1
|
Van der Meeren A, Devilliers K, Griffiths N, Chaplault AS, Defrance M, Ducouret G, Pasteur M, Laroche P, Caire-Maurisier F. Decontamination of Actinide-contaminated Injured Skin with Ca-DTPA Products Using an Ex Vivo Rat Skin Model. HEALTH PHYSICS 2024; 127:490-503. [PMID: 38768323 PMCID: PMC11460756 DOI: 10.1097/hp.0000000000001827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
ABSTRACT Skin contamination by α-emitting actinides such as plutonium and americium is a risk for workers during nuclear fuel production and reactor decommissioning. Decontamination of skin is an important medical countermeasure to limit potential internal contamination, particularly in the case of injured skin. Current recommendations include undressing of the victim followed by skin washing using soap or chelating agents, such as diethylene triamine pentaacetic acid (DTPA). The goal of the present work is to assess the efficacy of a novel Ca-DTPA loaded gel to decontaminate injured skin exposed to plutonium or americium as compared to recommended treatments. For decontaminant testing on injured skin, whole body skin was obtained from euthanized rats and lesions created using a metallic brush. Delimited test areas were contaminated with plutonium or americium solutions of known properties. Various protocols were tested including time before contamination, duration of gel application, washing steps, as well as the concomitant addition or not of dressings. Activity was measured in each decontamination product and in skin. Data indicate that healthy skin was easier to decontaminate than damaged skin. On injured skin, we demonstrated an increased decontamination efficacy of the Ca-DTPA gel formulation as compared to the solution. Importantly, gel application alone was effective, and further gel applications could be used for residual activity.
Collapse
Affiliation(s)
- Anne Van der Meeren
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France
| | - Karine Devilliers
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France
| | - Nina Griffiths
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France
| | | | - Martine Defrance
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France
| | - Gaëtan Ducouret
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France
- Pharmacie Centrale des Armées, Fleury les Aubrais, France
| | | | - Pierre Laroche
- Direction of Health, Security, Environment & Radioprotection, Orano, Châtillon, France
| | | |
Collapse
|
2
|
Tarantini A, Jamet-Anselme E, Lam S, Haute V, Suhard D, Valle N, Chamel-Mossuz V, Bouvier-Capely C, Phan G. Ex vivo skin diffusion and decontamination studies of titanium dioxide nanoparticles. Toxicol In Vitro 2024; 101:105918. [PMID: 39142447 DOI: 10.1016/j.tiv.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
This study aims to adapt an experimental model based on Franz diffusion cells and porcine skin explants to characterize the diffusion of TiO2 NPs and to compare the efficacy of different cleansing products, soapy water and a calixarene cleansing nanoemulsion compared with pure water, as a function of the time of treatment. While TiO2 NPs tend to form agglomerates in aqueous solutions, a diffusion through healthy skin was confirmed as particles were detected in the receptor fluid of Franz cells using sp-ICP-MS. In the absence of treatment, SIMS images showed the accumulation of TiO2 agglomerates in the stratum corneum, the epidermis, the dermis, and around hair follicles. Decontamination assays showed that the two products tested were comparably effective in limiting Ti penetration, whatever the treatment time. However, only calixarene nanoemulsion was statistically more efficient than water in retaining TiO2 in the donor compartment (>89%), limiting retention inside the skin (<1%) and preventing NP diffusion through the skin (<0.13%) when treatments were initiated 30 min after skin exposure. When decontamination was delayed from 30 min to 6 h, the amount of Ti diffusing and retained in the skin increased. This study demonstrates that TiO2 NPs may diffuse through healthy skin after exposure. Thus, effective decontamination using cleansing products should be carried out as soon as possible.
