account for its misuse and classification as a drug of abuse. Consequently, salvinorin A and Salvia divinorum are now banned in many countries. Several synthetic efforts have been focused on the improvement of physicochemical and biological properties of salvinorin A: from total synthesis to hundreds of analogues. In this Review, we discuss the impact of salvinorin A in chemistry and neuroscience covering the historical relevance, isolation from natural sources, synthetic efforts, and pharmacological and safety profiles. Altogether, the chemistry behind and the taboo that encloses salvinorin A makes it one of the most exquisite naturally occurring drugs.
Collapse
Affiliation(s)
- R. Bruno Hernández-Alvarado
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510 México
| | - Abraham Madariaga-Mazón
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510 México
| | - Alfredo Ortega
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510 México
| | - Karina Martinez-Mayorga
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510 México
| |
Collapse
|
11
|
Paton KF, Biggerstaff A, Kaska S, Crowley RS, La Flamme AC, Prisinzano TE, Kivell BM. Evaluation of Biased and Balanced Salvinorin A Analogs in Preclinical Models of Pain. Front Neurosci 2020; 14:765. [PMID: 32792903 PMCID: PMC7385413 DOI: 10.3389/fnins.2020.00765] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023] Open
Abstract
In the search for safer, non-addictive analgesics, kappa opioid receptor (KOPr) agonists are a potential target, as unlike mu-opioid analgesics, they do not have abuse potential. Salvinorin A (SalA) is a potent and selective KOPr agonist, however, clinical utility is limited by the short duration of action and aversive side effects. Biasing KOPr signaling toward G-protein activation has been highlighted as a key cellular mechanism to reduce the side effects of KOPr agonists. The present study investigated KOPr signaling bias and the acute antinociceptive effects and side effects of two novel analogs of SalA, 16-Bromo SalA and 16-Ethynyl SalA. 16-Bromo SalA showed G-protein signaling bias, whereas 16-Ethynyl SalA displayed balanced signaling properties. In the dose-response tail-withdrawal assay, SalA, 16-Ethynyl SalA and 16-Bromo SalA were more potent than the traditional KOPr agonist U50,488, and 16-Ethynyl SalA was more efficacious. 16-Ethynyl SalA and 16-Bromo SalA both had a longer duration of action in the warm water tail-withdrawal assay, and 16-Ethynyl had greater antinociceptive effect in the hot-plate assay, compared to SalA. In the intraplantar 2% formaldehyde test, 16-Ethynyl SalA and 16-Bromo SalA significantly reduced both nociceptive and inflammatory pain-related behaviors. Moreover, 16-Ethynyl SalA and 16-Bromo SalA had no anxiogenic effects in the marble burying task, and 16-Bromo SalA did not alter behavior in the elevated zero maze. Overall, 16-Ethynyl SalA significantly attenuated acute pain-related behaviors in multiple preclinical models, while the biased KOPr agonist, 16-Bromo SalA, displayed modest antinociceptive effects, and lacked anxiogenic effects.
Collapse
Affiliation(s)
- Kelly F Paton
- School of Biological Sciences, Centre for Biodiscovery, Faculty of Science, Victoria University of Wellington, Wellington, New Zealand
| | - Andrew Biggerstaff
- School of Biological Sciences, Centre for Biodiscovery, Faculty of Science, Victoria University of Wellington, Wellington, New Zealand
| | - Sophia Kaska
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Rachel S Crowley
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, United States
| | - Anne C La Flamme
- School of Biological Sciences, Centre for Biodiscovery, Faculty of Science, Victoria University of Wellington, Wellington, New Zealand.,Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States.,Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, United States
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Faculty of Science, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
12
|
Inan S. Kappa Opioid Agonist-Induced Diuresis: Characteristics, Mechanisms, and Beyond. Handb Exp Pharmacol 2020; 271:401-417. [PMID: 33483878 DOI: 10.1007/164_2020_399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activation of the kappa opioid receptor (KOR) induces antinociception, anti-pruritic activity, diuresis, sedation, and dysphoria. KOR agonist-induced diuresis is characterized as water diuresis, in which water excretion with urine is increased without altering electrolyte excretion. Both centrally and peripherally acting KOR agonists promote diuresis. KOR antagonists block KOR agonist-evoked diuresis suggesting that the diuretic effect is through activation of the KOR. Studies in different experimental animal species and in humans indicate that KOR agonists decrease antidiuretic hormone (ADH) secretion and release from the hypothalamus and posterior pituitary; decrease response to ADH in kidneys; increase renal sympathetic nerve activity; and increase adrenaline, noradrenaline, and dopamine release from the adrenal medulla. The therapeutic potentials of KOR agonists as water diuretics have been studied in animal models of cerebral edema due to ischemia and intracranial mass, hypertension, and cirrhosis. This chapter reviews characteristics, possible mechanisms, as well as therapeutic potentials of KOR agonist-induced diuresis.
Collapse
Affiliation(s)
- Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Abbott KL, Flannery PC, Gill KS, Boothe DM, Dhanasekaran M, Mani S, Pondugula SR. Adverse pharmacokinetic interactions between illicit substances and clinical drugs. Drug Metab Rev 2019; 52:44-65. [PMID: 31826670 DOI: 10.1080/03602532.2019.1697283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adverse pharmacokinetic interactions between illicit substances and clinical drugs are of a significant health concern. Illicit substances are taken by healthy individuals as well as by patients with medical conditions such as mental illnesses, acquired immunodeficiency syndrome, diabetes mellitus and cancer. Many individuals that use illicit substances simultaneously take clinical drugs meant for targeted treatment. This concomitant usage can lead to life-threatening pharmacokinetic interactions between illicit substances and clinical drugs. Optimal levels and activity of drug-metabolizing enzymes and drug-transporters are crucial for metabolism and disposition of illicit substances as well as clinical drugs. However, both illicit substances and clinical drugs can induce changes in the expression and/or activity of drug-metabolizing enzymes and drug-transporters. Consequently, with concomitant usage, illicit substances can adversely influence the therapeutic outcome of coadministered clinical drugs. Likewise, clinical drugs can adversely affect the response of coadministered illicit substances. While the interactions between illicit substances and clinical drugs pose a tremendous health and financial burden, they lack a similar level of attention as drug-drug, food-drug, supplement-drug, herb-drug, disease-drug, or other substance-drug interactions such as alcohol-drug and tobacco-drug interactions. This review highlights the clinical pharmacokinetic interactions between clinical drugs and commonly used illicit substances such as cannabis, cocaine and 3, 4-Methylenedioxymethamphetamine (MDMA). Rigorous efforts are warranted to further understand the underlying mechanisms responsible for these clinical pharmacokinetic interactions. It is also critical to extend the awareness of the life-threatening adverse interactions to both health care professionals and patients.
Collapse
Affiliation(s)
- Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Patrick C Flannery
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO, USA
| | - Kristina S Gill
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Dawn M Boothe
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| |
Collapse
|
14
|
Clairet AL, Boiteux-Jurain M, Curtit E, Jeannin M, Gérard B, Nerich V, Limat S. Interaction between phytotherapy and oral anticancer agents: prospective study and literature review. Med Oncol 2019; 36:45. [PMID: 30993543 DOI: 10.1007/s12032-019-1267-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
Abstract
Cancer is becoming more prevalent in elderly patient. Due to polypharmacy, older adults with cancer are predisposed to drug-drug interactions. There is also an increasing interest in the use of complementary and alternative medicine (CAM). Thirty to seventy percent of patients with cancer have used CAM. Through pharmaceutical counseling sessions, we can provide advices on herb-drug interactions (HDI). All the patients seen in pharmaceutical counseling sessions were prospectively included. Information was collected during these sessions: prescribed medication (oral anticancer agents (OAA) and other drugs), CAM (phytotherapy especially), and use of over-the-counter (OTC) drugs. If pharmacist considered an interaction or an intervention clinically relevant, the oncologist was notified. Then, a literature review was realized to identify the potential HDI (no interactions, precautions for use, contraindication). Among 201 pharmacist counseling sessions, it resulted in 104 interventions related to 46 HDI, 28 drug-drug interactions and 30 others (wrong dosage, omission…). To determine HDI, we review 73 medicinal plants which are used by our patients with cancer and 31 OAA. A total of 1829 recommendations were formulated about 59 (75%) medical plants and their interaction with an OAA. Herb-drug interactions should not be ignored by healthcare providers in their management of cancer patients in daily practice.
