1
|
Vasquez DDN, Pinheiro DH, Teixeira LA, Moreira-Pinto CE, Macedo LLP, Salles-Filho ALO, Silva MCM, Lourenço-Tessutti IT, Morgante CV, Silva LP, Grossi-de-Sa MF. Simultaneous silencing of juvenile hormone metabolism genes through RNAi interrupts metamorphosis in the cotton boll weevil. Front Mol Biosci 2023; 10:1073721. [PMID: 36950526 PMCID: PMC10025338 DOI: 10.3389/fmolb.2023.1073721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
The cotton boll weevil (CBW) (Anthonomus grandis) is one of the major insect pests of cotton in Brazil. Currently, CBW control is mainly achieved by insecticide application, which is costly and insufficient to ensure effective crop protection. RNA interference (RNAi) has been used in gene function analysis and the development of insect control methods. However, some insect species respond poorly to RNAi, limiting the widespread application of this approach. Therefore, nanoparticles have been explored as an option to increase RNAi efficiency in recalcitrant insects. Herein, we investigated the potential of chitosan-tripolyphosphate (CS-TPP) and polyethylenimine (PEI) nanoparticles as a dsRNA carrier system to improve RNAi efficiency in the CBW. Different formulations of the nanoparticles with dsRNAs targeting genes associated with juvenile hormone metabolism, such as juvenile hormone diol kinase (JHDK), juvenile hormone epoxide hydrolase (JHEH), and methyl farnesoate hydrolase (MFE), were tested. The formulations were delivered to CBW larvae through injection (0.05-2 µg), and the expression of the target genes was evaluated using RT-qPCR. PEI nanoparticles increased targeted gene silencing compared with naked dsRNAs (up to 80%), whereas CS-TPP-dsRNA nanoparticles decreased gene silencing (0%-20%) or led to the same level of gene silencing as the naked dsRNAs (up to 50%). We next evaluated the effects of targeting a single gene or simultaneously targeting two genes via the injection of naked dsRNAs or dsRNAs complexed with PEI (500 ng) on CBW survival and phenotypes. Overall, the gene expression analysis showed that the treatments with PEI targeting either a single gene or multiple genes induced greater gene silencing than naked dsRNA (∼60%). In addition, the injection of dsJHEH/JHDK, either naked or complexed with PEI, significantly affected CBW survival (18% for PEI nanoparticles and 47% for naked dsRNA) and metamorphosis. Phenotypic alterations, such as uncompleted pupation or malformed pupae, suggested that JHEH and JHDK are involved in developmental regulation. Moreover, CBW larvae treated with dsJHEH/JHDK + PEI (1,000 ng/g) exhibited significantly lower survival rate (55%) than those that were fed the same combination of naked dsRNAs (30%). Our findings demonstrated that PEI nanoparticles can be used as an effective tool for evaluating the biological role of target genes in the CBW as they increase the RNAi response.
Collapse
Affiliation(s)
- Daniel D. N. Vasquez
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Catholic University of Brasília, Brasília, Brazil
| | | | - Lays A. Teixeira
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Catholic University of Brasília, Brasília, Brazil
- Embrapa Café, Brasília, Brazil
| | | | - Leonardo L. P. Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
| | - Alvaro L. O. Salles-Filho
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Federal University of Paraná, Curitiba, Brazil
| | - Maria C. M. Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
| | - Isabela T. Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
| | - Carolina V. Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
- Embrapa SemiArid, Petrolina, Brazil
| | | | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Catholic University of Brasília, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
- *Correspondence: Maria F. Grossi-de-Sa,
| |
Collapse
|
2
|
Yasmin T, Adiba M, Saba AA, Nabi AHMN. In Silico Design of siRNAs for Silencing CLEC5A Receptor as a Potential Therapeutic Approach Against Dengue and Japanese Encephalitis Virus Infection in Human. Bioinform Biol Insights 2022; 16:11779322221142122. [PMID: 36530559 PMCID: PMC9749047 DOI: 10.1177/11779322221142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/09/2022] [Indexed: 09/04/2024] Open
Abstract
Dengue and Japanese encephalitis virus (JEV) are mosquito-borne RNA viruses that can cause severe illness leading to death in the tropics and subtropics. Both of these viruses interact directly with the C-type lectin domain family 5, member A receptor (CLEC5A) on human macrophages which stimulates the release of proinflammatory cytokines. Since blockade of this interaction has been shown to suppress the secretion of cytokines, CLEC5A is considered a potential target for the development of new treatments to reduce virus-induced brain damage. Developing a vaccine against dengue is challenging because this virus can cause disease through 4 different serotypes. Therefore, the vaccine must immunize against all 4 serotypes to be effective, while unvaccinated people still contract JEV and suffer from its complications. Small interfering RNAs (siRNAs) play an important role in regulating gene expression by causing the degradation of target mRNAs. In this study, we attempted to rationally design potential siRNA molecules using various software, targeting the CLEC5A gene. In total, 3 siRNAs were found to be potential candidates for CLEC5A silencing. They showed good target accessibility, optimum guanine-cytosine (GC) content, the least chance of off-target effects, positive energy of folding, and strong interaction with Argonaute2 protein as denoted by a negative docking energy score. In addition, molecular dynamics simulation of the siRNA-Ago2-docked complexes showed the stability of the complexes over 1.5 nanoseconds. These predicted siRNAs might effectively downregulate the expression of the CLEC5A receptor and thus prove vital in the treatment of dengue and JEV infections.
Collapse
Affiliation(s)
- Tahirah Yasmin
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Maisha Adiba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - AHM Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
3
|
Coaxial Synthesis of PEI-Based Nanocarriers of Encapsulated RNA-Therapeutics to Specifically Target Muscle Cells. Biomolecules 2022; 12:biom12081012. [PMID: 35892322 PMCID: PMC9332584 DOI: 10.3390/biom12081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we performed a methodological comparative analysis to synthesize polyethyleneimine (PEI) nanoparticles using (i) conventional nanoprecipitation (NP), (ii) electrospraying (ES), and (iii) coaxial electrospraying (CA). The nanoparticles transported antisense oligonucleotides (ASOs), either encapsulated (CA nanocomplexes) or electrostatically bound externally (NP and ES nanocomplexes). After synthesis, the PEI/ASO nanoconjugates were functionalized with a muscle-specific RNA aptamer. Using this combinatorial formulation methodology, we obtained nanocomplexes that were further used as nanocarriers for the delivery of RNA therapeutics (ASO), specifically into muscle cells. In particular, we performed a detailed confocal microscopy-based comparative study to analyze the overall transfection efficiency, the cell-to-cell homogeneity, and the mean fluorescence intensity per cell of micron-sized domains enriched with the nanocomplexes. Furthermore, using high-magnification electron microscopy, we were able to describe, in detail, the ultrastructural basis of the cellular uptake and intracellular trafficking of nanocomplexes by the clathrin-independent endocytic pathway. Our results are a clear demonstration that coaxial electrospraying is a promising methodology for the synthesis of therapeutic nanoparticle-based carriers. Some of the principal features that the nanoparticles synthesized by coaxial electrospraying exhibit are efficient RNA-based drug encapsulation, increased nanoparticle surface availability for aptamer functionalization, a high transfection efficiency, and hyperactivation of the endocytosis and early/late endosome route as the main intracellular uptake mechanism.