Collapse
Affiliation(s)
- Adeline Tarantini
- Univ. Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), Grenoble, France
| | | | - Sabine Lam
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiochimie, Spéciation et Imagerie, IBISA-Paradis Platform, Fontenay-aux-Roses, France
| | - Vincent Haute
- Univ. Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), Grenoble, France
| | - David Suhard
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiochimie, Spéciation et Imagerie, IBISA-Paradis Platform, Fontenay-aux-Roses, France
| | - Nathalie Valle
- Luxembourg Institute of Science and Technology, Luxembourg
| | - Véronique Chamel-Mossuz
- Univ. Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), Grenoble, France
| | - Céline Bouvier-Capely
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiochimie, Spéciation et Imagerie, IBISA-Paradis Platform, Fontenay-aux-Roses, France
| | - Guillaume Phan
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiochimie, Spéciation et Imagerie, IBISA-Paradis Platform, Fontenay-aux-Roses, France.
| |
Collapse
|
3
|
Rohilla S, Rohilla A, Narwal S, Dureja H, Bhagwat DP. Global Trends of Cosmeceutical in Nanotechnology: A Review. Pharm Nanotechnol 2023; 11:410-424. [PMID: 37157203 DOI: 10.2174/2211738511666230508161611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 05/10/2023]
Abstract
Nanotechnology suggests different innovative solutions to augment the worth of cosmetic products through the targeted delivery of content that manifests scientific innovation in research and development. Different nanosystems, like liposomes, niosomes, microemulsions, solid lipid nanoparticles, nanoform lipid carriers, nanoemulsions, and nanospheres, are employed in cosmetics. These nanosystems exhibit various innovative cosmetic functions, including site-specific targeting, controlled content release, more stability, improved skin penetration and enhanced entrapment efficiency of loaded compounds. Thus, cosmeceuticals are assumed as the highest-progressing fragment of the personal care industries that have progressed drastically over the years. In recent decades, cosmetic science has widened the origin of its application in different fields. Nanosystems in cosmetics are beneficial in treating different conditions like hyperpigmentation, wrinkles, dandruff, photoaging and hair damage. This review highlights the different nanosystems used in cosmetics for the targeted delivery of loaded content and commercially available formulations. Moreover, this review article has delineated different patented nanocosmetic formulation nanosystems and future aspects of nanocarriers in cosmetics.
Collapse
Affiliation(s)
- Seema Rohilla
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| | - Ankur Rohilla
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Sonia Narwal
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Deepak Prabhakar Bhagwat
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| |
Collapse
|
4
|
Kakadia PG, Conway BR. Nanoemulsions for Enhanced Skin Permeation and Controlled Delivery of Chlorohexidine digluconate. J Microencapsul 2022; 39:110-124. [DOI: 10.1080/02652048.2022.2050318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Pratibha G. Kakadia
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Barbara R. Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
5
|
Griffiths NM, Devilliers K, Laroche P, Van der Meeren A. A Simple, Rapid, Comparative Evaluation of Multiple Products for Decontamination of Actinide-contaminated Rat Skin Ex Vivo. HEALTH PHYSICS 2022; 122:371-382. [PMID: 34966085 DOI: 10.1097/hp.0000000000001506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
ABSTRACT Decontamination of skin is an important medical countermeasure in order to limit potential internal contamination by radionuclides such as actinides. Minimizing skin surface contamination will ultimately prevent internal contamination and subsequent committed effective dose as well as contamination spreading. The decontamination agents tested on a rat skin ex vivo model ranged from water to hydrogel wound dressings. A surfactant-containing cleansing gel and calixarene nanoemulsion with chelation properties demonstrated marked decontamination efficacies as compared with water or the chelator DTPA. Based on efficacy to remove different actinide physicochemical forms from skin, the results demonstrate that all products can remove the more soluble forms, but a further component of emulsifying or tensioactive action is required for less soluble forms. This indicates that for practical purposes, successful decontamination will depend on identification of the actinide element, the physicochemical form, and possibly the solvent. This study offers a simple, quick, cheap, reproducible screening method for efficacy evaluation of multiple products for removal of a variety of contaminants.
