1
|
Sleziona D, Ely DR, Thommes M. Mechanisms of drug release from a melt-milled, poorly soluble drug substance. J Pharm Sci 2024:S0022-3549(24)00451-9. [PMID: 39426564 DOI: 10.1016/j.xphs.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Increasing the dissolution kinetics of low aqueous soluble drugs is one of the main priorities in drug formulation. New strategies must be developed, which should consider the two main dissolution mechanisms: surface reaction and diffusion. One promising tool is the so-called solid crystal suspension, a solid dispersion consisting of purely crystalline substances. In this concept, reducing the drug particle size and embedding the particles in a hydrophilic excipient increases the dissolution kinetics. Therefore, a solid crystal suspension containing submicron drug particles was produced via a modified stirred media milling process. A geometrical phase-field approach was used to model the dissolution behavior of the drug particles. A carrier material, xylitol, and the model drug substance, griseofulvin, were ground in a pearl mill. The in-vitro dissolution profile of the product was modeled to gain a deep physical understanding of the dissolution process. The used numerical tool has the potential to be a valuable approach for predicting the dissolution behavior of newly developed formulation strategies.
Collapse
Affiliation(s)
- Dominik Sleziona
- TU Dortmund, Department of Biochemical and Chemical Engineering, Laboratory of Solids Process Engineering, Emil-Figge-Str. 68, 44227 Dortmund, Germany
| | - David R Ely
- Ivy Tech Community College, 3101 S Creasy Ln, Lafayette, IN 47905, USA
| | - Markus Thommes
- TU Dortmund, Department of Biochemical and Chemical Engineering, Laboratory of Solids Process Engineering, Emil-Figge-Str. 68, 44227 Dortmund, Germany.
| |
Collapse
|
2
|
Jeong JH, Kim JS, Choi YR, Shin DH, Kang JH, Kim DW, Park YS, Park CW. Preparation and Evaluation of Inhalable Microparticles with Improved Aerodynamic Performance and Dispersibility Using L-Leucine and Hot-Melt Extrusion. Pharmaceutics 2024; 16:784. [PMID: 38931905 PMCID: PMC11206964 DOI: 10.3390/pharmaceutics16060784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Dry-powder inhalers (DPIs) are valued for their stability but formulating them is challenging due to powder aggregation and limited flowability, which affects drug delivery and uniformity. In this study, the incorporation of L-leucine (LEU) into hot-melt extrusion (HME) was proposed to enhance dispersibility while simultaneously maintaining the high aerodynamic performance of inhalable microparticles. This study explored using LEU in HME to improve dispersibility and maintain the high aerodynamic performance of inhalable microparticles. Formulations with crystalline itraconazole (ITZ) and LEU were made via co-jet milling and HME followed by jet milling. The LEU ratio varied, comparing solubility, homogenization, and aerodynamic performance enhancements. In HME, ITZ solubility increased, and crystallinity decreased. Higher LEU ratios in HME formulations reduced the contact angle, enhancing mass median aerodynamic diameter (MMAD) size and aerodynamic performance synergistically. Achieving a maximum extra fine particle fraction of 33.68 ± 1.31% enabled stable deep lung delivery. This study shows that HME combined with LEU effectively produces inhalable particles, which is promising for improved drug dispersion and delivery.
Collapse
Affiliation(s)
- Jin-Hyuk Jeong
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| | - Ji-Su Kim
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| | - Yu-Rim Choi
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| | - Dae Hwan Shin
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| | - Ji-Hyun Kang
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
- Institute of New Drug Development and Respiratory Drug Development Research Institute, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Yun-Sang Park
- Research & Development Center, P2K Bio, Cheongju 28160, Republic of Korea;
| | - Chun-Woong Park
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| |
Collapse
|
3
|
Navti PD, Fernandes G, Soman S, Nikam AN, Kulkarni S, Birangal SR, Dhas N, Shenoy GG, Rao V, Koteshwara KB, Mutalik S. Co-rotating twin screw process for continuous manufacturing of solid crystal suspension: A promising strategy to enhance the solubility, permeation and oral bioavailability of Carvedilol. F1000Res 2024; 12:1438. [PMID: 38778814 PMCID: PMC11109692 DOI: 10.12688/f1000research.139228.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Background In the current work, co-rotating twin-screw processor (TSP) was utilized to formulate solid crystal suspension (SCS) of carvedilol (CAR) for enhancing its solubility, dissolution rate, permeation and bioavailability using mannitol as a hydrophilic carrier. Methods In-silico molecular dynamics (MD) studies were done to simulate the interaction of CAR with mannitol at different kneading zone temperatures (KZT). Based on these studies, the optimal CAR: mannitol ratios and the kneading zone temperatures for CAR solubility enhancement were assessed. The CAR-SCS was optimized utilizing Design-of-Experiments (DoE) methodology using the Box-Behnken design. Saturation solubility studies and in vitro dissolution studies were performed for all the formulations. Physicochemical characterization was performed using differential scanning calorimetry , Fourier transform infrared spectroscopy, X-ray diffraction studies, and Raman spectroscopy analysis. Ex vivo permeation studies and in vivo pharmacokinetic studies for the CAR-SCS were performed. Stability studies were performed for the DoE-optimized CAR-SCS at accelerated stability conditions at 40 ºC/ 75% RH for three months. Results Experimentally, the formulation with CAR: mannitol ratio of 20:80, prepared using a KZT of 120 ºC at 100 rpm screw speed showed the highest solubility enhancement accounting for 50-fold compared to the plain CAR. Physicochemical characterization confirmed the crystalline state of DoE-optimized CAR-SCS. In-vitro dissolution studies indicated a 6.03-fold and 3.40-fold enhancement in the dissolution rate of optimized CAR-SCS in pH 1.2 HCl solution and phosphate buffer pH 6.8, respectively, as compared to the pure CAR. The enhanced efficacy of the optimized CAR-SCS was indicated in the ex vivo and in vivo pharmacokinetic studies wherein the apparent permeability was enhanced 1.84-fold and bioavailability enhanced 1.50-folds compared to the plain CAR. The stability studies showed good stability concerning the drug content. Conclusions TSP technology could be utilized to enhance the solubility, bioavailability and permeation of poor soluble CAR by preparing the SCS.