Collapse
Affiliation(s)
- Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| | - Marie Boiteux-Jurain
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Elsa Curtit
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, 25000, Besançon, France
| | - Marie Jeannin
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Blandine Gérard
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Virginie Nerich
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France.
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France.
| | - Samuel Limat
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| |
Collapse
|
15
|
Sun J, Zhang Y, Lu J, Zhang W, Yan J, Yang L, Zhou C, Liu R, Chen C. Salvinorin A ameliorates cerebral vasospasm through activation of endothelial nitric oxide synthase in a rat model of subarachnoid hemorrhage. Microcirculation 2019; 25:e12442. [PMID: 29377443 DOI: 10.1111/micc.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study aimed to demonstrate the potential of salvinorin A (SA) for cerebral vasospasm after subarachnoid hemorrhage (SAH) and investigate mechanisms of therapeutic effect using rat SAH model. METHODS Salvinorin A was injected intraperitoneally, and the neurobehavioral changes were observed at 12 hours, 24 hours, 48 hours, and 72 hours after SAH. Basilar artery was observed by magnetic resonance imaging (MRI). The inner diameter and thickness of basilar artery were measured. The morphological changes and the apoptosis in CA1 area of hippocampus were detected. Endothelin-1 (ET-1) and nitric oxide (NO) levels were detected by ELISA kit. The protein expression of endothelial NO synthase (eNOS) and aquaporin-4 (AQP-4) was determined by Western blot for potential mechanism exploration. RESULTS Salvinorin A administration could relieve neurological deficits, decrease the neuronal apoptosis, and alleviate the morphological changes in CA1 area of hippocampus. SA alleviated CVS by increasing diameter and decreasing thickness of basilar artery, and such changes were accompanied by the decreased concentration of ET-1 and increased level of NO. Meanwhile, SA increased the expression of eNOS and decreased the expression of AQP-4 protein in the basilar artery and hippocampus. CONCLUSIONS Salvinorin A attenuated CVS and alleviated brain injury after SAH via increasing expression of eNOS and NO content, and decreasing ET-1 concentration and AQP-4 protein expression.
Collapse
Affiliation(s)
- Juan Sun
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianfei Lu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weiguang Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junhao Yan
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lei Yang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Changman Zhou
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
16
|
Zjawiony JK, Machado AS, Menegatti R, Ghedini PC, Costa EA, Pedrino GR, Lukas SE, Franco OL, Silva ON, Fajemiroye JO. Cutting-Edge Search for Safer Opioid Pain Relief: Retrospective Review of Salvinorin A and Its Analogs. Front Psychiatry 2019; 10:157. [PMID: 30971961 PMCID: PMC6445891 DOI: 10.3389/fpsyt.2019.00157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 03/04/2019] [Indexed: 12/21/2022] Open
Abstract
Over the years, pain has contributed to low life quality, poor health, and economic loss. Opioids are very effective analgesic drugs for treating mild, moderate, or severe pain. Therapeutic application of opioids has been limited by short and long-term side effects. These side effects and opioid-overuse crisis has intensified interest in the search for new molecular targets and drugs. The present review focuses on salvinorin A and its analogs with the aim of exploring their structural and pharmacological profiles as clues for the development of safer analgesics. Ethnopharmacological reports and growing preclinical data have demonstrated the antinociceptive effect of salvinorin A and some of its analogs. The pharmacology of analogs modified at C-2 dominates the literature when compared to the ones from other positions. The distinctive binding affinity of these analogs seems to correlate with their chemical structure and in vivo antinociceptive effects. The high susceptibility of salvinorin A to chemical modification makes it an important pharmacological tool for cellular probing and developing analogs with promising analgesic effects. Additional research is still needed to draw reliable conclusions on the therapeutic potential of salvinorin A and its analogs.
Collapse
Affiliation(s)
- Jordan K Zjawiony
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, United States
| | - Antônio S Machado
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Paulo C Ghedini
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Elson A Costa
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gustavo R Pedrino
- Department of Physiology, Universidade Federal de Goiás, Goiânia, Brazil
| | - Scott E Lukas
- McLean Imaging Center, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
| | - Osmar N Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - James O Fajemiroye
- Department of Physiology, Universidade Federal de Goiás, Goiânia, Brazil.,Centro Universitário de Anápolis, Unievangélica, Anápolis, Brazil
| |
Collapse
|
17
|
The C-2 derivatives of salvinorin A, ethoxymethyl ether Sal B and β-tetrahydropyran Sal B, have anti-cocaine properties with minimal side effects. Psychopharmacology (Berl) 2017; 234:2499-2514. [PMID: 28536865 PMCID: PMC5542847 DOI: 10.1007/s00213-017-4637-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 05/05/2017] [Indexed: 12/11/2022]
Abstract
RATIONALE Kappa-opioid receptor (KOPr) agonists have pre-clinical anti-cocaine and analgesic effects. However, side effects including sedation, dysphoria, aversion, anxiety and depression limit their therapeutic development. The unique structure of salvinorin A has been used to develop longer acting KOPr agonists. OBJECTIVES We evaluate two novel C-2 analogues of salvinorin A, ethoxymethyl ether Sal B (EOM Sal B) and β-tetrahydropyran Sal B (β-THP Sal B) alongside U50,488 for their ability to modulate cocaine-induced behaviours and side effects, pre-clinically. METHODS Anti-cocaine properties of EOM Sal B were evaluated using the reinstatement model of drug seeking in self-administering rats. EOM Sal B and β-THP Sal B were evaluated for effects on cocaine-induced hyperactivity, spontaneous locomotor activity and sucrose self-administration. EOM Sal B and β-THP Sal B were evaluated for aversive, anxiogenic and depressive-like effects using conditioned place aversion (CPA), elevated plus maze (EPM) and forced swim tests (FSTs), respectively. RESULTS EOM Sal B (0.1, 0.3 mg/kg, intraperitoneally (i.p.)) dose dependently attenuated drug seeking, and EOM Sal B (0.1 mg/kg, i.p.) and β-THP Sal B (1 mg/kg, i.p.) attenuated cocaine-induced hyperactivity. No effects on locomotor activity, open arm times (EPM) or swimming behaviours (FST) were seen with EOM (0.1 or 0.3 mg/kg, i.p.) or β-THP Sal B (1 or 2 mg/kg, i.p.). However, β-THP Sal B decreased time spent in the drug-paired chamber. CONCLUSION EOM Sal B is more potent than Sal A and β-THP Sal B in reducing drug-seeking behaviour with fewer side effects. EOM Sal B showed no effects on sucrose self-administration (0.1 mg/kg), locomotor, depressive-like, aversive-like or anxiolytic effects.