Collapse
|
4
|
Influenza A Virus Production in Mouse Lung Is Inhibited by Inhalation of Aerosol Polyethylenimine/Short Hairpin RNA Plasmid Complexes. DISEASE MARKERS 2022; 2022:7404813. [PMID: 35493304 PMCID: PMC9054431 DOI: 10.1155/2022/7404813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
Influenza pandemics are a global threat to human health, with existing vaccines and antiviral drugs providing limited protection. There is an urgent need for new prophylactic and treatment strategies. In this study, 12 short hairpin (sh)RNAs targeting conserved regions of influenza A virus (IAV) matrix protein (M)2, nucleocapsid protein (NP), nonstructural protein (NS), and polymerase acidic (PA) were synthesized, and their effects on IAV replication in cells were investigated using Madin-Darby canine kidney (MDCK) cells transfected with the shRNA plasmids. Additionally, mice were administered a polyethyleneimine PEI/pLKD-NP-391 complex in aerosol form and then infected with AIV, and viral particles in the mouse lung were detected. IAV production was markedly lower in MDCK cells transfected with pLKD-M-121, pLKD-M-935, pLKD-NP-391, pLKD-NP-1291, pLKD-PA-1365, and pLKD-PA-1645 plasmids than in control cells (p < 0.01). The viral load in MDCK cells was decreased by transfection of plasmids pLKD-M-121 (p < 0.05) and pLKD-M-935, pLKD-NP-391, pLKD-NP-1291, pLKD-PA-1365, and pLKD PA-1645 (p < 0.01) compared to an empty plasmid. The viral load was significantly lower in the lungs of mice transfected with pLKD-NP-391 than in the control plasmid and mock transfection groups (p < 0.01 and p < 0.05, respectively). Thus, IAV production was inhibited by shRNAs targeting matrix IAV components; moreover, inhalation of a PEI/pLKD-NP-391 complex in aerosol form suppressed IAV production in infected mice. Thus, these shRNAs can be effective for the prevention and treatment of influenza virus infection.
Collapse
|
5
|
Kelly IB, Fletcher RB, McBride JR, Weiss SM, Duvall CL. Tuning Composition of Polymer and Porous Silicon Composite Nanoparticles for Early Endosome Escape of Anti-microRNA Peptide Nucleic Acids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39602-39611. [PMID: 32805967 PMCID: PMC8356247 DOI: 10.1021/acsami.0c05827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Porous silicon nanoparticles (PSNPs) offer tunable pore structure and easily modified surface chemistry, enabling high loading capacity for drugs with diverse chemicophysical properties. While PSNPs are also cytocompatible and degradable, PSNP integration into composite structures can be a useful approach to enhance carrier colloidal stability, drug-cargo loading stability, and endosome escape. Here, we explored PSNP polymer composites formed by coating of oxidized PSNPs with a series of poly[ethylene glycol-block-(dimethylaminoethyl methacrylate-co-butyl methacrylate)] (PEG-DB) diblock copolymers with varied molar ratios of dimethylaminoethyl methacrylate (D) and butyl methacrylate (B) in the random copolymer block. We screened and developed PSNP composites specifically toward intracellular delivery of microRNA inhibitory peptide nucleic acids (PNA). While a copolymer with 50 mol % B (50B) is optimal for early endosome escape in free polymer form, its pH switch was suppressed when it was formed into 50B polymer-coated PSNP composites (50BCs). We demonstrate that a lower mol % B (30BC) is the ideal PEG-DB composition for PSNP/PEG-DB nanocomposites based on having both the highest endosome disruption potential and miR-122 inhibitory activity. At a 1 mM PNA dose, 30BCs facilitated more potent inhibition of miR-122 in comparison to 40BC (p = 0.0095), 50BC (p < 0.0001), or an anti-miR-122 oligonucleotide delivered with the commercial transfection reagent Fugene 6. Using a live cell galectin 8-based endosome disruption reporter, 30BCs had greater endosomal escape than 40BCs and 50BCs within 2 h after treatment, suggesting that rapid endosome escape correlates with higher intracellular bioactivity. This study provides new insight on the polymer structure-dependent effects on stability, endosome escape, and cargo intracellular bioavailability for endosomolytic polymer-coated PSNPs.
Collapse
Affiliation(s)
- Isom B Kelly
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - R Brock Fletcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - James R McBride
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sharon M Weiss
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
6
|
Chen L, Bai M, Du R, Wang H, Deng Y, Xiao A, Gan X. The non-viral vectors and main methods of loading siRNA onto the titanium implants and their application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2152-2168. [PMID: 32646287 DOI: 10.1080/09205063.2020.1793706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Surface modification of titanium implants by siRNA is quite efficient for improving implant osseointegration. Loading siRNA onto their surface is a crucial factor for siRNA-functionalized implants to realize their biological function. Direct binding of siRNA to implants has low siRNA binding and releasing rate, so usually it needs to be mediated by vectors. Polymeric, nonmaterial-mediated and lipid-based vectors are types of non-viral vectors which are commonly used for delivering siRNA. Three major methods of loading process, namely simple physical adsorption, layer-by-layer assembly and electrodeposition, are also summarized. A brief introduction, the basic principle and the general procedure of each method are included. The loading efficiency, which can be measured both qualitatively and quantitatively, together with gene knockdown efficiency, cytotoxicity assay and osteogenesis of the three methods are compared. A good many applications in osteogenesis have also been described in this review.