Collapse
Affiliation(s)
- Prerana D. Navti
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ajinkya N. Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sumit R Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gautham G. Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vinay Rao
- STEERLife, Steer Engineering Pvt Ltd, No. 290, 4th Main Road, Ganapathy Nagar, Phase 3, Peenya Industrial Area, Peenya, Bengalore, Karnataka, 560058, India
| | - Kunnatur Balasundara Koteshwara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
4
|
Justen A, Schaldach G, Thommes M. Insights into the Mechanism of Enhanced Dissolution in Solid Crystalline Formulations. Pharmaceutics 2024; 16:510. [PMID: 38675170 PMCID: PMC11054551 DOI: 10.3390/pharmaceutics16040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Solid dispersions are a promising approach to enhance the dissolution of poorly water-soluble drugs. Solid crystalline formulations show a fast drug dissolution and a high thermodynamic stability. To understand the mechanisms leading to the faster dissolution of solid crystalline formulations, physical mixtures of the poorly soluble drugs celecoxib, naproxen and phenytoin were investigated in the flow through cell (apparatus 4). The effect of drug load, hydrodynamics in the flow through cell and particle size reduction in co-milled physical mixtures were studied. A carrier- and drug-enabled dissolution could be distinguished. Below a certain drug load, the limit of drug load, carrier-enabled dissolution occurred, and above this value, the drug defined the dissolution rate. For a carrier-enabled behavior, the dissolution kinetics can be divided into a first fast phase, a second slow phase and a transition phase in between. This study contributes to the understanding of the dissolution mechanism in solid crystalline formulations and is thereby valuable for the process and formulation development.
Collapse
Affiliation(s)
| | | | - Markus Thommes
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, Technical University Dortmund, Emil-Figge-Straße 68, 44227 Dortmund, Germany; (A.J.)
| |
Collapse
|
5
|
Patil H, Vemula SK, Narala S, Lakkala P, Munnangi SR, Narala N, Jara MO, Williams RO, Terefe H, Repka MA. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation-Where Are We Now? AAPS PharmSciTech 2024; 25:37. [PMID: 38355916 DOI: 10.1208/s12249-024-02749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.
Collapse
Affiliation(s)
- Hemlata Patil
- Department of Product Development, Catalent Pharma Solutions, 14 Schoolhouse Road, Somerset, New Jersey, 08873, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Miguel O Jara
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas, 78712, USA
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas, 78712, USA
| | - Hibreniguss Terefe
- Department of Product Development, Catalent Pharma Solutions, 14 Schoolhouse Road, Somerset, New Jersey, 08873, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Oxford, Mississippi, 38677, USA.
| |
Collapse
|
6
|
Nyamba I, Jennotte O, Sombie CB, Lechanteur A, Sacre PY, Djande A, Semde R, Evrard B. Preformulation study for the selection of a suitable polymer for the development of ellagic acid-based solid dispersion using hot-melt extrusion. Int J Pharm 2023:123088. [PMID: 37257795 DOI: 10.1016/j.ijpharm.2023.123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Ellagic acid is one of the most studied polyphenolic compounds due to its numerous promising therapeutic properties. However, this therapeutic potential remains difficult to exploit owing to its low solubility and low permeability, resulting in low oral bioavailability. In order to allow an effective therapeutic application of EA, it is therefore necessary to develop strategies that sufficiently enhance its solubility, dissolution rate and bioavailability. For this purpose, solid dispersions based on pre-selected polymers such as Eudragit® EPO, Soluplus® and Kollidon® VA 64, with 5% w/w ellagic acid loading were prepared by hot extrusion and characterized by X-ray diffraction, FTIR spectroscopy and in vitro dissolution tests in order to select the most suitable polymer for future investigations. The results showed that Eudragit® EPO was the most promising polymer for ellagic acid solid dispersions development because its extrudates allowed to obtain a solution supersaturated in ellagic acid that was stable for at least 90 min. Moreover, the resulting apparent solubility was 20 times higher than the actual solubility of ellagic acid. The extrudates also showed a high dissolution rate of ellagic acid (96.25% in 15 min), compared to the corresponding physical mixture (6.52% in 15 min) or the pure drug (1.56% in 15 min). Furthermore, increasing the loading rate of ellagic acid up to 12% in extrudates based on this polymer did not negatively influence its release profile through dissolution tests.