Collapse
|
18
|
Cruz A, Domingos S, Gallardo E, Martinho A. A unique natural selective kappa-opioid receptor agonist, salvinorin A, and its roles in human therapeutics. PHYTOCHEMISTRY 2017; 137:9-14. [PMID: 28190678 DOI: 10.1016/j.phytochem.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
Until the mid-60s, only the Mazatecs, an indigenous group from Oaxaca, Mexico, used Salvia Divinorum (S. divinorum) due to its hallucinogen properties. Later it was found that the hallucinogen effects of this plant were caused by the presence of a neoclerodane diterpene Salvinorin A (salvinorin A), which is a highly selective agonist of kappa-opioid receptor (KOR) that cause more intense hallucinations than the common hallucinogens as lysergic acid, mushrooms, ecstasy and others. In fact, smoking of only 200-500 μg of S. divinorum leaves is enough to produce these effects thus making it the most potent natural occurring hallucinogen known. Due to its legal status in various countries, this compound has gained a worldwide popularity as a drug of abuse with an easy access through smartshops and internet. Furthermore, salvinorin A gathered an increased interest in the scientific community thanks to its unique structure and properties, and various studies demonstrated that salvinorin A has antinociceptive, antidepressant, in some circumstances pro-depressant and anti-addictive effects that have yielded potential new avenues for research underlying salvinorin A and its semi-synthetic analogs as therapeutic agents.
Collapse
Affiliation(s)
- André Cruz
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Sara Domingos
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Eugenia Gallardo
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Laboratory of Pharmacology and Toxicology - UBIMedical, University of Beira Interior, Estrada Municipal, 506, 6200-284, Covilhã, Portugal
| | - Ana Martinho
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
19
|
Soto-Restrepo V, Taborda-Ocampo G, Garzón-Méndez W. Salvinorina A: terpeno alucinógeno presente en Salvia divinorum Epling & Játiva. COLOMBIA FORENSE 2017. [DOI: 10.16925/cf.v4i1.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Tema y alcance: el objetivo de esta revisión es presentar los estudios químicos que se han realizado sobre Salvia divinorum E&J en estos últimos años.
Características: desde la década de 1990 hasta hoy se ha incrementado la distribución y el uso de Salvia divinorum E&J para “fines recreativos”, debido a sus efectos alucinógenos y a su fácil acceso. Sus efectos en el organismo se han relacionado con las de otras sustancias como: delta-9-THC en la marihuana, DMT, LSD , MDMA, PCP y ketamina.
Hallazgos: las investigaciones químicas realizadas en otros países sobre Salvia divinorum E&J se enfocan en los procesos de extracción, determinación, cuantificación, análisis y biosíntesis de Salvinorina A, compuesto químico al cual se le atribuye la bioactividad de la planta. Este compuesto es considerado como uno de los alucinógenos más potentes de origen natural, además de ser química y estructuralmente único, puesto que fue el primer diterpeno conocido con actividad psicoactiva.
Conclusiones: la presente revisión encontró que en los últimos años las investigaciones químicas en Salvia divinorum E&J están enfocadas a través del uso de cromatografía de gases y cromatografía líquida en diversas matrices como hojas, sangre, orina y agua, con el fin de determinar la Salvinorina A y otros metabolitos presentes en la planta. En una de las investigaciones, comprobaron por RMN y HR-ESI-MS que la biosíntesis de Salvinorina A está dada por la ruta metabólica del ácido mevalónico y la ruta del metileritritol fosfato, las cuales corresponden a las rutas metabólicas para la biosíntesis de terpenos.
Collapse
|
20
|
Paton KF, Kumar N, Crowley RS, Harper JL, Prisinzano TE, Kivell BM. The analgesic and anti-inflammatory effects of Salvinorin A analogue β-tetrahydropyran Salvinorin B in mice. Eur J Pain 2017; 21:1039-1050. [PMID: 28158929 DOI: 10.1002/ejp.1002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND Drugs activating the mu opioid receptor are routinely used to treat severe acute and chronic pain. Unfortunately, side effects including nausea, constipation, respiratory depression, addiction and tolerance can limit clinical utility. In contrast, kappa opioid receptor (KOPr) agonists, such as Salvinorin A (SalA), have analgesic properties with little potential for abuse. METHODS We evaluated SalA and the novel analogue β-tetrahydropyran Salvinorin B (β-THP SalB) for the ability to modulate pain and inflammation in vivo. The hot water tail-withdrawal assay, intradermal formalin-induced inflammatory pain and paclitaxel-induced neuropathic pain models were used to evaluate analgesic properties in mice. Tissue infiltration of inflammatory cells was measured by histology and flow cytometry. RESULTS β-tetrahydropyran Salvinorin B produced a longer duration of action in the tail-withdrawal assay compared to the parent compound SalA, and, like SalA and U50,488, β-THP SalB is a full agonist at the KOPr. In the formalin-induced inflammatory pain model, β-THP SalB and SalA significantly reduced pain score, paw oedema and limited the infiltration of neutrophils into the inflamed tissue. β-THP SalB and SalA supressed both mechanical and cold allodynia in the paclitaxel-induced neuropathic pain model, in a dose-dependent manner. CONCLUSIONS Structural modification of SalA at the C-2 position alters its analgesic potency and efficacy in vivo. Substitution with a tetrahydropyran group at C-2 produced potent analgesic and anti-inflammatory effects, including a reduction in paclitaxel-induced neuropathic pain. This study highlights the potential for KOPr agonists as analgesics with anti-inflammatory action and little risk of abuse. SIGNIFICANCE Salvinorin A and the novel analogue β-THP Salvinorin B show analgesic effects in the tail-withdrawal and formalin assays. They reduce oedema and decrease neutrophil infiltration into inflamed tissue, and suppress mechanical and cold allodynia in paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- K F Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, New Zealand
| | - N Kumar
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, New Zealand
| | - R S Crowley
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, USA
| | - J L Harper
- Malaghan Institute of Medical Research, Wellington, New Zealand.,WelTec, Petone, Lower Hutt, New Zealand
| | - T E Prisinzano
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, USA
| | - B M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, New Zealand
| |
Collapse
|
21
|
Bendikov MY, Miners JO, Simpson BS, Elliot DJ, Semple SJ, Claudie DJ, McKinnon RA, Gillam EMJ, Sykes MJ. In vitro metabolism of the anti-inflammatory clerodane diterpenoid polyandric acid A and its hydrolysis product by human liver microsomes and recombinant cytochrome P450 and UDP-glucuronosyltransferase enzymes. Xenobiotica 2016; 47:461-469. [DOI: 10.1080/00498254.2016.1203041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Matthew Y. Bendikov
- Department of Clinical Pharmacology, School of Medicine, Flinders University, Adelaide, Australia,
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia,
| | - John O. Miners
- Department of Clinical Pharmacology, School of Medicine, Flinders University, Adelaide, Australia,
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia,
| | - Bradley S. Simpson
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia,
- Quality Use of Medicines and Pharmacy Research Centre, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia,
| | - David J. Elliot
- Department of Clinical Pharmacology, Flinders Medical Centre, Adelaide, Australia,
| | - Susan J. Semple
- Quality Use of Medicines and Pharmacy Research Centre, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia,
| | - David J. Claudie
- Chuulangun Aboriginal Corporation, Cairns Mail Centre, Cairns, Australia, and
| | - Ross A. McKinnon
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia,
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Australia
| | - Matthew J. Sykes
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia,
| |
Collapse
|
22
|
Abstract
The identification and quantitation of the main psychoactive component of Salvia divinorum (salvinorin A) in biological specimens are crucial in forensic and clinical toxicology. Despite all the efforts made, its uncontrolled abuse has increased quickly, exposing its users' health to serious risks both in the short and long term. The use of alternative biological matrices in toxicological analyzes can be advantageous as complementary postmortem samples, or in situations when neither blood nor urine can be collected; they may be useful tools in those determinations, providing important information about prior exposure. The aim of this article is to present a brief summary of legal aspects of Salvia divinorum and salvinorin A, including the methods used for the determination of the latter in biological matrices.