Collapse
Affiliation(s)
- Nina M Griffiths
- Laboratory of RadioToxicology, CEA, Paris-Saclay University, Bruyères le Châtel, France
| | - Karine Devilliers
- Laboratory of RadioToxicology, CEA, Paris-Saclay University, Bruyères le Châtel, France
| | - Pierre Laroche
- Direction of Health, Security, Environment & Radioprotection, ORANO, Paris, France
| | - Anne Van der Meeren
- Laboratory of RadioToxicology, CEA, Paris-Saclay University, Bruyères le Châtel, France
| |
Collapse
|
6
|
Skin decontamination procedures against potential hazards substances exposure. Chem Biol Interact 2021; 344:109481. [PMID: 34051209 DOI: 10.1016/j.cbi.2021.109481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Decontamination of unprotected skin areas is crucial to prevent excessive penetration of chemical contaminants after criminal or accidental release. A review of literature studies was performed to identify the available decontamination methods adopted to treat skin contamination after chemical, radiological and metal exposures. In this bibliographic review, an overview of the old and recent works on decontamination procedures followed in case of potential hazards substances contaminations with a comparison between these systems are provided. Almost all data from our 95 selected studies conducted in vitro and in vivo revealed that a rapid skin decontamination process is the most efficient way to reduce the risk of intoxication. The commonly-used or recommended conventional procedures are simple rinsing with water only or soapy water. However, this approach has some limitations because an easy removal by flushing may not be sufficient to decontaminate all chemical deposited on the skin, and skin absorption can be enhanced by the wash-in effect. Other liquid solutions or systems as adsorbent powders, mobilizing agents, chelation therapy are also applied as decontaminants, but till nowadays does not exist a decontamination method which can be adopted in all situations. Therefore, there is an urgent need to develop more efficient and successful decontaminating formulations.
Collapse
|
7
|
Le Guyader G, Do B, Vieillard V, Andrieux K, Paul M. Comparison of the In Vitro and Ex Vivo Permeation of Existing Topical Formulations Used in the Treatment of Facial Angiofibroma and Characterization of the Variations Observed. Pharmaceutics 2020; 12:pharmaceutics12111060. [PMID: 33171735 PMCID: PMC7694993 DOI: 10.3390/pharmaceutics12111060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Rapamycin has been used topically to treat facial angiofibromas associated with tuberous sclerosis for more than a decade. In the absence of a commercial form, a large number of formulations have been clinically tested. However, given the great heterogeneity of these studies, particularly with regard to the response criteria, it was difficult to know the impact and thus to compare the relevance of the formulations used. The objective of this work was therefore to evaluate the link between the diffusion of rapamycin and the physico-chemical characteristics of these different formulations on Strat-M® membranes as well as on human skin using Franz cells. Our results underline the importance of the type of vehicle used (hydrogel > cream > lipophilic ointment), the soluble state of rapamycin and its concentration close to saturation to ensure maximum thermodynamic activity. Thus, this is the first time that a comparative study of the different rapamycin formulations identified in the literature for the management of facial angiofibromas has been carried out using a pharmaceutical and biopharmaceutical approach. It highlights the important parameters to be considered in the development and optimization of topical rapamycin formulations with regard to cutaneous absorption for clinical efficacy.
Collapse
Affiliation(s)
- Guillaume Le Guyader
- Department of Pharmacy, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France; (B.D.); (V.V.); (M.P.)
- Department of Pharmacy, CHI Creteil, F-94010 Créteil, France
- Correspondence: ; Tel.: +33-1498-147-53
| | - Bernard Do
- Department of Pharmacy, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France; (B.D.); (V.V.); (M.P.)
- Department of Pharmacy, Université Paris-Saclay, Matériaux et Santé, 92296 Châtenay-Malabry, France
| | - Victoire Vieillard
- Department of Pharmacy, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France; (B.D.); (V.V.); (M.P.)
| | - Karine Andrieux
- Department of Pharmacy, Université de Paris, CNRS, INSERM, UTCBS, F-75006 Paris, France;
| | - Muriel Paul
- Department of Pharmacy, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France; (B.D.); (V.V.); (M.P.)