Collapse
Affiliation(s)
- Isaïe Nyamba
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium); Laboratory of Drug Development, Center of training, research and expertise in pharmaceutical sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso).
| | - Olivier Jennotte
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium)
| | - Charles B Sombie
- Laboratory of Drug Development, Center of training, research and expertise in pharmaceutical sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso)
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium)
| | - Pierre-Yves Sacre
- Laboratory of Pharmaceutical Analytical Chemistry, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| | - Abdoulaye Djande
- Department of Chemistry, Laboratory of Molecular Chemistry and Materials, Research Team: Organic Chemistry and Phytochemistry, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso)
| | - Rasmané Semde
- Laboratory of Drug Development, Center of training, research and expertise in pharmaceutical sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso)
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium)
| |
Collapse
|
7
|
Almutairi M, Srinivasan P, Zhang P, Austin F, Butreddy A, Alharbi M, Bandari S, Ashour EA, Repka MA. Hot-Melt Extrusion Coupled with Pressurized Carbon Dioxide for Enhanced Processability of Pharmaceutical Polymers and Drug Delivery Applications – An Integrated Review. Int J Pharm 2022; 629:122291. [DOI: 10.1016/j.ijpharm.2022.122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
|
8
|
Ren J, Mao S, Lin J, Xu Y, Zhu Q, Xu N. Research Progress of Raman Spectroscopy and Raman Imaging in Pharmaceutical Analysis. Curr Pharm Des 2022; 28:1445-1456. [PMID: 35593344 DOI: 10.2174/1381612828666220518145635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
The analytical investigation of the pharmaceutical process monitors the critical process parameters of the drug, beginning from its development until marketing and postmarketing, and appropriate corrective action can be taken to change the pharmaceutical design at any stage of the process. Advanced analytical methods, such as Raman spectroscopy, are particularly suitable for use in the field of drug analysis, especially for qualitative and quantitative work, due to the advantages of simple sample preparation, fast, nondestructive analysis speed, and effective avoidance of moisture interference. Advanced Raman imaging techniques have gradually become a powerful alternative method for monitoring changes in polymorph distribution and active pharmaceutical ingredient distribution in drug processing and pharmacokinetics. Surface-enhanced Raman spectroscopy (SERS) has also solved the inherent insensitivity and fluorescence problems of Raman, which has made good progress in the field of illegal drug analysis. This review summarizes the application of Raman spectroscopy and imaging technology, which are used in the qualitative and quantitative analysis of solid tablets, quality control of the production process, drug crystal analysis, illegal drug analysis, and monitoring of drug dissolution and release in the field of drug analysis in recent years.
Collapse
Affiliation(s)
- Jie Ren
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People\'s Republic of China
| | - Shijie Mao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People\'s Republic of China
| | - Jidong Lin
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People\'s Republic of China
| | - Ying Xu
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People\'s Republic of China
| | - Qiaoqiao Zhu
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People\'s Republic of China
| | - Ning Xu
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People\'s Republic of China
| |
Collapse
|
9
|
Simões MF, Pinto RMA, Simões S. Hot-Melt Extrusion: a Roadmap for Product Development. AAPS PharmSciTech 2021; 22:184. [PMID: 34142250 DOI: 10.1208/s12249-021-02017-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Hot-melt extrusion has found extensive application as a feasible pharmaceutical technological option over recent years. HME applications include solubility enhancement, taste masking, and sustained drug release. As bioavailability enhancement is a hot topic of today's science, one of the main applications of HME is centered on amorphous solid dispersions. This review describes the most significant aspects of HME technology and its use to prepare solid dispersions as a drug formulation strategy to enhance the solubility of poorly soluble drugs. It also addresses molecular and thermodynamic features critical for the physicochemical properties of these systems, mainly in what concerns miscibility and physical stability. Moreover, the importance of applying the Quality by Design philosophy in drug development is also discussed, as well as process analytical technologies in pharmaceutical HME monitoring, under the current standards of product development and regulatory guidance. Graphical Abstract.
Collapse
|
10
|
Kenechukwu FC, Dias ML, Ricci-Júnior E. Biodegradable nanoparticles from prosopisylated cellulose as a platform for enhanced oral bioavailability of poorly water-soluble drugs. Carbohydr Polym 2021; 256:117492. [PMID: 33483021 DOI: 10.1016/j.carbpol.2020.117492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/18/2022]
Abstract
Bio-inspired nanotechnology-based strategies are potential platforms for enhanced dissolution and oral biovailability of poorly water-soluble drugs. In this study, a recently patented green biopolymer (Prosopis africana gum, PG) was compatibilized with microcrystalline cellulose (MCC), a conventional polysaccharide, via thermo-regulated coacervation to obtain PG-MCC (1:0, 1:1, 1:2, 2:1, and 0:1) rational blends and the nanoparticles developed with optimized (1:1) biocomposites (termed "prosopisylated cellulose") by combined homogenization-nanoprecipitation technique was engineered as a high circulating system for improved oral bioavailability of griseofulvin (GF), a model Biopharmaceutics Classification System (BCS) Class-II drug. The effects of biopolymer interaction on morphological and microstructural properties of drug-free biocomposites obtained were investigated by Fourier transform infra-red spectroscopy, scanning electron microscopy and x-ray diffractometry, while the physicochemical properties and in-vivo pharmacokinetics of GF-loaded nanoparticles were also ascertained. Optimized biocomposites revealed inter-molecular and intra-molecular hydrogen bonding between the hydroxyl group of MCC and polar components of PG, as well as reduction in crystallinity of MCC. Griseofulvin-loaded nanoparticles were stable, displayed particles with relatively smooth surfaces and average size of 26.18 ± 0.94 . nm, with zeta potential and polydispersity index of 32.1 ± 0.57 mV and 0.173 ± 0.06, respectively. Additionally, the nanoparticles showed good entrapment efficiency (86.51 ± 0.93 %), and marked improvement in griseofulvin dissolution when compared to free drug, with significantly (p < 0.05) higher GF release in basic than acidic PEG-reinforced simulated bio-microenvironments. Besides, x-ray diffractogram of GF-loaded nanoparticles showed amorphization with few characteristic peaks of GF while infra-red spectrum indicated broader principal peaks of GF and components compatibility. Furthermore, GF-loaded nanoparticles showed low plasma clearance with three-fold increase in systemic bioavailability of griseofulvin compared with free drug. These results showed that prosopisylated cellulose nanoparticles would be a facile approach to improve oral bioavailability of BCS class-II drugs and can be pursued as a new versatile drug delivery platform.