Collapse
|
23
|
Johnson MW, MacLean KA, Caspers MJ, Prisinzano TE, Griffiths RR. Time course of pharmacokinetic and hormonal effects of inhaled high-dose salvinorin A in humans. J Psychopharmacol 2016; 30:323-9. [PMID: 26880225 PMCID: PMC5289219 DOI: 10.1177/0269881116629125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Salvinorin A is a kappa opioid agonist and the principal psychoactive constituent of the Salvia divinorum plant, which has been used for hallucinogenic effects. Previous research on salvinorin A pharmacokinetics likely underestimated plasma levels typically resulting from the doses administered due to inefficient vaporization and not collecting samples during peak drug effects. Six healthy adults inhaled a single high dose of vaporized salvinorin A (n = 4, 21 mcg/kg; n = 2, 18 mcg/kg). Participant- and monitor-rated effects were assessed every 2 min for 60 min post-inhalation. Blood samples were collected at 13 time points up to 90 min post-inhalation. Drug levels peaked at 2 min and then rapidly decreased. Drug levels were significantly, positively correlated with participant and monitor drug effect ratings. Significant elevations in prolactin were observed beginning 5 min post-inhalation and peaking at 15 min post-inhalation. Cortisol showed inconsistent increases across participants. Hormonal responses were not well correlated with drug levels. This is the first study to demonstrate a direct relationship between changes in plasma levels of salvinorin A and drug effects in humans. The results confirm the efficacy of an inhalation technique for salvinorin A.
Collapse
Affiliation(s)
- Matthew W. Johnson
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA
| | - Katherine A. MacLean
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA
| | - Michael J. Caspers
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045-7582, USA
| | - Thomas E. Prisinzano
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045-7582, USA
| | - Roland R. Griffiths
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA
| |
Collapse
|
24
|
Mahendran R, Lim HA, Tan JYS, Chua SM, Winslow M. Salvia divinorum: An overview of the usage, misuse, and addiction processes. Asia Pac Psychiatry 2016; 8:23-31. [PMID: 26617400 DOI: 10.1111/appy.12225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/02/2015] [Indexed: 12/01/2022]
Abstract
Salvia divinorum, a sage plant with leaves that can produce a psychoactive high, has been used for hundreds of years for its psycho-mimetic effects in religious rituals in South America. Salvia has now become popular mainly with adolescents and young adults for the short-lived relatively pleasant experiences many consider a "legal high" and its ready availability through Internet purchases. The main (psycho)active compound in salvia is Salvinorin A, a potent κ-opioid agonist and although the short and long-term effects have not been examined in sufficient detail, it is widely believed to have low addictive potential and low toxicity. Recent findings, however, seem to suggest that Salvinorin A can precipitate psychiatric symptoms and negatively affect cognition. Its ready availability and increasingly widespread use requires clinicians to have knowledge and awareness of its effects.
Collapse
Affiliation(s)
- Rathi Mahendran
- Department of Psychological Medicine, National University of Singapore, Singapore.,Department of Psychological Medicine, National University Hospital, Singapore.,Duke-NUS Graduate Medical School, Singapore
| | - Haikel A Lim
- Department of Psychological Medicine, National University of Singapore, Singapore
| | - Joyce Y S Tan
- Department of Psychological Medicine, National University of Singapore, Singapore
| | - Shi Min Chua
- Department of Psychological Medicine, National University of Singapore, Singapore
| | - Munidasa Winslow
- Department of Psychological Medicine, National University of Singapore, Singapore
| |
Collapse
|
25
|
Fandy TE, Abdallah I, Khayat M, Colby DA, Hassan HE. In vitro characterization of transport and metabolism of the alkaloids: vincamine, vinpocetine and eburnamonine. Cancer Chemother Pharmacol 2015; 77:259-67. [PMID: 26666648 DOI: 10.1007/s00280-015-2924-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/14/2015] [Indexed: 11/27/2022]
Abstract
PURPOSE Vincamine, vinpocetine and eburnamonine are alkaloids known for their neuroprotective attributes, enhancement of cerebrovascular blood flow and antitumor effect of their derivatives. However, the relative metabolic stability of these alkaloids and their extrusion by the drug efflux transporters expressed at the blood-brain barrier (BBB) are not clear. In this study, we developed rapid and sensitive methods for the detection of these alkaloids and investigated their relative metabolic stability and their interaction with drug efflux transporters. METHODS UPLC methods were developed to analyze metabolic in vitro samples. Intrinsic clearance was determined using rat liver microsomal enzymes. Drug-stimulated transporter activity was estimated by measuring inorganic phosphate released from ATP spectrophotometrically. RESULTS The UPLC methods quantification level ranged from 0.02 to 0.025 µg/mL, indicating high sensitivity. The intrinsic clearance of eburnamonine was significantly less than both vincamine and vinpocetine. Different concentrations of the three drugs (4, 20 and 100 µM) induced minimal stimulation of the ATPase activity of the Bcrp and Pgp membrane transporters. CONCLUSIONS The developed simple, sensitive and reliable UPLC analysis methods can be utilized in future in vitro and in vivo studies. The three alkaloids demonstrated minimal interaction with the drug efflux transporters Pgp and Bcrp, concordant with the ability of these alkaloids to cross the BBB. The relative metabolic stability of eburnamonine compared to the other alkaloids suggests the use of eburnamonine or its derivatives as lead compounds for the development of antitumor and nootropic agents that need to cross the BBB and produce their pharmacological effects in the CNS.
Collapse
Affiliation(s)
- Tamer E Fandy
- Department of Pharmaceutical Sciences, Albany College of Pharmacy, Colchester, VT, USA
| | - Inas Abdallah
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 N Pine Street, Room: N525 (Office), Baltimore, MD, 21201, USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Maan Khayat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah, KSA
| | - David A Colby
- Department of BioMolecular Science, University of Mississippi, University, MS, USA
| | - Hazem E Hassan
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 N Pine Street, Room: N525 (Office), Baltimore, MD, 21201, USA.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| |
Collapse
|
26
|
Immediate and Persistent Effects of Salvinorin A on the Kappa Opioid Receptor in Rodents, Monitored In Vivo with PET. Neuropsychopharmacology 2015; 40:2865-72. [PMID: 26058662 PMCID: PMC4864638 DOI: 10.1038/npp.2015.159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 11/08/2022]
Abstract
Monitoring changes in opioid receptor binding with positron emission tomography (PET) could lead to a better understanding of tolerance and addiction because altered opioid receptor dynamics following agonist exposure has been linked to tolerance mechanisms. We have studied changes in kappa opioid receptor (KOR) binding availability in vivo with PET following kappa opioid agonist administration. Male Sprague-Dawley rats (n=31) were anesthetized and treated with the (KOR) agonist salvinorin A (0.01-1.8 mg/kg, i.v.) before administration of the KOR selective radiotracer [(11)C]GR103545. When salvinorin A was administered 1 min prior to injection of the radiotracer, [(11)C]GR103545 binding potential (BPND) was decreased in a dose-dependent manner, indicating receptor binding competition. In addition, the unique pharmacokinetics of salvinorin A (half-life ~8 min in non-human primates) allowed us to study the residual impact on KOR after the drug had eliminated from the brain. Salvinorin A was administered up to 5 h prior to [(11)C]GR103545, and the changes in BPND were compared with baseline, 2.5 h, 1 h, and 1 min pretreatment times. At lower doses (0.18 mg/kg and 0.32 mg/kg) we observed no prolonged effect on KOR binding but at 0.60 mg/kg salvinorin A induced a sustained decrease in KOR binding (BPND decreased by 40-49%) which persisted up to 2.5 h post administration, long after salvinorin A had been eliminated from the brain. These data point towards an agonist-induced adaptive response by KOR, the dynamics of which have not been previously studied in vivo with PET.