- Department of Pharmacy, EpidermE, Université Paris Est Créteil, F-94010 Créteil, France
| |
Collapse
|
8
|
Fasolo D, Pippi B, Meirelles G, Zorzi G, Fuentefria AM, von Poser G, Teixeira HF. Topical delivery of antifungal Brazilian red propolis benzophenones-rich extract by means of cationic lipid nanoemulsions optimized by means of Box-Behnken Design. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Duscher D, Trotsyuk AA, Maan ZN, Kwon SH, Rodrigues M, Engel K, Stern-Buchbinder ZA, Bonham CA, Barrera J, Whittam AJ, Hu MS, Inayathullah M, Rajadas J, Gurtner GC. Optimization of transdermal deferoxamine leads to enhanced efficacy in healing skin wounds. J Control Release 2019; 308:232-239. [PMID: 31299261 DOI: 10.1016/j.jconrel.2019.07.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
Abstract
Chronic wounds remain a significant burden to both the healthcare system and individual patients, indicating an urgent need for new interventions. Deferoxamine (DFO), an iron-chelating agent clinically used to treat iron toxicity, has been shown to reduce oxidative stress and increase hypoxia-inducible factor-1 alpha (HIF-1α) activation, thereby promoting neovascularization and enhancing regeneration in chronic wounds. However due to its short half-life and adverse side effects associated with systemic absorption, there is a pressing need for targeted DFO delivery. We recently published a preclinical proof of concept drug delivery system (TDDS) which showed that transdermally applied DFO is effective in improving chronic wound healing. Here we present an enhanced TDDS (eTDDS) comprised exclusively of FDA-compliant constituents to optimize drug release and expedite clinical translation. We evaluate the eTDDS to the original TDDS and compare this with other commonly used delivery methods including DFO drip-on and polymer spray applications. The eTDDS displayed excellent physicochemical characteristics and markedly improved DFO delivery into human skin when compared to other topical application techniques. We demonstrate an accelerated wound healing response with the eTDDS treatment resulting in significantly increased wound vascularity, dermal thickness, collagen deposition and tensile strength. Together, these findings highlight the immediate clinical potential of DFO eTDDS to treating diabetic wounds. Further, the topical drug delivery platform has important implications for targeted pharmacologic therapy of a wide range of cutaneous diseases.
Collapse
Affiliation(s)
- Dominik Duscher
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Artem A Trotsyuk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zeshaan N Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sun Hyung Kwon
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melanie Rodrigues
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karl Engel
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zachary A Stern-Buchbinder
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clark A Bonham
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos Barrera
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander J Whittam
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Chanton P. Chelating properties of the calixarene carboxylic. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191406008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Compared in vivo efficiency of nanoemulsions unloaded and loaded with calixarene and soapy water in the treatment of superficial wounds contaminated by uranium. Chem Biol Interact 2017; 267:33-39. [PMID: 27913138 DOI: 10.1016/j.cbi.2016.11.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 11/23/2022]
Abstract
No emergency decontamination treatment is currently available in the case of radiological skin contamination by uranium compounds. First responders in the workplace or during an industrial nuclear accident must be able to treat internal contamination through skin. For this purpose, a calixarene nanoemulsion was developed for the treatment of intact skin or superficial wounds contaminated by uranium, and the decontamination efficiency of this nanoemulsion was investigated in vitro and ex vivo. The present work addresses the in vivo decontamination efficiency of this nanoemulsion, using a rat model. This efficiency is compared to the radio-decontaminant soapy water currently used in France (Trait rouge®) in the workplace. The results showed that both calixarene-loaded nanoemulsion and non-loaded nanoemulsion allowed a significant decontamination efficiency compared to the treatment with soapy water. Early application of the nanoemulsions on contaminated excoriated rat skin allowed decreasing the uranium content by around 85% in femurs, 95% in kidneys and 93% in urines. For skin wounded by microneedles, mimicking wounds by microstings, nanoemulsions allowed approximately a 94% decrease in the uranium retention in kidneys. However, specific chelation of uranium by calixarene molecules within the nanoemulsion was not statistically significant, probably because of the limited calixarene-to-uranium molar ratio in these experiment conditions. Moreover, these studies showed that the soapy water treatment potentiates the transcutaneous passage of uranium, thus making it bioavailable, in particular when the skin is superficially wounded.
Collapse
|
12
|
Tazrart A, Bolzinger MA, Moureau A, Molina T, Coudert S, Angulo JF, Briancon S, Griffiths NM. Penetration and decontamination of americium-241 ex vivo using fresh and frozen pig skin. Chem Biol Interact 2016; 267:40-47. [PMID: 27234047 DOI: 10.1016/j.cbi.2016.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/21/2016] [Accepted: 05/20/2016] [Indexed: 12/12/2022]
Abstract
Skin contamination is one of the most probable risks following major nuclear or radiological incidents. However, accidents involving skin contamination with radionuclides may occur in the nuclear industry, in research laboratories and in nuclear medicine departments. This work aims to measure the penetration of the radiological contaminant Americium (241Am) in fresh and frozen skin and to evaluate the distribution of the contamination in the skin. Decontamination tests were performed using water, Fuller's earth and diethylene triamine pentaacetic acid (DTPA), which is the recommended treatment in case of skin contamination with actinides such as plutonium or americium. To assess these parameters, we used the Franz cell diffusion system with full-thickness skin obtained from pigs' ears, representative of human skin. Solutions of 241Am were deposited on the skin samples. The radioactivity content in each compartment and skin layers was measured after 24 h by liquid scintillation counting and alpha spectrophotometry. The Am cutaneous penetration to the receiver compartment is almost negligible in fresh and frozen skin. Multiple washings with water and DTPA recovered about 90% of the initial activity. The rest remains fixed mainly in the stratum corneum. Traces of activity were detected within the epidermis and dermis which is fixed and not accessible to the decontamination.