Collapse
Affiliation(s)
- Liangrui Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mingxuan Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ruiyu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hao Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P.R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
7
|
Jiang J, Zhang X, Tang Y, Li S, Chen J. Progress on ocular siRNA gene-silencing therapy and drug delivery systems. Fundam Clin Pharmacol 2020; 35:4-24. [PMID: 32298491 DOI: 10.1111/fcp.12561] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) and glaucoma are global ocular diseases with high blindness rate. RNA interference (RNAi) is being increasingly used in the treatment of these disorders with siRNA drugs, bevasiranib, AGN211745 and PF-04523655 for AMD, and SYL040012 and QPI-1007 for glaucoma. Administration routes and vectors of gene drugs affect their therapeutic effect. Compared with the non-viral vectors, viral vectors have limited payload capacity and potential immunogenicity. This review summarizes the progress of the ocular siRNA gene-silencing therapy by focusing on siRNA drugs for AMD and glaucoma already used in clinical research, the main routes of drug delivery and the non-viral vectors for siRNA drugs.
Collapse
Affiliation(s)
- Jinjin Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.1, DongQing Road, Guiyang, 550014, People's Republic of China.,Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Xinru Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.1, DongQing Road, Guiyang, 550014, People's Republic of China.,Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Yue Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.1, DongQing Road, Guiyang, 550014, People's Republic of China.,Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Shuhan Li
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Jing Chen
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| |
Collapse
|
8
|
Hussein Kamareddine M, Ghosn Y, Tawk A, Elia C, Alam W, Makdessi J, Farhat S. Organic Nanoparticles as Drug Delivery Systems and Their Potential Role in the Treatment of Chronic Myeloid Leukemia. Technol Cancer Res Treat 2020; 18:1533033819879902. [PMID: 31865865 PMCID: PMC6928535 DOI: 10.1177/1533033819879902] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia is a myeloproliferative neoplasm that occurs more prominently in the older population, with a peak incidence at ages 45 to 85 years and a median age at diagnosis of 65 years. This disease comprises roughly 15% of all leukemias in adults. It is a clonal stem cell disorder of myeloid cells characterized by the presence of t(9;22) chromosomal translocation, also known as the Philadelphia chromosome, or its byproducts BCR-ABL fusion protein/messenger RNA, leading to the expression of a protein with enhanced tyrosine kinase activity. This fusion protein has become the main therapeutic target in chronic myeloid leukemia therapy, with imatinib displaying superior antileukemic effects, placing it at the forefront of current treatment protocols and displaying great efficacy. Alternatively, nanomedicine and employing nanoparticles as drug delivery systems may represent new approaches in future anticancer therapy. This review focuses primarily on the use of organic nanoparticles aimed at chronic myeloid leukemia therapy in both in vitro and in vivo settings, by going through a thorough survey of published literature. After a brief introduction on the pathogenesis of chronic myeloid leukemia, a description of conventional, first- and second-line, treatment modalities of chronic myeloid leukemia is presented. Finally, some of the general applications of nanostrategies in medicine are presented, with a detailed focus on organic nanocarriers and their constituents used in chronic myeloid leukemia treatment from the literature.
Collapse
Affiliation(s)
| | - Youssef Ghosn
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Antonios Tawk
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Carlos Elia
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, El-Koura, Lebanon
| | - Walid Alam
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Joseph Makdessi
- Department of Hematology-Oncology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Said Farhat
- Department of Gastroenterology, Saint George Hospital University Medical Center, Achrafieh-Beirut, Lebanon
| |
Collapse
|
9
|
Zhang X, Liu J, Li X, Li F, Lee RJ, Sun F, Li Y, Liu Z, Teng L. Trastuzumab-Coated Nanoparticles Loaded With Docetaxel for Breast Cancer Therapy. Dose Response 2019; 17:1559325819872583. [PMID: 31523204 PMCID: PMC6728688 DOI: 10.1177/1559325819872583] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 01/06/2023] Open
Abstract
Docetaxel (DTX) is commonly used for breast cancer treatment. Tween 80 used for DTX dissolution in its clinical formulation causes severe hypersensitivity and other adverse reactions. In this study, trastuzumab (Tmab)-coated lipid-polymer hybrid nanoparticles (PLNs) were prepared, composed of poly (d, l-lactide-co-glycolide), PLGA; polyethylenimine (PEI); and lipids. The PLGA/PEI/lipid formed a hydrophobic core, while Tmab was electrostatically adsorbed on the surface of the PLNs as a ligand that targets human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells. The resulting PLNs, electrostatically adsorbed Tmab-bearing PLGA/PEI/lipid nanoparticles (eTmab-PPLNs), had a mean particle size of 217.4 ± 13.36 nm, a ζ potential of 0.056 ± 0.315 mV, and good stability. In vitro, the eTmab-PPLNs showed increased cytotoxicity in HER2-postive BT474 cells but not in HER2-negative MCF7 cells. Studies of the ability of eTmab-PPLNs to target HER2 were performed. The uptake of eTmab-PPLNs was shown to be dependent on HER2 expression level. Therefore, eTmab-PPLNs provide a promising therapeutic for the treatment of breast cancer.