Collapse
Affiliation(s)
- Franklin Chimaobi Kenechukwu
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Instituto de Macromoléculas Professora Eloisa Mano (IMA), Programa de Ciencia e Tecnologia de Polimeros, Centro de Tecnologia, Universidade Federal do Rio de Janeiro (UFRJ), Brazil.
| | - Marcos Lopes Dias
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Programa de Ciencia e Tecnologia de Polimeros, Centro de Tecnologia, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Eduardo Ricci-Júnior
- Nanomedicines Unit, Facultade de Pharmacia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, Brazil
| |
Collapse
|
11
|
Butreddy A, Bandari S, Repka MA. Quality-by-design in hot melt extrusion based amorphous solid dispersions: An industrial perspective on product development. Eur J Pharm Sci 2021; 158:105655. [PMID: 33253883 PMCID: PMC7855693 DOI: 10.1016/j.ejps.2020.105655] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
An industrially feasible approach to overcome the solubility and bioavailability limitations of poorly soluble active pharmaceutical ingredients is the development of amorphous solid dispersions (ASDs) using hot-melt extrusion (HME) technique. The application of Quality by Design (QbD) had a profound impact on the development of HME-based ASDs. The formulation and process optimization of ASDs manufactured via HME techniques require an understanding of critical quality attributes, critical material attributes, critical process parameters, risk assessment tools, and experimental designs. The knowledge gained from each of these QbD elements helps ensure the consistency of product quality. The selection and implementation of appropriate Design of Experiments (DoE) methodology to screen and optimize the formulation and process variables remain a major challenge. This review provides a comprehensive overview on QbD concepts in HME-based ASDs with an emphasis on DoE methodologies. Further, the information provided in this review can assist researchers in selecting a suitable design with optimal experimental conditions. Specifically, this review has focused on the prediction of drug-polymer miscibility, the elements and sequence of QbD, and various screening and optimization designs, to provide insights into the formulation and process variables that are encountered routinely in the production of HME-based ASDs.
Collapse
Affiliation(s)
- Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
12
|
Development of Maltodextrin-Based Immediate-Release Tablets Using an Integrated Twin-Screw Hot-Melt Extrusion and Injection-Molding Continuous Manufacturing Process. J Pharm Sci 2017; 106:3328-3336. [DOI: 10.1016/j.xphs.2017.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/31/2017] [Accepted: 06/19/2017] [Indexed: 01/03/2023]
|
13
|
Development of fine solid-crystal suspension with enhanced solubility, stability, and aerosolization performance for dry powder inhalation. Int J Pharm 2017; 533:84-92. [PMID: 28903066 DOI: 10.1016/j.ijpharm.2017.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/15/2017] [Accepted: 09/09/2017] [Indexed: 02/08/2023]
|
14
|
Arnfast L, Kamruzzaman M, Löbmann K, Aho J, Baldursdottir S, Rades T, Rantanen J. Melt Extrusion of High-Dose Co-Amorphous Drug-Drug Combinations : Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li. Pharm Res 2017; 34:2689-2697. [PMID: 28929263 DOI: 10.1007/s11095-017-2254-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/29/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE Many future drug products will be based on innovative manufacturing solutions, which will increase the need for a thorough understanding of the interplay between drug material properties and processability. In this study, hot melt extrusion of a drug-drug mixture with minimal amount of polymeric excipient was investigated. METHODS Using indomethacin-cimetidine as a model drug-drug system, processability of physical mixtures with and without 5% (w/w) of polyethylene oxide (PEO) were studied using Differential Scanning Calorimetry (DSC) and Small Amplitude Oscillatory Shear (SAOS) rheometry. Extrudates containing a co-amorphous glass solution were produced and the solid-state composition of these was studied with DSC. RESULTS Rheological analysis indicated that the studied systems display viscosities higher than expected for small molecule melts and addition of PEO decreased the viscosity of the melt. Extrudates of indomethacin-cimetidine alone displayed amorphous-amorphous phase separation after 4 weeks of storage, whereas no phase separation was observed during the 16 week storage of the indomethacin-cimetidine extrudates containing 5% (w/w) PEO. CONCLUSIONS Melt extrusion of co-amorphous extrudates with low amounts of polymer was found to be a feasible manufacturing technique. Addition of 5% (w/w) polymer reduced melt viscosity and prevented phase separation.