Collapse
Affiliation(s)
- A Tazrart
- Laboratoire de RadioToxicologie, CEA/DRF/iRCM, Bruyères le Châtel, Arpajon, France; Université de Lyon, F-69008, Lyon, France; Laboratoire de Dermopharmacie et Cosmétologie, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR CNRS 5007, 8, Avenue Rockefeller, 69373 Lyon Cedex 08, France
| | - M A Bolzinger
- Université de Lyon, F-69008, Lyon, France; Laboratoire de Dermopharmacie et Cosmétologie, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR CNRS 5007, 8, Avenue Rockefeller, 69373 Lyon Cedex 08, France
| | - A Moureau
- Laboratoire de RadioToxicologie, CEA/DRF/iRCM, Bruyères le Châtel, Arpajon, France
| | - T Molina
- Laboratoire de RadioToxicologie, CEA/DRF/iRCM, Bruyères le Châtel, Arpajon, France
| | - S Coudert
- Laboratoire de RadioToxicologie, CEA/DRF/iRCM, Bruyères le Châtel, Arpajon, France
| | - J F Angulo
- Laboratoire de RadioToxicologie, CEA/DRF/iRCM, Bruyères le Châtel, Arpajon, France
| | - S Briancon
- Université de Lyon, F-69008, Lyon, France; Laboratoire de Dermopharmacie et Cosmétologie, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR CNRS 5007, 8, Avenue Rockefeller, 69373 Lyon Cedex 08, France
| | - N M Griffiths
- Laboratoire de RadioToxicologie, CEA/DRF/iRCM, Bruyères le Châtel, Arpajon, France.
| |
Collapse
|
13
|
Fattal E, Tsapis N, Phan G. Novel drug delivery systems for actinides (uranium and plutonium) decontamination agents. Adv Drug Deliv Rev 2015; 90:40-54. [PMID: 26144994 DOI: 10.1016/j.addr.2015.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/17/2022]
Abstract
The possibility of accidents in the nuclear industry or of nuclear terrorist attacks makes the development of new decontamination strategies crucial. Among radionuclides, actinides such as uranium and plutonium and their different isotopes are considered as the most dangerous contaminants, plutonium displaying mostly a radiological toxicity whereas uranium exhibits mainly a chemical toxicity. Contamination occurs through ingestion, skin or lung exposure with subsequent absorption and distribution of the radionuclides to different tissues where they induce damaging effects. Different chelating agents have been synthesized but their efficacy is limited by their low tissue specificity and high toxicity. For these reasons, several groups have developed smart delivery systems to increase the local concentration of the chelating agent or to improve its biodistribution. The aim of this review is to highlight these strategies.