Collapse
Affiliation(s)
- Xueyan Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Jiaxin Liu
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Xiangyu Li
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Fang Li
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Robert J. Lee
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
- College of Pharmacy, The Ohio State University, Columbus, OH,
USA
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Zongyu Liu
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| |
Collapse
|
10
|
Singh S, Maurya PK. Nanomaterials-Based siRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. NANOTECHNOLOGY IN MODERN ANIMAL BIOTECHNOLOGY 2019. [PMCID: PMC7121101 DOI: 10.1007/978-981-13-6004-6_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Ribonucleic acid interference (RNAi) is a potential alternative therapeutic approach to knock down the overexpression of genes in several disorders especially cancers with underlying genetic dysfunctions. For silencing of specific genes involved in cell cycle, small/short interfering ribonucleic acids (siRNAs) are being used clinically. The siRNA-based RNAi is more efficient, specific and safe antisense technology than other RNAi approaches. The route of siRNA administration for siRNA therapy depends on the targeted site. However, certain hurdles like poor stability of siRNA, saturation, off-target effect, immunogenicity, anatomical barriers and non-targeted delivery restrict the successful siRNA therapy. Thus, advancement of an effective, secure, and long-term delivery system is prerequisite to the medical utilization of siRNA. Polycationic nanocarriers mediated targeted delivery system is an ideal system to remove these hurdles and to increase the blood retention time and rate of intracellular permeability. In this chapter, we will mainly discuss the different biocompatible, biodegradable, non-toxic (organic, inorganic and hybrid) nanocarriers that encapsulate and shield the siRNA from the different harsh environment and provides the increased systemic siRNA delivery.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, Gujarat India
| | | |
Collapse
|
11
|
DU J, Sun Y, Li FH, DU LF, Duan YR. Enhanced delivery of biodegradable mPEG-PLGA-PLL nanoparticles loading Cy3-labelled PDGF-BB siRNA by UTMD to rat retina. J Biosci 2018; 42:299-309. [PMID: 28569253 DOI: 10.1007/s12038-017-9677-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We investigated the efficacy and safety of ultrasound (US)-targeted microbubble (MB) destruction (UTMD)-enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-L-lysine (mPEG-PLGA-PLL) nanoparticles (NPs) loading Cy3-labelled platelet-derived growth factor BB (PDGF-BB) siRNA to rat retina in vivo. Eighty Wistar rats were divided into five groups (G). The right eyes, respectively, received an intravitreal injection as follows: normal saline (NS) (G1), NPs and NS (G2), NPs and MBs (G3), NPs and NS (G4) and NPs and MBs (G5). In G4 and G5, the eyes were exposed to US for 5 mins. Twenty-four hours after transfection, the uptake and distribution of Cy3-labelled siRNA in rat retina were observed by fluorescent microscope. The percentage of Cy3- labelled siRNA-positive cells was evaluated by flow cytometer. The levels of PDGF-BB mRNA in retinal pigment epithelium (RPE) cells and secreted PDGF-BB proteins were also measured. Hematoxylin and eosin staining and frozen sections were used to observe tissue damage. Our results showed that the number of Cy3-labelled siRNApositive cells in G5 was significantly higher than those of the other groups (P less than 0.05 for all comparisons). The maximum efficiency of siRNA uptake in neural retina was 18.22 +/_ 1.67%. In G4 and G5, a small number of Cy3- labelled siRNA-positive cells were also detected in the pigmented cell layer of the retina. NPs loading siRNA delivered with UTMD could more effectively down-regulate the mRNA and protein expression of PDGF-BB than NPs plus US (P=0.014 and P=0.007, respectively). Histology showed no evident tissue damage after UTMDmediated NPs loading siRNA transfection. UTMD could be used safely to enhance the delivery of mPEG-PLGAPLL NPs loading siRNA into rat retina.
Collapse
Affiliation(s)
- Jing DU
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pu Jian Road, Shanghai 200127, China
| | | | | | | | | |
Collapse
|
12
|
Engineered polymeric nanoparticles to guide the cellular internalization and trafficking of small interfering ribonucleic acids. J Control Release 2017; 259:3-15. [DOI: 10.1016/j.jconrel.2017.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 12/29/2022]
|
13
|
Morsi NG, Ali SM, Elsonbaty SS, Afifi AA, Hamad MA, Gao H, Elsabahy M. Poly(glycerol methacrylate)-based degradable nanoparticles for delivery of small interfering RNA. Pharm Dev Technol 2017; 23:387-399. [PMID: 28347210 DOI: 10.1080/10837450.2017.1312443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleic acids therapeutic efficiency is generally limited by their low stability and intracellular bioavailability, and by the toxicity of the carriers used to deliver them to the target sites. Aminated poly(glycerol methacrylate) polymers are biodegradable and pH-sensitive polymers that have been used previously to deliver antisense oligonucleotide and show high transfection efficiency. The purpose of this study is to compare the efficiency and toxicity of aminated linear poly(glycerol methacrylate) (ALT) biodegradable polymer to the most commonly used cationic degradable (i.e. chitosan) and non-degradable (i.e. polyethylenimine (PEI)) polymers for delivery of short interfering RNA (siRNA). ALT, PEI and chitosan polymers were able to form nanosized particles with siRNA. Size, size-distribution and zeta-potential were measured over a wide range of nitrogen-to-phosphate (N/P) ratios, and the stability of the formed nanoparticles in saline and upon freeze-drying was also assessed. No significant cytotoxicity at the range of the tested concentrations of ALT and chitosan nanoparticles was observed, whereas the non-degradable PEI showed significant toxicity in huh-7 hepatocyte-derived carcinoma cell line. The safety profiles of the degradable polymers (ALT and chitosan) over non-degradable PEI were demonstrated in vitro and in vivo. In addition, ALT nanoparticles were able to deliver siRNA in vivo with significantly higher efficiency than chitosan nanoparticles. The results in the present study give evidence of the great implications of ALT nanoparticles in biomedical applications due to their biocompatibility, low cytotoxicity, high stability and simple preparation method.
Collapse
Affiliation(s)
- Noha G Morsi
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt
| | - Shimaa M Ali
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt
| | - Sherouk S Elsonbaty
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt
| | - Ahmed A Afifi
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt
| | - Mostafa A Hamad
- b Department of Surgery, Faculty of Medicine , Assiut University , Assiut , Egypt
| | - Hui Gao
- c School of Chemistry and Chemical Engineering , Tianjin University of Technology , Tianjin , China
| | - Mahmoud Elsabahy
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt.,d Laboratory for Synthetic-Biologic Interactions, Department of Chemistry , Texas A&M University , College Station , TX , USA.,e Department of Pharmaceutics, Faculty of Pharmacy , Assiut University , Assiut , Egypt.,f Misr University for Science and Technology , 6th of October City , Egypt
| |
Collapse
|
14
|
Ewe A, Panchal O, Pinnapireddy SR, Bakowsky U, Przybylski S, Temme A, Aigner A. Liposome-polyethylenimine complexes (DPPC-PEI lipopolyplexes) for therapeutic siRNA delivery in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:209-218. [DOI: 10.1016/j.nano.2016.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/25/2016] [Accepted: 08/04/2016] [Indexed: 02/04/2023]
|
15
|
Pereira PA, Tomás JF, Queiroz JA, Figueiras AR, Sousa F. Recombinant pre-miR-29b for Alzheimer´s disease therapeutics. Sci Rep 2016; 6:19946. [PMID: 26818210 PMCID: PMC4730146 DOI: 10.1038/srep19946] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 11/11/2015] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are arising as the next generation of diagnostic and therapeutic tools for gene silencing. Studies demonstrated that the miR-29 expression is decreased in Alzheimer’s disease (AD) patients displaying high levels of human β-secretase (hBACE1). Recent advances toward an effective therapy for AD intend to employ miR-29 to suppress hBACE1 expression and subsequent Amyloid-β (Aβ) peptide. However, delivery of mature miRNA has demonstrated modest efficacy in vitro; therefore, the preparation of highly pure and biologically active pre-miRNA arises as one of the most important challenges in the development of these therapeutic strategies. Recently, we described a new strategy based arginine-affinity chromatography to specifically purify the recombinant pre-miR-29b. Following this strategy, the purified pre-miR-29b was successfully encapsulated into polyplexes that were further delivered in cytoplasm. It was verified that Chitosan/pre-miR-29b and Polyethylenimine/pre-miR-29b systems efficiently delivered pre-miR-29b to N2a695 cells, thus reducing the hBACE1 protein expression (around 78% and 86%, respectively) and Aβ42 levels (approximately 44% and 47%, respectively). Furthermore, pre-miR-29b downregulates the hBACE1 mRNA expression in 80%. Overall, it was demonstrated that the recombinant pre-miR-29b using polyplexes allowed to decrease the hBACE1 and Aβ42 expression levels, improving the currently available methodologies of miRNA-based therapeutics.