Collapse
|
27
|
Bautista E, Fragoso-Serrano M, Toscano RA, García-Peña MDR, Ortega A. Teotihuacanin, a Diterpene with an Unusual Spiro-10/6 System from Salvia amarissima with Potent Modulatory Activity of Multidrug Resistance in Cancer Cells. Org Lett 2015; 17:3280-2. [PMID: 26086893 DOI: 10.1021/acs.orglett.5b01320] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Teotihuacanin (1), an unusual rearranged clerodane diterpene with a new carbon skeleton containing a spiro-10/6 bicyclic system, was isolated from the leaves and flowers of Salvia amarissima. Its structure was determined through spectroscopic analyses. Its absolute configuration was established by single-crystal X-ray diffraction. Compound 1 showed potent modulatory activity of multidrug resistance in vinblastine-resistant MCF-7 cancer cell line (reversal fold, RFMCF-7/Vin+ > 10703) at 25 μg/mL.
Collapse
Affiliation(s)
- Elihú Bautista
- †Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, ‡Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, and §Herbario Nacional de México, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Mabel Fragoso-Serrano
- †Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, ‡Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, and §Herbario Nacional de México, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Rubén A Toscano
- †Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, ‡Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, and §Herbario Nacional de México, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - María del Rosario García-Peña
- †Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, ‡Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, and §Herbario Nacional de México, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Alfredo Ortega
- †Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, ‡Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, and §Herbario Nacional de México, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
28
|
Vasiljevik T, Groer CE, Lehner K, Navarro H, Prisinzano TE. Studies toward the Development of Antiproliferative Neoclerodanes from Salvinorin A. JOURNAL OF NATURAL PRODUCTS 2014; 77:1817-1824. [PMID: 25075762 PMCID: PMC4143179 DOI: 10.1021/np5002048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Indexed: 06/03/2023]
Abstract
The success rate for central nervous system (CNS) drug candidates in the clinic is relatively low compared to the industry average across other therapeutic areas. Penetration through the blood-brain barrier (BBB) to reach the therapeutic target is a major obstacle in development. The rapid CNS penetration of salvinorin A has suggested that the neoclerodane nucleus offers an excellent scaffold for developing antiproliferative compounds that enter the CNS. The Liebeskind-Srogl reaction was used as the main carbon-carbon bond-forming step toward the synthesis of quinone-containing salvinorin A analogues. Quinone-containing salvinorin A analogues were shown to have antiproliferative activity against the MCF7 breast cancer cell line, but show no significant activity at the κ-opioid receptors. In an in vitro model of BBB penetration, quinone-containing salvinorin A analogues were shown to passively diffuse across the cell monolayer. The analogues, however, are substrates of P-glycoprotein, and thus further modification of the molecules is needed to reduce the affinity for the efflux transporter.
Collapse
Affiliation(s)
- Tamara Vasiljevik
- Department
of Medicinal Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Chad E. Groer
- Department
of Medicinal Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Kurt Lehner
- Department
of Medicinal Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Hernan Navarro
- Organic
and Medicinal Chemistry, Research Triangle
Institute, Research Triangle Park, North Carolina 27709, United States
| | - Thomas E. Prisinzano
- Department
of Medicinal Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
29
|
Simonson B, Morani AS, Ewald AWM, Walker L, Kumar N, Simpson D, Miller JH, Prisinzano TE, Kivell BM. Pharmacology and anti-addiction effects of the novel κ opioid receptor agonist Mesyl Sal B, a potent and long-acting analogue of salvinorin A. Br J Pharmacol 2014; 172:515-31. [PMID: 24641310 DOI: 10.1111/bph.12692] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute activation of κ opioid (KOP) receptors results in anticocaine-like effects, but adverse effects, such as dysphoria, aversion, sedation and depression, limit their clinical development. Salvinorin A, isolated from the plant Salvia divinorum, and its semi-synthetic analogues have been shown to have potent KOP receptor agonist activity and may induce a unique response with similar anticocaine addiction effects as the classic KOP receptor agonists, but with a different side effect profile. EXPERIMENTAL APPROACH We evaluated the duration of effects of Mesyl Sal B in vivo utilizing antinociception assays and screened for cocaine-prime induced cocaine-seeking behaviour in self-administering rats to predict anti-addiction effects. Cellular transporter uptake assays and in vitro voltammetry were used to assess modulation of dopamine transporter (DAT) function and to investigate transporter trafficking and kinase signalling pathways modulated by KOP receptor agonists. KEY RESULTS Mesyl Sal B had a longer duration of action than SalA, had anti-addiction properties and increased DAT function in vitro in a KOP receptor-dependent and Pertussis toxin-sensitive manner. These effects on DAT function required ERK1/2 activation. We identified differences between Mesyl Sal B and SalA, with Mesyl Sal B increasing the Vmax of dopamine uptake without altering cell-surface expression of DAT. CONCLUSIONS AND IMPLICATIONS SalA analogues, such as Mesyl Sal B, have potential for development as anticocaine agents. Further tests are warranted to elucidate the mechanisms by which the novel salvinorin-based neoclerodane diterpene KOP receptor ligands produce both anti-addiction and adverse side effects. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- B Simonson
- School of Biological Science, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Casselman I, Nock CJ, Wohlmuth H, Weatherby RP, Heinrich M. From local to global-fifty years of research on Salvia divinorum. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:768-783. [PMID: 24315983 DOI: 10.1016/j.jep.2013.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In 1962 ethnopharmacologists, Hofmann and Wasson, undertook an expedition to Oaxaca, Mexico. These two researchers were the first scientists to collect a flowering specimen of Salvia divinorum allowing the identification of this species. While the species' traditional use is confined to a very small region of Mexico, since Hofmann and Wasson's expedition 50 years ago, Salvia divinorum has become globally recognized for its main active constituent, the diterpene salvinorin A, which has a unique effect on human physiology. Salvinorin A is a kappa-opioid agonist and the first reported psychoactive diterpene. METHODS This review concentrates on the investigation of Salvia divinorum over the last 50 years including ethnobotany, ethnopharmacology, taxonomy, systematics, genetics, chemistry and pharmacodynamic and pharmacokinetic research. For the purpose of this review, online search engines were used to find relevant research. Searches were conducted between October 2011 and September 2013 using the search term "Salvia divinorum". Papers were excluded if they described synthetic chemical synthesis of salvinorin A or analogues. RESULTS Ethnobotanically there is a comprehensive body of research describing the traditional Mazatec use of the plant, however, the modern ethnobotanical use of this plant is not well documented. There are a limited number of botanical investigations into this plant and there are still several aspects of the botany of Salvia divinorum which need further investigation. One study has investigated the phylogenetic relationship of Salvia divinorum to other species in the genus. To date the main focus of chemistry research on Salvia divinorum has been salvinorin A, the main active compound in Salvia divinorum, and other related diterpenoids. Finally, the effects of salvinorin A, a KOR agonist, have primarily been investigated using animal models. CONCLUSIONS As Salvia divinorum use increases worldwide, the emerging cultural use patterns will warrant more research. More botanical information is also needed to better understand this species, including germination, pollination vector and a better understanding of the endemic environment of Salvia divinorum. As well there is a gap in the genetic knowledge of this species and very little is known about its intra-species genetics. The terpenes in Salvia divinorum are very well documented, however, other classes of constituents in this species warrant further investigation and identification. To date, the majority of the pharmacology research on Salvia divinorum has focused on the effects of salvinorin A using animal models. Published human studies have not reported any harmful effects when salvinorin A is administered within the dose range of 0.375-21µg/kg but what are the implications when applied to a larger population? More data on the toxicology and safety of Salvia divinorum are needed before larger scale clinical trials of the potential therapeutic effects of Salvia divinorum and salvinorin A are undertaken.