Collapse
|
14
|
Grives S, Phan G, Morat G, Suhard D, Rebiere F, Fattal E. Ex Vivo Uranium Decontamination Efficiency on Wounded Skin and In Vitro Skin Toxicity of a Calixarene-Loaded Nanoemulsion. J Pharm Sci 2015; 104:2008-2017. [DOI: 10.1002/jps.24431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/16/2015] [Accepted: 03/03/2015] [Indexed: 11/09/2022]
|
15
|
Antiherpes Activity and Skin/Mucosa Distribution of Flavonoids from Achyrocline satureioides Extract Incorporated into Topical Nanoemulsions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:238010. [PMID: 26101767 PMCID: PMC4458523 DOI: 10.1155/2015/238010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/11/2015] [Accepted: 03/23/2015] [Indexed: 11/18/2022]
Abstract
This study investigated the inhibitory effects of Achyrocline satureioides extract (ASE) incorporated into a topical nanoemulsion on Herpes Simplex Virus type 1 (HSV-1/KOS strain) replication, as well as the distribution of the main ASE flavonoids (quercetin, luteolin, and 3-O-methylquercetin) in porcine skin and mucosa. The ASE-loaded nanoemulsion showed more pronounced effects against HSV-1 replication when compared to the ASE or pure quercetin, as determined by the viral plaque number reduction assay. All flavonoids were detected in the skin epidermis (2.2 µg/cm(2)) and the mucosa upper layers (3.0 µg/cm(2)) from ASE-loaded nanoemulsion until 8 h after topical application. A higher amount of flavonoids was detected when these tissues were impaired, especially in deeper mucosa layers (up to 7-fold). Flavonoids were detected in the receptor fluid only when the mucosa was injured. Such results were supported by confocal microscopy images. Overall, these findings suggest that the tested ASE-loaded nanoemulsion has potential to be used topically for herpes infections.
Collapse
|
16
|
Abstract
The study of a drug's dermal penetration profile provides important pharmaceutical data for the rational development of topical and transdermal delivery systems because the skin is a broadly used delivery route for local and systemic drugs and a potential route for gene therapy and vaccines. Monitoring drug penetration across the skin and quantifying its levels in different skin layers have been constant challenges due to the detection limitations of the available techniques, as well as the inherent interference in this tissue. This review explores and discusses several bionalytical methods that are indispensable tools to study drugs across the skin. In addressing the main topic, we structure the review highlighting the skin as an important route of drug administration and its structure, skin membrane models most used and its properties, in vitro and in vivo assays most used in the study of drug delivery to the skin, the techniques for processing the skin for subsequent analysis by bioanalytical methods that have a theoretical and practical approach showing its applicability, limitations and also including examples of its use. This review has a comprehensive approach in order to help researchers design their experiments and update the applicability and advances in this area of expertise.
Collapse
|
17
|
Wilson J, Zuniga MC, Yazzie F, Stearns DM. Synergistic cytotoxicity and DNA strand breaks in cells and plasmid DNA exposed to uranyl acetate and ultraviolet radiation. J Appl Toxicol 2014; 35:338-49. [PMID: 24832689 DOI: 10.1002/jat.3015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 11/08/2022]
Abstract
Depleted uranium (DU) has a chemical toxicity that is independent of its radioactivity. The purpose of this study was to explore the photoactivation of uranyl ion by ultraviolet (UV) radiation as a chemical mechanism of uranium genotoxicity. The ability of UVB (302 nm) and UVA (368 nm) radiation to photoactivate uranyl ion to produce single strand breaks was measured in pBR322 plasmid DNA, and the presence of adducts and apurinic/apyrimidinic sites that could be converted to single strand breaks by heat and piperidine was analyzed. Results showed that DNA lesions in plasmid DNA exposed to UVB- or UVA-activated DU were only slightly heat reactive, but were piperidine sensitive. The cytotoxicity of UVB-activated uranyl ion was measured in repair-proficient and repair-deficient Chinese hamster ovary cells and human keratinocyte HaCaT cells. The cytotoxicity of co-exposures of uranyl ion and UVB radiation was dependent on the order of exposure and was greater than co-exposures of arsenite and UVB radiation. Uranyl ion and UVB radiation were synergistically cytotoxic in cells, and cells exposed to photoactivated DU required different DNA repair pathways than cells exposed to non-photoactivated DU. This study contributes to our understanding of the DNA lesions formed by DU, as well as their repair. Results suggest that excitation of uranyl ion by UV radiation can provide a pathway for uranyl ion to be chemically genotoxic in populations with dermal exposures to uranium and UV radiation, which would make skin an overlooked target organ for uranium exposures.