Collapse
Affiliation(s)
- Lærke Arnfast
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, -2100, Copenhagen, DK, Denmark
| | - Md Kamruzzaman
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, -2100, Copenhagen, DK, Denmark
| | - Korbinian Löbmann
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, -2100, Copenhagen, DK, Denmark
| | - Johanna Aho
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, -2100, Copenhagen, DK, Denmark
| | - Stefania Baldursdottir
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, -2100, Copenhagen, DK, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, -2100, Copenhagen, DK, Denmark.,Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20521, Turku, Finland
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, -2100, Copenhagen, DK, Denmark.
| |
Collapse
|
15
|
García-Herrero V, Torrado C, García-Rodríguez JJ, López-Sánchez A, Torrado S, Torrado-Santiago S. Improvement of the surface hydrophilic properties of naproxen particles with addition of hydroxypropylmethyl cellulose and sodium dodecyl sulphate: In vitro and in vivo studies. Int J Pharm 2017; 529:381-390. [DOI: 10.1016/j.ijpharm.2017.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/03/2017] [Accepted: 07/08/2017] [Indexed: 10/19/2022]
|
16
|
In vitro and in vivo behavior of ground tadalafil hot-melt extrudates: How the carrier material can effectively assure rapid or controlled drug release. Int J Pharm 2017; 528:498-510. [DOI: 10.1016/j.ijpharm.2017.05.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/21/2022]
|
17
|
Huang S, O'Donnell KP, Delpon de Vaux SM, O'Brien J, Stutzman J, Williams RO. Processing thermally labile drugs by hot-melt extrusion: The lesson with gliclazide. Eur J Pharm Biopharm 2017; 119:56-67. [PMID: 28583588 DOI: 10.1016/j.ejpb.2017.05.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/25/2017] [Accepted: 05/29/2017] [Indexed: 11/18/2022]
Abstract
The formation of molecularly dispersed amorphous solid dispersions by the hot-melt extrusion technique relies on the thermal and mechanical energy inputs, which can cause chemical degradation of drugs and polymeric carriers. Additionally, drug degradation may be exacerbated as drugs convert from a more stable crystalline form to a higher energy amorphous form. Therefore, it is imperative to study how drug degrades and evaluate methods to minimize drug degradation during the extrusion process. In this work, gliclazide was used as a model thermally labile drug for the degradation kinetics and process optimization studies. Preformulation studies were conducted using thermal analyses, and liquid chromatography-mass spectroscopy to identify drug degradation pathways and to determine initial extrusion conditions. Formulations containing 10% drug and 90% AFFINISOL™ HPMC HME 100LV were then extruded using a twin screw extruder, and the extrudates were characterized using X-ray powder diffraction, modulated dynamic scanning calorimetry, and potency testing to evaluate physicochemical properties. The energies of activation for both amorphous gliclazide, crystalline gliclazide, and gliclazide solution were calculated using the Arrhenius equation to further guide the extrusion optimization process. Preformulation studies identify two hydrolysis degradation pathways of gliclazide at elevated temperatures. The activation energy study indicates a significantly higher degradation rate for the amorphous gliclazide compared to the crystalline form. After optimization of the hot-melt extrusion process, including improved screw designs, machine setup, and processing conditions, gliclazide amorphous solid dispersion with ∼95% drug recovery was achieved. The ability to process thermally labile drugs and polymers using hot-melt extrusion will significantly expand the possible applications of this manufacturing process.
Collapse
Affiliation(s)
- Siyuan Huang
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Mail Stop A1920, Austin, TX, United States; Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Kevin P O'Donnell
- The Dow Chemical Company, Dow Food, Pharma & Medical, Midland, MI, United States
| | - Sophie M Delpon de Vaux
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Mail Stop A1920, Austin, TX, United States
| | - John O'Brien
- The Dow Chemical Company, Analytical Sciences, Midland, MI, United States
| | - John Stutzman
- The Dow Chemical Company, Analytical Sciences, Midland, MI, United States
| | - Robert O Williams
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Mail Stop A1920, Austin, TX, United States.
| |
Collapse
|
18
|
Pawar JN, Fule RA, Maniruzzaman M, Amin PD. Solid crystal suspension of Efavirenz using hot melt extrusion: Exploring the role of crystalline polyols in improving solubility and dissolution rate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1023-1034. [PMID: 28575936 DOI: 10.1016/j.msec.2017.04.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/10/2017] [Indexed: 01/23/2023]
Abstract
Poor aqueous solubility of drugs has emerged as a major issue for pharmaceutical scientists from many decades. The current study explores the manufacture and development of a thermodynamically stabilized solid crystal suspension (SCS) of poorly water soluble drug efavirenz via hot melt extrusion. Efavirenz is a non-nucleoside reverse transcriptase inhibitor and belongs to BCS class II. The SCS was prepared using pearlitol and xylitol as a crystalline carrier. The drug-excipient blend was processed by hot melt extrusion with up to 50% (w/w) drug loading. Physico-chemical characterization of the SCS conducted via a scanning electron microscopy, differential scanning calorimetry and hot stage microscopy confirmed that SCS are in crystalline state. Similarly, X-ray powder diffraction analysis revealed highly crystalline existence of pure drug, crystalline carriers and developed SCS. The FTIR chemical imaging analysis of SCS formulations showed a homogeneous drug distribution within respective crystalline carriers while an advanced chemical analysis via atomic force microscopy and Raman analysis complemented the foregoing findings. The developed SCS1 formulation showed up to 81 fold increase in the solubility and 4.1 fold increase in the dissolution rate of the drug compared to that of the bulk substance. Surprisingly, the developed SCS formulation remained stable for a period of more than one year at accelerated conditions inferred from dissolution studies. It can be concluded that the SCS approach can be used as an alternative contemporary technique to enhance the dissolution rates of many other poorly water-soluble drugs by means of thermal HME processing.