Collapse
Affiliation(s)
- Patrícia A Pereira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Joana F Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Ana R Figueiras
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal.,CNC - Center of Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, 3004-517, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| |
Collapse
|
16
|
Prabha S, Vyas R, Gupta N, Ahmed B, Chandra R, Nimesh S. RNA interference technology with emphasis on delivery vehicles—prospects and limitations. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1391-9. [DOI: 10.3109/21691401.2015.1058808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shashi Prabha
- Department of Pharmaceutical Chemistry, Jamia Hamdard University, New Delhi, India
| | - Ruchi Vyas
- Department of Biotechnology, The IIS University, Jaipur, India
| | - Nidhi Gupta
- Department of Biotechnology, The IIS University, Jaipur, India
| | - Bahar Ahmed
- Department of Pharmaceutical Chemistry, Jamia Hamdard University, New Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
| | - Surendra Nimesh
- Department of Biotechnology, Central University of Rajasthan, School of Life Sciences, Ajmer, India
| |
Collapse
|
17
|
Navarro G, Sawant RR, Essex S, Tros de Ilarduya C, Torchilin VP. Phospholipid-polyethylenimine conjugate-based micelle-like nanoparticles for siRNA delivery. Drug Deliv Transl Res 2015; 1:25-33. [PMID: 22916337 DOI: 10.1007/s13346-010-0004-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gene silencing using small interfering RNA (siRNA) is a promising therapeutic strategy for the treatment of various diseases, in particular, cancer. Recently, our group reported on a novel gene carrier, the micelle-like nanoparticle (MNP), based on the combination of a covalent conjugate of phospholipid and polyethylenimine (PLPEI) with polyethylene glycol (PEG) and lipids. These long-circulating MNPs loaded with plasmid DNA-mediated gene expression in distal tumors after systemic administration in vivo. In the current study, we investigated the potential of MNPs for siRNA delivery. MNPs were prepared by condensing siRNA with PLPEI at a nitrogen/phosphate ratio of 10, where the binding of siRNA is complete. The addition of a PEG/lipid coating to the PLPEI complexes generated particles with sizes of ca. 200 nm and a neutral surface charge compared with positively charged PLPEI polyplexes without the additional coating. MNPs protected the loaded siRNA against enzymatic digestion and enhanced the cellular uptake of the siRNA payload. MNPs carrying green fluorescent protein (GFP)-targeted siRNA effectively downregulated the gene in cells that stably express GFP. Finally, MNPs were non-toxic at a wide range of concentrations and for different cell lines.
Collapse
Affiliation(s)
- Gemma Navarro
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
18
|
Zheng M, Yu J. Effect of particle surface charge on drug uptake. EUROPEAN JOURNAL OF NANOMEDICINE 2015. [DOI: 10.1515/ejnm-2015-0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this paper, it aims to build the relationship of statically electric interaction between the surface charge of a particle drug and cellular uptake. The statically electric theory is applied to study the change of wetting between the drug particle and the cell, a factor that enhanced uptake of cells induced by particle’s surface charge is introduced, then it is formulated according to Kelvin theory for dissolving of solid particle in liquid. It is found that the change of contact angle between the surface charged particle drug and the cell can be detected if the Zeta potential reaches to 6 mV in water like solution, an increase of about 11.1% for the uptake could be obtained for a polymer particle with molar mass
Collapse
|
19
|
Gene silencing in human aortic smooth muscle cells induced by PEI-siRNA complexes released from dip-coated electrospun poly(ethylene terephthalate) grafts. Biomaterials 2014; 35:3071-9. [PMID: 24397987 DOI: 10.1016/j.biomaterials.2013.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/13/2013] [Indexed: 11/20/2022]
Abstract
An excessive tissue response to prosthetic arterial graft material leads to intimal hyperplasia (IH), the leading cause of late graft failure. Seroma and abnormal capsule formation may also occur after prosthetic material implantation. The matricellular protein Thrombospondin-2 (TSP-2) has shown to be upregulated in response to biomaterial implantation. This study evaluates the uptake and release of small interfering RNA (siRNA) from unmodified and surface functionalized electrospun PET graft materials. ePET graft materials were synthesized using electrospinning technology. Subsets of the ePET materials were then chemically modified to create surface functional groups. Unmodified and surface-modified ePET grafts were dip-coated in siRNAs alone or siRNAs complexed with transfection reagents polyethyleneimine (PEI) or Lipofectamine RNAiMax. Further, control and TSP-2 siRNA-PEI complex treated ePET samples were placed onto a confluent layer of human aortic smooth muscle cells (AoSMCs). Complexation of all siRNAs with PEI led to a significant increase in adsorption to unmodified ePET. TSP-2 siRNA-PEI released from unmodified-ePET silenced TSP-2 in AoSMC. Regardless of the siRNA-PEI complex evaluated, AoSMC migrated into the ePET. siRNA-PEI complexes delivered to AoSMC from dip-coated ePET can result in gene knockdown. This methodology for siRNA delivery may improve the tissue response to vascular and other prosthetics.
Collapse
|
20
|
Abstract
Polyethylenimines (PEIs) have proven to be highly efficient and versatile agents for nucleic acid delivery in vitro and in vivo. Despite the low biodegradability of these polymers, they have been used in several clinical trials and the results suggest that the nucleic acid/PEI complexes have a good safety profile. The high transfection efficiency of PEIs probably relies on the fact that these polymers possess a stock of amines that can undergo protonation during the acidification of endosomes. This buffering capacity likely enhances endosomal escape of the polyplexes through the "proton sponge" effect. PEIs have also attracted great interest because the presence of many amino groups allow for easy chemical modifications or conjugation of targeting moieties and hydrophilic polymers. In the present chapter, we summarize and discuss the mechanism of PEI-mediated transfection, as well as the recent developments in PEI-mediated DNA, antisense oligonucleotide, and siRNA delivery.