Collapse
Affiliation(s)
- Janice Wilson
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | | |
Collapse
|
18
|
Phan G, Semili N, Bouvier-Capely C, Landon G, Mekhloufi G, Huang N, Rebière F, Agarande M, Fattal E. Calixarene cleansing formulation for uranium skin contamination. HEALTH PHYSICS 2013; 105:382-389. [PMID: 23982616 DOI: 10.1097/hp.0b013e318298e8d3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An oil-in-water cleansing emulsion containing calixarene molecule, an actinide specific chelating agent, was formulated in order to improve the decontamination of uranium from the skin. Commonly commercialized cosmetic ingredients such as surfactants, mineral oil, or viscosifying agents were used in preparing the calixarene emulsion. The formulation was characterized in terms of size and apparent viscosity measurements and then was tested for its ability to limit uranyl ion permeation through excoriated pig-ear skin explants in 24-h penetration studies. Calixarene emulsion effectiveness was compared with two other reference treatments consisting of DTPA and EHBP solutions. Application of calixarene emulsion induced the highest decontamination effect with an 87% decrease in uranium diffusion flux. By contrast, EHBP and DTPA solutions only allowed a 50% and 55% reduction of uranium permeation, respectively, and had the same effect as a simple dilution of the contamination by pure water. Uranium diffusion decrease was attributed to uranyl ion-specific chelation by calixarene within the formulation, since no significant effect was obtained after application of the same emulsion without calixarene. Thus, calixarene cleansing emulsion could be considered as a promising treatment in case of accidental contamination of the skin by highly diffusible uranium compounds.
Collapse
Affiliation(s)
- Guillaume Phan
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SDI, LRC, Fontenay-aux-Roses, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Belhomme-Henry C, Phan G, Huang N, Bouvier C, Rebière F, Agarande M, Fattal E. Texturing formulations for uranium skin decontamination. Pharm Dev Technol 2013; 19:692-701. [PMID: 23937529 DOI: 10.3109/10837450.2013.823991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Since no specific treatment exists in case of cutaneous contamination by radionuclides such as uranium, a nanoemulsion comprising calixarene molecules, known for their good chelation properties, was previously designed. However, this fluid topical form may be not suitable for optimal application on the skin or wounds. OBJECTIVE To develop a texturing pharmaceutical form for the treatment of wounded skins contaminated by uranium. MATERIALS AND METHODS The formulations consisted in oil-in-water (O/W) nanoemulsions, loaded with calixarene molecules. The external phase of the initial liquid nanoemulsion was modified with a combination of thermosensitive gelifying polymers: Poloxamer and HydroxyPropylMethylcellulose (HPMC) or methylcellulose (MC). These new formulations were characterized then tested by ex vivo experiments on Franz cells to prevent uranyl ions diffusion through excoriated pig ear skin explants. RESULTS Despite strong changes in rheological properties, the physico-chemical characteristics of the new nanoemulsions, such as the size and the zeta potential as well as macroscopic aspect were preserved. In addition, on wounded skin, diffusion of uranyl ions, measured by ICP-MS, was limited to less than 5% for both HPMC and MC nanoemulsions. CONCLUSIONS These results demonstrated that a hybrid formulation of nanoemulsion in hydrogel is efficient to treat uranium skin contamination.
Collapse
|
20
|
Wu Y, Li YH, Gao XH, Chen HD. The application of nanoemulsion in dermatology: an overview. J Drug Target 2013; 21:321-7. [DOI: 10.3109/1061186x.2013.765442] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Shakeel F, Shafiq S, Haq N, Alanazi FK, Alsarra IA. Nanoemulsions as potential vehicles for transdermal and dermal delivery of hydrophobic compounds: an overview. Expert Opin Drug Deliv 2012; 9:953-74. [PMID: 22703228 DOI: 10.1517/17425247.2012.696605] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
George SA, Whittaker AM, Stearns DM. Photoactivated uranyl ion produces single strand breaks in plasmid DNA. Chem Res Toxicol 2011; 24:1830-2. [PMID: 22013951 DOI: 10.1021/tx200410x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uranium is an important emerging toxicant whose use has outpaced the rate at which we are learning about its health effects. One unexplored pathway for uranium toxicity involves the photoactivation of uranyl ion by UV light to produce U(5+) and oxygen radicals. The purpose of this study was to provide proof of principle data by testing the hypothesis that coexposures of DNA to uranyl acetate and UVB irradiation should produce more DNA strand breaks than individual exposures. Results supported the hypothesis and suggest that investigations of uranium toxicity be expanded to include skin as a potential target organ for carcinogenesis, especially in populations with high uranium and high UV radiation exposures.
Collapse
Affiliation(s)
- Shannon A George
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | | | | |
Collapse
|