Collapse
Affiliation(s)
- Ivan Casselman
- Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia.
| | - Catherine J Nock
- Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia
| | - Hans Wohlmuth
- Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia
| | - Robert P Weatherby
- Division of Research, Southern Cross University, Lismore NSW 2480, Australia
| | - Michael Heinrich
- Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia; Centre for Pharmacognosy and Phytotherapy, UCL School of Pharmacy, 29-39 Brunswick Sq. London WC1N 1AX, UK; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Kivell BM, Ewald AWM, Prisinzano TE. Salvinorin A analogs and other κ-opioid receptor compounds as treatments for cocaine abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:481-511. [PMID: 24484985 DOI: 10.1016/b978-0-12-420118-7.00012-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute activation of kappa-opioid receptors produces anti-addictive effects by regulating dopamine levels in the brain. Unfortunately, classic kappa-opioid agonists have undesired side effects such as sedation, aversion, and depression, which restrict their clinical use. Salvinorin A (Sal A), a novel kappa-opioid receptor agonist extracted from the plant Salvia divinorum, has been identified as a potential therapy for drug abuse and addiction. Here, we review the preclinical effects of Sal A in comparison with traditional kappa-opioid agonists and several new analogs. Sal A retains the anti-addictive properties of traditional kappa-opioid receptor agonists with several improvements including reduced side effects. However, the rapid metabolism of Sal A makes it undesirable for clinical development. In an effort to improve the pharmacokinetics and tolerability of this compound, kappa-opioid receptor agonists based on the structure of Sal A have been synthesized. While work in this field is still in progress, several analogs with improved pharmacokinetic profiles have been shown to have anti-addictive effects. While in its infancy, it is clear that these compounds hold promise for the future development of anti-addictive therapeutics.
Collapse
Affiliation(s)
- Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Amy W M Ewald
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA.
| |
Collapse
|
32
|
Chen C, Cui X, Matsunaga F, Ma J, Ma N, Abel T, Liu R. Salvinorin A decreases mortality and improves neurological outcome in a neonatal mouse hypoxia model. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2014; 1:9-13. [PMID: 25568887 PMCID: PMC4283844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Chunhua Chen
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Xu Cui
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China 100730
| | - Felipe Matsunaga
- Departent of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jingyuan Ma
- Departent of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Nan Ma
- Departent of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ted Abel
- Departent of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Renyu Liu
- Departent of Biology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
33
|
Chunhua C, Chunhua X, Megumi S, Renyu L. Kappa Opioid Receptor Agonist and Brain Ischemia. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2014; 1:27-34. [PMID: 25574482 PMCID: PMC4285354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury.
Collapse
Affiliation(s)
- Chen Chunhua
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | - Xi Chunhua
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | - Sugita Megumi
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | - Liu Renyu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| |
Collapse
|
34
|
Zawilska JB, Wojcieszak J. Salvia divinorum: from Mazatec medicinal and hallucinogenic plant to emerging recreational drug. Hum Psychopharmacol 2013; 28:403-12. [PMID: 23794315 DOI: 10.1002/hup.2304] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 02/19/2013] [Indexed: 11/10/2022]
Abstract
Salvia divinorum is a sage endemic to a small region of Mexico and has been traditionally used by the Mazatec Indians for divination and spiritual healing. Recently, it has gained increased popularity as a recreational drug, used by adolescents and young adults as an alternative to marijuana and LSD. Salvinorin A, the major active ingredient of the plant, is considered to be the most potent known hallucinogen of natural origin. This review surveys the current state of knowledge on the neurochemical, pharmacokinetic, and pharmacological properties of salvinorin A, the trends and motivation behind S. divinorum use, and the health problems among users of the plant's products. S. divinorum induces intense, but short-lived, psychedelic-like changes in mood and perception, with concomitant hallucinations and disorientation. Many websites have misinterpreted the limited existing research-based information on the side effects of salvia as evidence for its safety. However, data accumulated over the last few years indicate that potential health risks are associated with the use of S. divinorum, especially by teenagers, users of other substances of abuse, and individuals with underlying psychotic disturbances. Taken together, the data presented in this review point to the need for further basic and clinical studies to create a basis for the development of well-addressed prevention and treatment strategies.
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
35
|
Margalho C, Gallardo E, Castanheira A, Vieira DN, López-Rivadulla M, Real FC. A validated procedure for detection and quantitation of salvinorin a in pericardial fluid, vitreous humor, whole blood and plasma using solid phase extraction and gas chromatography-mass spectrometry. J Chromatogr A 2013; 1304:203-10. [PMID: 23871557 DOI: 10.1016/j.chroma.2013.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/11/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
The use of vitreous humor and pericardial fluid as alternative matrices to blood and plasma in the field of forensic toxicology is described to quantitate low levels of Salvinorin A using ethion as internal standard. The method was optimized and fully validated using international accepted guidelines. The developed methodology utilizes a solid phase extraction procedure coupled to gas chromatography mass spectrometry operated in the selected ion monitoring mode. The method was linear in the range of 5.0-100ng/mL with determination coefficients higher than 0.99 in 100μL of vitreous humor and in 250μL of each matrix pericardial fluid, whole blood and plasma. The limits of detection and quantitation were experimentally determined as 5.0ng/mL, intra-day precision, intermediate precision and accuracy were in conformity with the criteria normally accepted in bioanalytical method validation. The sample cleanup step presented mean efficiencies between 80 and 106% in the different biological specimens analyzed. According to the low volumes of samples used, and the low limits achieved using a single quadrupole mass spectrometer, which is available in most laboratories, we can conclude that the validated methodology is sensitive and simple and is suitable for the application in forensic toxicology laboratories for the routine analysis of Salvinorin A in both conventional and unconventional biological samples.
Collapse
Affiliation(s)
- Cláudia Margalho
- National Institute of Legal Medicine and Forensic Sciences (INMLCF, I.P.) - Centre Branch, Coimbra, Portugal.
| | | | | | | | | | | |
Collapse
|
36
|
Wang Z, Ma N, Riley J, Armstead WM, Liu R. Salvinorin A administration after global cerebral hypoxia/ischemia preserves cerebrovascular autoregulation via kappa opioid receptor in piglets. PLoS One 2012; 7:e41724. [PMID: 22911847 PMCID: PMC3404042 DOI: 10.1371/journal.pone.0041724] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/27/2012] [Indexed: 11/29/2022] Open
Abstract
Background Cerebral hypoxia/ischemia (HI) is not uncommon during the perinatal period. If occurring, it can result in severe neurologic disabilities that persist throughout life. Salvinorin A, a non-opioid Kappa opioid receptors (KOR) selective agonist, has the potential to address this devastating situation. We have demonstrated that salvinorin A administration before HI, preserves pial artery autoregulative function through both the KOR and extracellular signal-regulated kinases (ERK) pathways. In the present study, we tested the hypothesis that administration of salvinorin A after HI could preserve cerebral autoregulation via KOR and ERK pathway. Methodology/Principal Findings The response of the pial artery to hypercapnia, hypotension and isoproterenol were monitored before and 1 hour after HI in piglets equipped with a cranial window. Four groups of drug administration were performed after HI. The control group had DMSO (1 µl/kg, i.v.) administrated immediately after HI. Two salvinorin A treated groups had salvinorin A (10 µg/kg, i.v.) administrated 0 and 30 min after HI, respectively. The 4th group had salvinorin A and the KOR antagonist norbinaltorphimine (Nor-BIN, 1 µM topical) co-administrated 0 min after HI (n = 5). The dilation responses of the pial artery to hypercapnia and hypotension were impaired after global HI and were preserved with salvinorin A administration immediately or 30 min after HI. The preservation of autoregulation was abolished when nor-BIN was administered. Levels of phosphor-ERK(pERK)/ERK in the cerebrospinal fluid (CSF) were measured before and 1 hour after HI. After HI, the pERK/ERK levels significantly increased in both DMSO control group and salvinorin A and nor-BIN co-administration group. The elevated levels of pERK/ERK were not observed with salvinorin A only groups. Conclusions Salvinorin A administration 0 and 30 min after HI preserves autoregulation of pial artery to hypercapnia and hypotension via kappa opioid receptor and ERK pathway.