Collapse
Affiliation(s)
- Patrick Neuberg
- Laboratoire "Vecteurs: Synthèse et Applications Thérapeutiques", UMR7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Antoine Kichler
- Laboratoire "Vecteurs: Synthèse et Applications Thérapeutiques", UMR7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
21
|
Han HD, Byeon Y, Jeon HN, Shin BC. Enhanced localization of anticancer drug in tumor tissue using polyethylenimine-conjugated cationic liposomes. NANOSCALE RESEARCH LETTERS 2014; 9:209. [PMID: 24855464 PMCID: PMC4014089 DOI: 10.1186/1556-276x-9-209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/24/2014] [Indexed: 05/21/2023]
Abstract
Liposome-based drug delivery systems hold great potential for cancer therapy. However, to enhance the localization of payloads, an efficient method of systemic delivery of liposomes to tumor tissues is required. In this study, we developed cationic liposomes composed of polyethylenimine (PEI)-conjugated distearoylglycerophosphoethanolamine (DSPE) as an enhanced local drug delivery system. The particle size of DSPE-PEI liposomes was 130 ± 10 nm and the zeta potential of liposomes was increased from -25 to 30 mV by the incorporation of cationic PEI onto the liposomal membrane. Intracellular uptake of DSPE-PEI liposomes by tumor cells was 14-fold higher than that of DSPE liposomes. After intratumoral injection of liposomes into tumor-bearing mice, DSPE-PEI liposomes showed higher and sustained localization in tumor tissue compared to DSPE liposomes. Taken together, our findings suggest that DSPE-PEI liposomes have the potential to be used as effective drug carriers for enhanced intracellular uptake and localization of anticancer drugs in tumor tissue through intratumoral injection.
Collapse
Affiliation(s)
- Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, 268 Chungwondaero, Chungjusi, Chungcheongbukdo 380-701, South Korea
| | - Yeongseon Byeon
- Department of Immunology, School of Medicine, Konkuk University, 268 Chungwondaero, Chungjusi, Chungcheongbukdo 380-701, South Korea
| | - Hat Nim Jeon
- Department of Immunology, School of Medicine, Konkuk University, 268 Chungwondaero, Chungjusi, Chungcheongbukdo 380-701, South Korea
| | - Byung Cheol Shin
- Research Center for Medicinal Chemistry, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, South Korea
| |
Collapse
|
22
|
|
23
|
Lin G, Hu R, Law WC, Chen CK, Wang Y, Li Chin H, Nguyen QT, Lai CK, Yoon HS, Wang X, Xu G, Ye L, Cheng C, Yong KT. Biodegradable nanocapsules as siRNA carriers for mutant K-Ras gene silencing of human pancreatic carcinoma cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2757-63. [PMID: 23427041 DOI: 10.1002/smll.201201716] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/27/2012] [Indexed: 06/01/2023]
Abstract
The application of small interfering RNA (siRNA)-based RNA interference (RNAi) for cancer gene therapy has attracted great attention. Gene therapy is a promising strategy for cancer treatment because it is relatively non-invasive and has a higher therapeutic specificity than chemotherapy. However, without the use of safe and efficient carriers, siRNAs cannot effectively penetrate the cell membranes and RNAi is impeded. In this work, cationic poly(lactic acid) (CPLA)-based degradable nanocapsules (NCs) are utilized as novel carriers of siRNA for effective gene silencing of pancreatic cancer cells. These CPLA-NCs can readily form nanoplexes with K-Ras siRNA and over 90% transfection efficiency is achieved using the nanoplexes. Cell viability studies show that the nanoparticles are highly biocompatible and non-toxic, indicating that CPLA-NC is a promising potential candidate for gene therapy in a clinical setting.
Collapse
Affiliation(s)
- Guimiao Lin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Qin L, Sun Y, Liu P, Wang Q, Han B, Duan Y. F127/Calcium phosphate hybrid nanoparticles: a promising vector for improving siRNA delivery and gene silencing. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:1757-66. [PMID: 23746331 DOI: 10.1080/09205063.2013.801702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Calcium phosphate-based transfection method had been used to transfer DNA into living cells. However, it had so far not been studied in detail to what extend siRNA delivery system. In this study, Pluronic F127/calcium phosphate hybrid nanoparticles (F127/CaP) were prepared by a facile room temperature method and employed as carriers to deliver siRNA to silence tumor cell. The morphology of the F127/CaP hybrid nanoparticles was investigated with TEM. In order to determine the ratio of F127 to CaP in the hybrid nanoparticles, TGA (the thermogravimetric analysis) was applied. MTT assays confirmed that the F127/CaP hybrid nanoparticles were quite safe. The hybrid F127/CaP nanoparticles obtained were 120-210 nm in diameter, and they were applied as siRNA carriers for siRNA loading and in vitro transfection. The siRNA encapsulating efficiency was 91.5 wt.% with a loading content of 6.5 wt.%. Compared to traditional CaP transfection method, the siRNA-loaded F127/CaP exhibited higher gene inhibition efficiency, and this was supported by fluorescence microscopy. Quantitative analysis of GFP silencing efficiency of various siRNA formulations was measured by using FACS flow cytometry analysis. Additionally, both custom CaP and F127/CaP are biocompatible and biodegradable, thus the as-prepared F127/CaP hybrid nanoparticles are promising for siRNA delivery.
Collapse
Affiliation(s)
- Liubin Qin
- a School of Medicine , Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University , Shanghai , 200032 , China
| | | | | | | | | | | |
Collapse
|
25
|
Vicentini FTMDC, Borgheti-Cardoso LN, Depieri LV, de Macedo Mano D, Abelha TF, Petrilli R, Bentley MVLB. Delivery systems and local administration routes for therapeutic siRNA. Pharm Res 2013; 30:915-31. [PMID: 23344907 PMCID: PMC7088712 DOI: 10.1007/s11095-013-0971-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 01/03/2013] [Indexed: 01/28/2023]
Abstract
With the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.