Collapse
Affiliation(s)
- Jaywant N Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| | - Ritesh A Fule
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India; Faculty of Pharmaceutics Department, H.K. College of Pharmacy, Relief Road, Oshiwara, Jogeshwari West, Mumbai 400102, Maharashtra, India
| | - Mohammed Maniruzzaman
- Department of Pharmacy (Chemistry), School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QT, United Kingdom.
| | - Purnima D Amin
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India
| |
Collapse
|
19
|
Gorringe L, Kee G, Saleh M, Fa N, Elkes R. Use of the channel fill level in defining a design space for twin screw wet granulation. Int J Pharm 2017; 519:165-177. [DOI: 10.1016/j.ijpharm.2017.01.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/23/2016] [Accepted: 01/13/2017] [Indexed: 11/29/2022]
|
20
|
Ong SGM, Ming LC, Lee KS, Yuen KH. Influence of the Encapsulation Efficiency and Size of Liposome on the Oral Bioavailability of Griseofulvin-Loaded Liposomes. Pharmaceutics 2016; 8:E25. [PMID: 27571096 PMCID: PMC5039444 DOI: 10.3390/pharmaceutics8030025] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/24/2016] [Accepted: 08/08/2016] [Indexed: 11/16/2022] Open
Abstract
The objective of the present study was to investigate the influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Griseofulvin-loaded liposomes with desired characteristics were prepared from pro-liposome using various techniques. To study the effect of encapsulation efficiency, three preparations of griseofulvin, namely, griseofulvin aqueous suspension and two griseofulvin-loaded liposomes with different amounts of griseofulvin encapsulated [i.e., F1 (32%) and F2(98%)], were administered to rats. On the other hand, to study the effect of liposome size, the rats were given three different griseofulvin-loaded liposomes of various sizes, generated via different mechanical dispersion techniques [i.e., FTS (142 nm), MS (357 nm) and NS (813 nm)], but with essentially similar encapsulation efficiencies (about 93%). Results indicated that the extent of bioavailability of griseofulvin was improved 1.7-2.0 times when given in the form of liposomes (F1) compared to griseofulvin suspension. Besides that, there was an approximately two-fold enhancement of the extent of bioavailability following administration of griseofulvin-loaded liposomes with higher encapsulation efficiency (F2), compared to those of F1. Also, the results showed that the extent of bioavailability of liposomal formulations with smaller sizes were higher by approximately three times compared to liposomal formulation of a larger size. Nevertheless, a further size reduction of griseofulvin-loaded liposome (≤400 nm) did not promote the uptake or bioavailability of griseofulvin. In conclusion, high drug encapsulation efficiency and small liposome size could enhance the oral bioavailability of griseofulvin-loaded liposomes and therefore these two parameters deserve careful consideration during formulation.
Collapse
Affiliation(s)
- Sandy Gim Ming Ong
- School of Pharmaceutical Sciences, Universiti of Sains Malaysia, 11800 Penang, Malaysia.
| | - Long Chiau Ming
- Unit for Medication Outcomes Research and Education (UMORE), Pharmacy, School of Medicine, University of Tasmania, 7001 Hobart, Australia.
- Vector‑borne Diseases Research Group (VERDI), Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam, 42300 Selangor, Malaysia.
| | - Kah Seng Lee
- Unit for Medication Outcomes Research and Education (UMORE), Pharmacy, School of Medicine, University of Tasmania, 7001 Hobart, Australia.
| | - Kah Hay Yuen
- School of Pharmaceutical Sciences, Universiti of Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
21
|
Teżyk M, Milanowski B, Ernst A, Lulek J. Recent progress in continuous and semi-continuous processing of solid oral dosage forms: a review. Drug Dev Ind Pharm 2015; 42:1195-214. [PMID: 26592545 DOI: 10.3109/03639045.2015.1122607] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Continuous processing is an innovative production concept well known and successfully used in other industries for many years. The modern pharmaceutical industry is facing the challenge of transition from a traditional manufacturing approach based on batch-wise production to a continuous manufacturing model. OBJECTIVE The aim of this article is to present technological progress in manufacturing based on continuous and semi-continuous processing of the solid oral dosage forms. METHODS Single unit processes possessing an alternative processing pathway to batch-wise technology or, with some modification, an altered approach that may run continuously, and are thus able to seamlessly switch to continuous manufacturing are briefly presented. Furthermore, the concept of semi-continuous processing is discussed. Subsequently, more sophisticated production systems created by coupling single unit processes and comprising all the steps of production, from powder to final dosage form, were reviewed. Finally, attempts of end-to-end production approach, meaning the linking of continuous synthesis of API from intermediates with the production of final dosage form, are described. RESULTS There are a growing number of scientific articles showing an increasing interest in changing the approach to the production of pharmaceuticals in recent years. Numerous scientific publications are a source of information on the progress of knowledge and achievements of continuous processing. These works often deal with issues of how to modify or replace the unit processes in order to enable seamlessly switching them into continuous processing. A growing number of research papers concentrate on integrated continuous manufacturing lines in which the production concept of "from powder to tablet" is realized. Four main domains are under investigation: influence of process parameters on intermediates or final dosage forms properties, implementation of process analytical tools, control-managing system responsible for keeping continuous materials flow through the whole manufacturing process and the development of new computational methods to assess or simulate these new manufacturing techniques. The attempt to connect the primary and secondary production steps proves that development of continuously operating lines is possible. CONCLUSION A mind-set change is needed to be able to face, and fully assess, the advantages and disadvantages of switching from batch to continuous mode production.