Collapse
MESH Headings
- Administration, Intravenous
- Animals
- Animals, Newborn
- Cerebral Arteries/drug effects
- Cerebral Arteries/enzymology
- Cerebral Arteries/pathology
- Cerebral Arteries/physiopathology
- Cerebrovascular Circulation/drug effects
- Diterpenes, Clerodane/administration & dosage
- Diterpenes, Clerodane/pharmacology
- Diterpenes, Clerodane/therapeutic use
- Extracellular Signal-Regulated MAP Kinases/cerebrospinal fluid
- Homeostasis/drug effects
- Hypercapnia/complications
- Hypercapnia/pathology
- Hypercapnia/physiopathology
- Hypotension/complications
- Hypotension/drug therapy
- Hypotension/pathology
- Hypotension/physiopathology
- Hypoxia-Ischemia, Brain/complications
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/physiopathology
- Isoproterenol/pharmacology
- MAP Kinase Signaling System/drug effects
- Pia Mater/blood supply
- Pia Mater/drug effects
- Pia Mater/physiopathology
- Receptors, Opioid, kappa/metabolism
- Sus scrofa
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Zhenhong Wang
- Department of Anesthesiology and Critical Care, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Nan Ma
- Department of Anesthesiology and Critical Care, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John Riley
- Department of Anesthesiology and Critical Care, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - William M. Armstead
- Department of Anesthesiology and Critical Care, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RL); (WMA)
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RL); (WMA)
| |
Collapse
|
37
|
Salvia Divinorum. PSYCHOSOMATICS 2012; 53:277-9. [DOI: 10.1016/j.psym.2011.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/09/2011] [Accepted: 07/11/2011] [Indexed: 11/20/2022]
|
38
|
Butelman ER, Caspers M, Lovell KM, Kreek MJ, Prisinzano TE. Behavioral effects and central nervous system levels of the broadly available κ-agonist hallucinogen salvinorin A are affected by P-glycoprotein modulation in vivo. J Pharmacol Exp Ther 2012; 341:802-8. [PMID: 22434677 DOI: 10.1124/jpet.112.193227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Active blood-brain barrier mechanisms, such as the major efflux transporter P-glycoprotein (mdr1), modulate the in vivo/central nervous system (CNS) effects of many pharmacological agents, whether they are used for nonmedical reasons or in pharmacotherapy. The powerful, widely available hallucinogen salvinorin A (from the plant Salvia divinorum) is a high-efficacy, selective κ-opioid agonist and displays fast-onset behavioral effects (e.g., within 1 min of administration) and relatively short duration of action. In vitro studies suggest that salvinorin A may be a P-glycoprotein substrate; thus, the functional status of P-glycoprotein may influence the behavioral effects of salvinorin A or its residence in CNS after parenteral administration. We therefore studied whether a competing P-glycoprotein substrate (the clinically available agent loperamide; 0.032-0.32 mg/kg) or a selective P-glycoprotein blocker, tariquidar (0.32-3.2 mg/kg) could enhance unconditioned behavioral effects (ptosis and facial relaxation, known to be caused by κ-agonists in nonhuman primates) of salvinorin A, as well as its entry and residence in the CNS, as measured by cerebrospinal fluid sampling. Pretreatment with either loperamide or tariquidar dose-dependently enhanced salvinorin A-induced ptosis, but not facial relaxation. In a control study, loperamide and tariquidar were inactive when given as a pretreatment to ((+)-(5α,7α,8β)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69,593), a κ-agonist known to be a very poor P-glycoprotein substrate. Furthermore, pretreatment with tariquidar (3.2 mg/kg) also enhanced peak levels of salvinorin A in cerebrospinal fluid after intravenous administration. These are the first studies in vivo showing the sensitivity of salvinorin A effects to modulation by the P-glycoprotein transporter, a major functional component of the blood-brain barrier.
Collapse
Affiliation(s)
- Eduardo R Butelman
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, Box 171, 1230 York Avenue, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
39
|
Peters FT, Meyer MR. In vitro approaches to studying the metabolism of new psychoactive compounds. Drug Test Anal 2011; 3:483-95. [DOI: 10.1002/dta.295] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/15/2011] [Accepted: 04/07/2011] [Indexed: 01/08/2023]
|
40
|
Cunningham CW, Rothman RB, Prisinzano TE. Neuropharmacology of the naturally occurring kappa-opioid hallucinogen salvinorin A. Pharmacol Rev 2011; 63:316-47. [PMID: 21444610 DOI: 10.1124/pr.110.003244] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Salvia divinorum is a perennial sage native to Oaxaca, Mexico, that has been used traditionally in divination rituals and as a treatment for the "semimagical" disease panzón de borrego. Because of the intense "out-of-body" experiences reported after inhalation of the pyrolized smoke, S. divinorum has been gaining popularity as a recreational hallucinogen, and the United States and several other countries have regulated its use. Early studies isolated the neoclerodane diterpene salvinorin A as the principal psychoactive constituent responsible for these hallucinogenic effects. Since the finding that salvinorin A exerts its potent psychotropic actions through the activation of KOP receptors, there has been much interest in elucidating the underlying mechanisms behind its effects. These effects are particularly remarkable, because 1) salvinorin A is the first reported non-nitrogenous opioid receptor agonist, and 2) its effects are not mediated by the 5-HT(2A) receptor, the classic target of hallucinogens such as lysergic acid diethylamide and mescaline. Rigorous investigation into the structural features of salvinorin A responsible for opioid receptor affinity and selectivity has produced numerous receptor probes, affinity labels, and tools for evaluating the biological processes responsible for its observed psychological effects. Salvinorin A has therapeutic potential as a treatment for pain, mood and personality disorders, substance abuse, and gastrointestinal disturbances, and suggests that nonalkaloids are potential scaffolds for drug development for aminergic G-protein coupled receptors.