Collapse
|
26
|
|
27
|
Nimesh S. Characterization of nanoparticles: in vitro and in vivo. Gene Ther 2013. [DOI: 10.1533/9781908818645.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Pereira P, Jorge AF, Martins R, Pais AA, Sousa F, Figueiras A. Characterization of polyplexes involving small RNA. J Colloid Interface Sci 2012; 387:84-94. [DOI: 10.1016/j.jcis.2012.07.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
29
|
Li L, Wu Y, Wang C, Zhang W. Inhibition ofPAX2Gene Expression by siRNA (Polyethylenimine) in Experimental Model of Obstructive Nephropathy. Ren Fail 2012; 34:1288-96. [DOI: 10.3109/0886022x.2012.723662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
30
|
Sun JY, Sun Y, Wu HJ, Zhang HX, Zhao ZH, Chen Q, Zhang ZG. Transgene therapy for rat anti-Thy1.1 glomerulonephritis via mesangial cell vector with a polyethylenimine/decorin nanocomplex. NANOSCALE RESEARCH LETTERS 2012; 7:451. [PMID: 22876812 PMCID: PMC3629717 DOI: 10.1186/1556-276x-7-451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/09/2012] [Indexed: 06/01/2023]
Abstract
Polyethylenimine (PEI), a cationic polymer, is one of the most efficient non-viral vectors for transgene therapy. Decorin (DCN), a leucine-rich proteoglycan secreted by glomerular mesangial cells (MC), is a promising anti-fibrotic agent for the treatment of glomerulonephritis. In this study, we used PEI-DCN nanocomplexes with different N/P ratios to transfect MC in vitro and deliver the MC vector with PEI-DCN expressing into rat anti-Thy1.1 nephritis kidney tissue via injection into the left renal artery in vivo. The PEI-plasmid DNA complex at N/P 20 had the highest level of transfection efficiency and the lowest level of cytotoxicity in cultured MC. Following injection, the ex vivo gene was transferred successfully into the glomeruli of the rat anti-Thy1.1 nephritis model by the MC vector with the PEI-DCN complex. The exogenous MC with DCN expression was located mainly in the mesangium and the glomerular capillary. Over-expression of DCN in diseased glomeruli could result in the inhibition of collagen IV deposition and MC proliferation. The pathological changes of rat nephritis were alleviated following injection of the vector. These findings demonstrate that the DCN gene delivered by the PEI-DNA nanocomplex with the MC vector is a promising therapeutic method for the treatment of glomerulonephritis.
Collapse
Affiliation(s)
- Jian-Yong Sun
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Sun
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui-Juan Wu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Molecular Medicine, Ministry of Education of China, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Xia Zhang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong-Hua Zhao
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Chen
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Gang Zhang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Molecular Medicine, Ministry of Education of China, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
31
|
A review on comb-shaped amphiphilic polymers for hydrophobic drug solubilization. Ther Deliv 2012; 3:59-79. [PMID: 22833933 DOI: 10.4155/tde.11.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Comb-shaped amphiphilic polymers are rapidly emerging as an alternative approach to amphiphilic block copolymers for hydrophobic drug solubilization. These polymers consist of a homopolymer or copolymer backbone to which hydrophobic and hydrophilic pendant groups can be grafted resulting in a comb-like architecture. The hydrophobic pendants may consist of homopolymers, copolymers and other low-molecular weight hydrophobic structures. In this review, we focus on hydrophobically modified preformed homopolymers. Comb-shaped amphiphilic polymers possess reduced critical aggregation concentration values compared with traditional surfactant micelles indicating increased stability with decreased disruption experienced on dilution. They have been fabricated with diverse architectures and multifunctional properties such as site-specific targeting and external stimuli-responsive nature. The application of comb-shaped amphiphilic polymers is expanding; here we report on the progress achieved so far in hydrophobic drug solubilization for both intravenous and oral delivery.
Collapse
|
32
|
Biodegradable nanoparticles of mPEG-PLGA-PLL triblock copolymers as novel non-viral vectors for improving siRNA delivery and gene silencing. Int J Mol Sci 2012; 13:516-533. [PMID: 22312268 PMCID: PMC3269702 DOI: 10.3390/ijms13010516] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/08/2011] [Accepted: 12/28/2011] [Indexed: 02/01/2023] Open
Abstract
Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing.
Collapse
|
33
|
Abstract
MicroRNAs (miRNAs) are single-stranded noncoding RNAs ∼21-nucleotide (nt) in length and regulate gene expression at the posttranscriptional level. miRNAs are involved in almost every area of biology, including developmental processes, disease pathogenesis, and host-pathogen interactions. Dysregulation of miRNAs in various disease states makes them potential targets for therapeutic intervention. Specific miRNAs can be silenced by anti-microRNAs (anti-miRs) that are chemically modified antisense oligonucleotides complementary to mature miRNA sequences. In vivo delivery of anti-miRs is the main barrier in achieving efficient silencing of target miRNAs. A new systemic delivery agent, interfering nanoparticles (iNOPs), was designed and prepared from lipid-functionalized poly-L-lysine dendrimer. iNOPs can efficiently deliver small RNAs, including short interfering RNAs, miRNA mimics, and anti-miRs. Systemic delivery of a chemically stabilized anti-miR-122 by iNOPs effectively silences miR-122 in mouse liver. Intravenous administration of 2 mg/kg anti-miR-122 complexed with iNOP-7 results in 83% specific silencing of target miRNA. The specific silencing of miR-122 by iNOP-7 is long lasting and does not induce an immune response.
Collapse
Affiliation(s)
- Huricha Baigude
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | | |
Collapse
|
34
|
Du J, Shi QS, Sun Y, Liu PF, Zhu MJ, Du LF, Duan YR. Enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly l-lysine nanoparticles loading platelet-derived growth factor BB small interfering RNA by ultrasound and/or microbubbles to rat retinal pigment epithelium cells. J Gene Med 2011; 13:312-23. [PMID: 21674734 DOI: 10.1002/jgm.1574] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND A novel small interfering RNA (siRNA) delivery method based on the combined use of nanoparticles (NPs) with ultrasound (US) and/or microbubbles (MBs) was introduced in the present study. We investigated the efficacy and safety of US and/or MBs-enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly l-lysine (mPEG-PLGA-PLL) NPs loading platelet-derived growth factor BB (PDGF-BB) siRNA to rat retinal pigment epithelium (RPE)-J cells. METHODS The effect of US and/or MBs on the delivery of NPs containing Cy3-labeled siRNA was evaluated by fluorescence microscopy and flow cytometry. Potential toxicity of NPs and cell viability under different conditions of US and/or MBs were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. RESULTS The results obtained showed that low intensity US or 15-20% MBs could increase the delivery efficiency of a lower concentration of mPEG-PLGA-PLL NPs loading siRNA to RPE-J cells, whereas the combination of US with MBs under the optimal conditions for the enhancement of NPs delivery did not further increase the cellular uptake of NPs compared to either US or MBs alone (p = 0.072 and p = 0.488, respectively). Under the optimal condition for US-enhanced NPs delivery, the enhanced PDGF-BB gene silencing with a combination of US and NPs encapsulating siRNA resulted in a significant decrease of mRNA and protein expression levels compared to NPs alone. CONCLUSIONS US and/or MBs could be used safely to enhance the delivery of NPs loading siRNA to rat RPE-J cells. A combination of the chemical (mPEG-PLGA-PLL NPs loading siRNA) and physical (US) approaches could more effectively downregulate the mRNA and protein expression of PDGF-BB.