Collapse
Affiliation(s)
- Michał Teżyk
- a Gedeon Richter Polska Sp. z o.o. , Grodzisk Mazowiecki , Poland ;,b Department of Pharmaceutical Technology , Faculty of Pharmacy, Poznan University of Medical Sciences , Poznan , Poland
| | - Bartłomiej Milanowski
- b Department of Pharmaceutical Technology , Faculty of Pharmacy, Poznan University of Medical Sciences , Poznan , Poland
| | - Andrzej Ernst
- a Gedeon Richter Polska Sp. z o.o. , Grodzisk Mazowiecki , Poland
| | - Janina Lulek
- b Department of Pharmaceutical Technology , Faculty of Pharmacy, Poznan University of Medical Sciences , Poznan , Poland
| |
Collapse
|
22
|
Pimparade MB, Morott JT, Park JB, Kulkarni VI, Majumdar S, Murthy SN, Lian Z, Pinto E, Bi V, Durig T, Murthy R, Shivakumar HN, Vanaja K, Kumar PC, Repka MA. Development of taste masked caffeine citrate formulations utilizing hot melt extrusion technology and in vitro-in vivo evaluations. Int J Pharm 2015; 487:167-76. [PMID: 25888797 DOI: 10.1016/j.ijpharm.2015.04.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/08/2015] [Accepted: 04/12/2015] [Indexed: 11/18/2022]
Abstract
The objective of this study was to develop caffeine citrate orally disintegrating tablet (ODT) formulations utilizing hot-melt extrusion technology and evaluate the ability of the formulation composition to mask the unpleasant bitter taste of the drug using in vitro and in vivo methods. Ethylcellulose, along with a suitable plasticizer, was used as a polymeric carrier. Pore forming agents were incorporated into the extruded matrix to enhance drug release. A modified screw configuration was applied to improve the extrusion processability and to preserve the crystallinity of the API. The milled extrudates were subjected to dissolution testing in an artificial salivary fluid and investigations using e-tongue, to assess the extent of masking of bitter taste of the API. There was an insignificant amount of drug released from the formulation in the salivary medium while over 80% of drug released within 30 min in 0.1N HCl. ODTs were also developed with the extrudate mixed with mannitol and crospovidone. The quality properties such as friability and disintegration time of the ODTs met the USP specifications. The lead extrudate formulations and the ODTs prepared using this formulation were subjected to human gustatory evaluation. The formulations were found to mask the unpleasant taste of caffeine citrate significantly.
Collapse
Affiliation(s)
- Manjeet B Pimparade
- Department of Pharmaceutics & Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Joseph T Morott
- Department of Pharmaceutics & Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Jun-Bom Park
- College of Pharmacy, Sahm Yook University, Seoul 139-742, South Korea
| | - Vijay I Kulkarni
- Department of Pharmaceutics & Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics & Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS, USA
| | - S N Murthy
- Department of Pharmaceutics & Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Zhuoyang Lian
- Ashland Specialty Ingredients, Global Pharma R&D, Wilmington, USA
| | - Elanor Pinto
- Ashland Specialty Ingredients, Global Pharma R&D, Wilmington, USA
| | - Vivian Bi
- Ashland Specialty Ingredients, Global Pharma R&D, Wilmington, USA
| | - Thomas Durig
- Ashland Specialty Ingredients, Global Pharma R&D, Wilmington, USA
| | - Reena Murthy
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | - H N Shivakumar
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | - K Vanaja
- Visveswarapuram Institute of Pharmaceutical Sciences, Bangalore, India
| | - P C Kumar
- Visveswarapuram Institute of Pharmaceutical Sciences, Bangalore, India
| | - Michael A Repka
- Department of Pharmaceutics & Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS, USA.
| |
Collapse
|
23
|
Meng F, Gala U, Chauhan H. Classification of solid dispersions: correlation to (i) stability and solubility (ii) preparation and characterization techniques. Drug Dev Ind Pharm 2015; 41:1401-15. [DOI: 10.3109/03639045.2015.1018274] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Encapsulation of liquids using a counter rotating twin screw extruder. Eur J Pharm Biopharm 2015; 89:9-17. [DOI: 10.1016/j.ejpb.2014.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 11/20/2014] [Indexed: 11/23/2022]
|
25
|
Thiry J, Krier F, Evrard B. A review of pharmaceutical extrusion: critical process parameters and scaling-up. Int J Pharm 2014; 479:227-40. [PMID: 25541517 DOI: 10.1016/j.ijpharm.2014.12.036] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 11/30/2022]
Abstract
Hot melt extrusion has been a widely used process in the pharmaceutical area for three decades. In this field, it is important to optimize the formulation in order to meet specific requirements. However, the process parameters of the extruder should be as much investigated as the formulation since they have a major impact on the final product characteristics. Moreover, a design space should be defined in order to obtain the expected product within the defined limits. This gives some freedom to operate as long as the processing parameters stay within the limits of the design space. Those limits can be investigated by varying randomly the process parameters but it is recommended to use design of experiments. An examination of the literature is reported in this review to summarize the impact of the variation of the process parameters on the final product properties. Indeed, the homogeneity of the mixing, the state of the drug (crystalline or amorphous), the dissolution rate, the residence time, can be influenced by variations in the process parameters. In particular, the impact of the following process parameters: temperature, screw design, screw speed and feeding, on the final product, has been reviewed.