Collapse
|
41
|
Salvinorin A produces cerebrovasodilation through activation of nitric oxide synthase, κ receptor, and adenosine triphosphate-sensitive potassium channel. Anesthesiology 2011; 114:374-9. [PMID: 21245734 DOI: 10.1097/aln.0b013e318204e029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Salvinorin A is a nonopioid, selective κ opioid-receptor agonist. Despite its high potential for clinical application, its pharmacologic profile is not well known. In the current study, we hypothesized that salvinorin A dilates pial arteries via activation of nitric oxide synthase, adenosine triphosphate-sensitive potassium channels, and opioid receptors. METHODS Cerebral artery diameters and cyclic guanosine monophosphate in cortical periarachnoid cerebrospinal fluid were monitored in piglets equipped with closed cranial windows. Observation took place before and after salvinorin A administration in the presence or absence of an opioid antagonist (naloxone), a κ opioid receptor-selective antagonist (norbinaltorphimine), nitric oxide synthase inhibitors (N(G)-nitro-L-arginine and 7-nitroindazole), a dopamine receptor D2 antagonist (sulpiride), and adenosine triphosphate-sensitive potassium and Ca-activated K channel antagonists (glibenclamide and iberiotoxin). The effects of salvinorin A on the constricted cerebral artery induced by hypocarbia and endothelin were investigated. Data were analyzed by repeated measures ANOVA (n = 5) with statistical significance set at a P value of less than 0.05. RESULTS Salvinorin A induced immediate but brief vasodilatation that was sustained for 30 min via continual administration every 2 min. Vasodilatation and the associated cyclic guanosine monophosphate elevation in cerebrospinal fluid were abolished by preadministration N(G)-nitro-L-arginine, but not 7-nitroindazole. Although naloxone, norbinaltorphimine, and glibenclamide abolished salvinorin A-induced cerebrovasodilation, this response was unchanged by iberiotoxin and sulpiride. Hypocarbia and endothelin-constricted pial arteries responded similarly to salvinorin A, to the extent observed under resting tone. CONCLUSIONS Salvinorin A dilates cerebral arteries via activation of nitric oxide synthase, adenosine triphosphate-sensitive potassium channel, and the κ opioid receptor.
Collapse
|
42
|
Meyer MR, Maurer HH. Absorption, distribution, metabolism and excretion pharmacogenomics of drugs of abuse. Pharmacogenomics 2011; 12:215-33. [DOI: 10.2217/pgs.10.171] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pharmacologic and toxic effects of xenobiotics, such as drugs of abuse, depend on the genotype and phenotype of an individual, and conversely on the isoenzymes involved in their metabolism and transport. The current knowledge of such isoenzymes of frequently abused therapeutics such as opioids (oxycodone, hydrocodone, methadone, fentanyl, buprenorphine, tramadol, heroin, morphine and codeine), anesthetics (γ-hydroxybutyric acid, propofol, ketamine and phencyclidine) and cognitive enhancers (methylphenidate and modafinil), and some important plant-derived hallucinogens (lysergide, salvinorin A, psilocybin and psilocin), as well as of nicotine in humans are summarized in this article. The isoenzymes (e.g., cytochrome P450, glucuronyltransferases, esterases and reductases) involved in the metabolism of drugs and some pharmacokinetic data are discussed. The relevance of such data is discussed for predicting possible interactions with other xenobiotics, understanding pharmacokinetic behavior and pharmacogenomic variations, assessing toxic risks, developing suitable toxicological analysis procedures, and finally for interpretating drug testing results.
Collapse
Affiliation(s)
- Markus R Meyer
- Department of Experimental & Clinical Toxicology, Institute of Experimental & Clinical Pharmacology & Toxicology, Saarland University, D 66421 Homburg (Saar), Germany
| | | |
Collapse
|
43
|
Srinivas NR. Baicalin, an emerging multi-therapeutic agent: pharmacodynamics, pharmacokinetics, and considerations from drug development perspectives. Xenobiotica 2010; 40:357-67. [PMID: 20230189 DOI: 10.3109/00498251003663724] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Baicalin was extensively researched for utility in a number of therapeutic areas owing to its anti-inflammatory, anti-oxidant, anti-bacterial, and anti-cancer properties. A number of preclinical studies, in vitro work, and mechanistic studies were performed to understand the absorption, distribution, metabolism, and excretion profiles of baicalin. The absorption of baicalin involved several complexities: the restriction to two distant sites; the conversion of baicalin to baicalein; the possible role of transporter(s); and enhanced absorption due to breakdown of conjugates by beta-glucuronidase. Limited distribution data suggest that baicalin reached several sites such as the brain, eye lens, thymus, etc. Hepatobiliary recycling also served as a distribution phase for sustained delivery of baicalin. Metabolism data suggest the rapid conversion of baicalin to baicalein, which was extensively subjected to Phase 2 metabolism, conjugates baicalein glucuronide/sulfate have been identified. Limited excretion data suggest involvement of renal and faecal routes--glucuronide and sulfate conjugates were excreted in urine and faeces (via biliary excretion). The published data on baicalin suggest imminent challenges for developing baicalin and/or during co-administration with other agents. These challenges are absorption related (transporter or changes in the microenvironment), metabolism related (CYP2B6 induction and/or CYP2E1 inhibition), and excretion/efflux related (competitive biliary pathway and/or OATP1B1 transport).
Collapse
|
44
|
Kivell B, Prisinzano TE. Kappa opioids and the modulation of pain. Psychopharmacology (Berl) 2010; 210:109-19. [PMID: 20372880 DOI: 10.1007/s00213-010-1819-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 02/24/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND RATIONALE Pain is a complex sensory experience, involving cognitive factors, environment (setting, society, and culture), experience, and gender and is modulated significantly by the central nervous system (CNS). The mechanisms by which opioid analgesics work are understood, but this class of drugs is not ideal as either an analgesic or anti-hyperalgesic. Accordingly, considerable effort continues to be directed at improved understanding of nociceptor function and development of selective analgesics that do not have the unwanted effects associated with opioid analgesics. OBJECTIVE The purpose of this paper is to provide a review of the role of KOP receptors in the modulation of pain and highlight several chemotypes currently being explored as peripherally restricted KOP ligands. RESULTS A growing body of literature has shown that KOP receptors are implicated in a variety of behavioral pain models. Several different classes of peripherally restricted peptidic and nonpeptidic KOP agonists have been identified and show utility in treating painful conditions. CONCLUSION The pharmacological profile of KOP agonists in visceral pain models suggest that peripherally restricted KOP agonists are potentially useful for a variety of peripheral pain states. Further, clinical investigation of peripherally restricted KOP agonists will help to clarify the painful conditions where KOP agonists will be most effective.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Disease Models, Animal
- Humans
- Mechanoreceptors/physiology
- Nociceptors/physiology
- Pain/drug therapy
- Pain/metabolism
- Pain/physiopathology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/agonists
Collapse
Affiliation(s)
- Bronwyn Kivell
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | | |
Collapse
|
45
|
Hooker JM, Munro TA, Béguin C, Alexoff D, Shea C, Xu Y, Cohen BM. Salvinorin A and derivatives: protection from metabolism does not prolong short-term, whole-brain residence. Neuropharmacology 2009; 57:386-91. [PMID: 19591852 DOI: 10.1016/j.neuropharm.2009.06.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 11/25/2022]
Abstract
Salvinorin A (SA) is a potent kappa opioid agonist with a brief duration of action. Consistent with this, our previous positron emission tomography (PET) studies of carbon-11 labeled SA showed that brain levels decrease rapidly after intravenous administration. SA is rapidly metabolized, giving the much less potent salvinorin B (SB), which is presumed to be responsible in part for SA's brief duration of action. To test this, we labeled the metabolically stable methyl ester of SA and SB with carbon-11 and compared their pharmacokinetics by PET imaging after intravenous administration to baboons. Labeling of salvinorin B ethoxymethyl ether (EOM-SB), a derivative with greater potency and resistance to metabolism, provided an additional test of the role of metabolism in brain efflux. Plasma analysis confirmed that SB and EOM-SB exhibited greater metabolic stability than SA. However, the three compounds exhibited very similar pharmacokinetics in brain, entering and exiting rapidly. This suggests that metabolism is not solely responsible for the brief brain residence time of SA. We determined that whole-brain concentrations of EOM-SB declined more slowly than SA after intraperitoneal administration in rodents. This is likely due to a combination in EOM-SB's increased metabolic stability and its decreased plasma protein affinity. Our results suggest that protecting salvinorin A derivatives from metabolism will prolong duration of action, but only when administered by routes giving slow absorption.
Collapse
Affiliation(s)
- Jacob M Hooker
- Medical Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | | | | | | | | | | | | |
Collapse
|