Collapse
Affiliation(s)
- Jing Du
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Nimesh S, Gupta N, Chandra R. Strategies and advances in nanomedicine for targeted siRNA delivery. Nanomedicine (Lond) 2011; 6:729-46. [PMID: 21718181 DOI: 10.2217/nnm.11.15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
siRNA are a rapidly emerging class of new therapeutic molecules for the treatment of inherited and acquired diseases. However, poor cellular uptake and instability in physiological conditions limits its therapeutic potential, hence a need to develop a delivery system that can protect and efficiently transport siRNA to the target cells has arisen. Nanoparticles have been proposed as suitable delivery vectors with reduced cytotoxicity and enhanced efficacy. These delivery vectors form condensed complexes with siRNA which, in turn, provides protection to siRNA against enzymatic degradation and further leads to tissue and cellular targeting. Nanoparticles derived from polymers, such as chitosan and polyethylenimine have found numerous applications owing to ease of manipulation, high stability, low cost and high gene carrying capability. This article focuses on various aspects of nanomedicine based siRNA delivery with emphasis on targeted delivery to tumors.
Collapse
Affiliation(s)
- Surendra Nimesh
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
36
|
Synthesis and characterization of mannosylated pegylated polyethylenimine as a carrier for siRNA. Int J Pharm 2011; 427:123-33. [PMID: 21864664 DOI: 10.1016/j.ijpharm.2011.08.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 07/20/2011] [Accepted: 08/06/2011] [Indexed: 12/16/2022]
Abstract
Regulation of gene expression using small interfering RNA (siRNA) is a promising strategy for research and treatment of numerous diseases. In this study, we develop and characterize a delivery system for siRNA composed of polyethylenimine (PEI), polyethylene glycol (PEG), and mannose (Man). Cationic PEI complexes and compacts siRNA, PEG forms a hydrophilic layer outside of the polyplex for steric stabilization, and mannose serves as a cell binding ligand for macrophages. The PEI-PEG-mannose delivery system was constructed in two different ways. In the first approach, mannose and PEG chains are directly conjugated to the PEI backbone. In the second approach, mannose is conjugated to one end of the PEG chain and the other end of the PEG chain is conjugated to the PEI backbone. The PEI-PEG-mannose delivery systems were synthesized with 3.45-13.3 PEG chains and 4.7-3.0 mannose molecules per PEI. The PEI-PEG-Man-siRNA polyplexes displayed a coarse surface in Scanning Electron Microscopy (SEM) images. Polyplex sizes were found to range from 169 to 357 nm. Gel retardation assays showed that the PEI-PEG-mannose polymers are able to efficiently complex with siRNA at low N/P ratios. Confocal microscope images showed that the PEI-PEG-Man-siRNA polyplexes could enter cells and localized in the lysosomes at 2h post-incubation. Pegylation of the PEI reduced toxicity without any adverse reduction in knockdown efficiency relative to PEI alone. Mannosylation of the PEI-PEG could be carried out without any significant reduction in knockdown efficiency relative to PEI alone. Conjugating mannose to PEI via the PEG spacer generated superior toxicity and gene knockdown activity relative to conjugating mannose and PEG directly onto the PEI backbone.
Collapse
|
37
|
Abstract
INTRODUCTION The field of RNA interference technology has been researched extensively in recent years. However, the development of clinically suitable, safe and effective drug delivery vehicles is still required. AREAS COVERED This paper reviews the recent advances of non-viral delivery of small interfering RNA (siRNA) by nanoparticles, including biodegradable nanoparticles, liposomes, polyplex, lipoplex and dendrimers. The characteristics, composition, preparation, applications and advantages of different nanoparticle delivery strategies are also discussed in detail, along with the recent progress of non-viral nanoparticle carrier systems for siRNA delivery in preclinical and clinical studies. EXPERT OPINION Non-viral carrier systems, especially nanoparticles, have been investigated extensively for siRNA delivery, and may be utilized in clinical applications in the future. So far, a few preliminary clinical trials of nanoparticles have produced promising results. However, further research is still required to pave the way to successful clinical applications. The most important issues that need to be focused on include encapsulation efficiency, formulation stability of siRNA, degradation in circulation, endosomal escape and delivery efficiency, targeting, toxicity and off-target effects. Pharmacology and pharmacokinetic studies also present another great challenge for nanoparticle delivery systems, owing to the unique nature of siRNA oligonucleotides compared with small molecules.
Collapse
Affiliation(s)
- Xudong Yuan
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy, Long Island University, 75 DeKalb Avenue, Brooklyn, NY 11201-5497, USA.
| | | | | |
Collapse
|
38
|
Chen L, Mccrate JM, Lee JCM, Li H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. NANOTECHNOLOGY 2011; 22:105708. [PMID: 21289408 PMCID: PMC3144725 DOI: 10.1088/0957-4484/22/10/105708] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles' surface charge was varied by surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FT-IR) confirmed the adsorption and binding of the carboxylic acids on the HAP nanoparticles' surfaces; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate the cell membrane due to their larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles showed the strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of HAP nanoparticles and the different uptake also influences the behavior of cells. These in vitro results may also provide useful information for investigations of HAP nanoparticle applications in gene delivery and intracellular drug delivery.
Collapse
Affiliation(s)
- Liang Chen
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65203
| | - Joseph M. Mccrate
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65203
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - James C-M. Lee
- Department of Biological Engineering, University of Missouri, Columbia, MO 65203
| | - Hao Li
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65203
- :
| |
Collapse
|
39
|
Schäfer J, Höbel S, Bakowsky U, Aigner A. Liposome–polyethylenimine complexes for enhanced DNA and siRNA delivery. Biomaterials 2010; 31:6892-900. [DOI: 10.1016/j.biomaterials.2010.05.043] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
|