Collapse
Affiliation(s)
- J Thiry
- University of Liege (ULg), Department of Pharmacy, CIRM, Laboratory of Pharmaceutical Technology and Biopharmacy, CHU, Avenue de l'Hopital 1, B36, B-4000 Liege, Belgium.
| | - F Krier
- University of Liege (ULg), Department of Pharmacy, CIRM, Laboratory of Pharmaceutical Technology and Biopharmacy, CHU, Avenue de l'Hopital 1, B36, B-4000 Liege, Belgium
| | - B Evrard
- University of Liege (ULg), Department of Pharmacy, CIRM, Laboratory of Pharmaceutical Technology and Biopharmacy, CHU, Avenue de l'Hopital 1, B36, B-4000 Liege, Belgium
| |
Collapse
|
26
|
Muehlenfeld C, Thommes M. Small-scale twin-screw extrusion - evaluation of continuous split feeding. ACTA ACUST UNITED AC 2014; 66:1667-76. [PMID: 25176176 DOI: 10.1111/jphp.12301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 06/29/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this work was to evaluate a continuous, small-scale extrusion process with a particular focus on powder and liquid-feeding systems, because it is likely that uniformity issues are related to small-scale production. METHODS The study is divided into three parts. The first part investigates the uniformity and accuracy of the powder and the liquid feeders. In the second part, a solid polymer and low amounts of liquid plasticizer were combined in hot-melt extrusion. The third part deals with wet extrusion-spheronization using water as the granulation liquid. KEY FINDINGS The powder and the liquid feed rate were identified as crucial parameters in small-scale extrusion. With respect to powder feeding, the cohesiveness of the powder and electrostatic charging are the limitations, while liquid feeding is challenging based on particularly low feed rates. The hot-melt extrusion was performed using a powder feed rate of 2 g/min. When small quantities of plasticizer were applied to the hot melt extrusions (from 2.5% to 15% w/w), homogenous plasticizer distribution was found. In wet extrusion, larger quantities of water were used and the extrudates were investigated with respect to their spheronization behaviour. Spherical pellets were obtained at certain water contents. CONCLUSIONS These findings demonstrated that the extruder is a useful tool to screen formulations and perform feasibility studies on a small scale in the early stages of product development.
Collapse
Affiliation(s)
- Christian Muehlenfeld
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University, Duesseldorf, Germany
| | | |
Collapse
|
27
|
Hot melt extruded amorphous solid dispersion of posaconazole with improved bioavailability: investigating drug-polymer miscibility with advanced characterisation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:146781. [PMID: 25143935 PMCID: PMC4131112 DOI: 10.1155/2014/146781] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 01/18/2023]
Abstract
Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD) with immediate release and improved bioavailability was prepared using Soluplus (Sol) as primary carrier for solubilization. Surfactants such as PEG 400, Lutrol F27, Lutrol F68, and TPGS are also used in combination with Soluplus to improve the physicochemical performance of the formulation when it comes in contact with GI (gastrointestinal) fluid. Drug-polymer miscibility of SD was investigated using advanced techniques. In the in vivo study, the AUC(0–72) and Cmax of PCZ/Soluplus were 11.5 and 11.74 time higher than those of pure PCZ. The formulation of the extrudate SD had an AUC(0–72) and Cmax higher than those with the commercial capsule (Noxafil). Molecular dynamic (MD) simulation studies were carried out using in silico molecular modelling to understand the drug-polymer intermolecular behaviour. The results of this research ensure enhanced dissolution and bioavailability of the solid dispersion of PCZ prepared by HME compared with the PCZ suspension.
Collapse
|
28
|
Sakai T, Thommes M. Investigation into mixing capability and solid dispersion preparation using the DSM Xplore Pharma Micro Extruder. J Pharm Pharmacol 2013; 66:218-31. [DOI: 10.1111/jphp.12085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/16/2013] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
The goal of this investigation was to qualify the DSM Xplore Pharma Micro Extruder as a formulation screening tool for early-stage hot-melt extrusion.
Methods
Dispersive and distributive mixing was investigated using soluplus, copovidone or basic butylated methacrylate copolymer with sodium chloride (NaCl) in a batch size of 5 g. Eleven types of solid dispersions were prepared using various drugs and carriers in batches of 5 g in accordance with the literature.
Key findings
The dispersive mixing was a function of screw speed and recirculation time and the particle size was remarkably reduced after 1 min of processing, regardless of the polymers. An inverse relationship between the particle size and specific mechanical energy (SME) was also found. The SME values were higher than those in large-scale extruders. After 1 min recirculation at 200 rpm, the uniformity of NaCl content met the criteria of the European Pharmacopoeia, indicating that distributive mixing was achieved in this time. For the solid dispersions preparations, the results from different scanning calorimetry, powder X-ray diffractometry and in-vitro dissolution tests confirmed that all solid-dispersion systems were successfully prepared.
Conclusions
These findings demonstrated that the extruder is a useful tool to screen solid-dispersion formulations and their material properties on a small scale.
Collapse
Affiliation(s)
- Toshiro Sakai
- Pharmaceutical Research and Technology Laboratories, Astellas Pharma Inc., Yaizu, Shizuoka, Japan
| | - Markus Thommes
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|