1
|
Li N, Zhao Z, Ma H, Liu Y, Nwafor EO, Zhu S, Jia L, Pang X, Han Z, Tian B, Pan H, Liu Z, Pan W. Optimization and Characterization of Low-Molecular-Weight Chitosan-Coated Baicalin mPEG-PLGA Nanoparticles for the Treatment of Cataract. Mol Pharm 2022; 19:3831-3845. [PMID: 36067066 DOI: 10.1021/acs.molpharmaceut.2c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was to evaluate the potential effectiveness of low-molecular-weight chitosan-coated baicalin methoxy poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles (BA LCH NPs) for the treatment of cataract. mPEG-PLGA NPs were optimized by the Box-Behnken design and the central composite design based on the encapsulation efficiency and drug loading. Then, the BA LCH NPs were characterized based on morphology, particle size, and zeta potentials. The analytical data of differential scanning calorimetry, X-ray diffraction, and transmission electron microscopy depicted the drug excipient compatibility. In vitro, we evaluated cell viability, cellular uptake, potential ocular irritation, transcorneal permeability, and the precorneal retention of BA LCH NPs. In vivo, the chronic selenium cataract model was selected to assess the therapeutic effect of BA LCH NPs. The size of BA LCH NPs was within the range from 148 to 219 nm and the zeta potential was 19-25 mV. Cellular uptake results showed that the fluorescence intensity of the preparations in each group increased with time, and the fluorescence intensity of the LCH NP group was significantly higher than that of the solution group. The optimized BA LCH NPs improved precorneal residence time without causing eye irritation and also showed a sustained release of BA through the cornea for effective management of cataract. Also, fluorescence tracking on the rabbit cornea showed increased corneal retention of the LCH NPs. In addition, the results of therapeutic efficacy demonstrated that BA LCH NPs can significantly reduce the content of malondialdehyde and enhanced the activities of catalase, superoxide dismutase, and glutathione peroxidase, which was comparable to positive control and better than the BA solution group. Thus, it can be inferred that the BA LCH NPs are a promising drug delivery system for enhancing the ophthalmic administration of BA to the posterior segment of the eye and improving cataract symptoms.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhiyue Zhao
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongfei Ma
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Liu
- Tiangong University, Tianjin 300387, China
| | - Ebuka-Olisaemeka Nwafor
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shan Zhu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Linlin Jia
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaochen Pang
- Binhai New Area Hospital of Traditional Chinese Medicine, Tianjin 300450, China
| | - Zhenzhen Han
- Baokang Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China
| | - BaoCheng Tian
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, China
| | - Hao Pan
- Department of Pharmaceutics, School of Pharmacy, Liaoning University, Shenyang 110036, China
| | - Zhidong Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weisan Pan
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
2
|
Kim SM, Patel M, Patel R. PLGA Core-Shell Nano/Microparticle Delivery System for Biomedical Application. Polymers (Basel) 2021; 13:3471. [PMID: 34685230 PMCID: PMC8540999 DOI: 10.3390/polym13203471] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Core-shell particles are very well known for their unique features. Their distinctive inner core and outer shell structure allowed promising biomedical applications at both nanometer and micrometer scales. The primary role of core-shell particles is to deliver the loaded drugs as they are capable of sequence-controlled release and provide protection of drugs. Among other biomedical polymers, poly (lactic-co-glycolic acid) (PLGA), a food and drug administration (FDA)-approved polymer, has been recognized for the vehicle material. This review introduces PLGA core-shell nano/microparticles and summarizes various drug-delivery systems based on these particles for cancer therapy and tissue regeneration. Tissue regeneration mainly includes bone, cartilage, and periodontal regeneration.
Collapse
Affiliation(s)
- Se Min Kim
- Life Science and Biotechnology Department (LSBT), Underwood Division (UD), Underwood International College, Yonsei University, Sinchon, Seoul 03722, Korea;
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Woman’s University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea;
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon 21983, Korea
| |
Collapse
|
3
|
Zhang C, Yang L, Wan F, Bera H, Cun D, Rantanen J, Yang M. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int J Pharm 2020; 585:119441. [PMID: 32442645 DOI: 10.1016/j.ijpharm.2020.119441] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
Adopting the Quality by Design (QbD) approach in the drug development process has transformed from "nice-to-do" into a crucial and required part of the development, ensuring the quality of pharmaceutical products throughout their whole life cycles. This review is discussing the implementation of the QbD thinking into the production of long-acting injectable (LAI) PLGA/PLA-based microspheres for the therapeutic peptide and protein drug delivery. Various key elements of the QbD approaches are initially elaborated using Bydureon®, a commercial product of LAI PLGA/PLA-based microspheres, as a classical example. Subsequently, the factors influencing the release patterns and the stability of the peptide and protein drugs are discussed. This is followed by a summary of the state-of-the-art of manufacturing LAI PLGA/PLA-based microspheres and the related critical process parameters (CPPs). Finally, a landscape of generic product development of LAI PLGA/PLA-based microspheres is reviewed including some major challenges in the field.
Collapse
Affiliation(s)
- Chengqian Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China
| | - Liang Yang
- CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Company, Ltd, Huanghe Road 226, 050035 Shijiazhuang, China
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
4
|
Rezaie Shirmard L, Ghofrani M, Bahari Javan N, Bayrami S, Tavassoli A, Rezaie A, Amini M, Kebriaee-Zadeh A, Rouini MR, Dinarvand R, Rafiee-Tehrani M, Dorkoosh FA. Improving the in-vivo biological activity of fingolimod loaded PHBV nanoparticles by using hydrophobically modified alginate. Drug Dev Ind Pharm 2020; 46:318-328. [PMID: 31976771 DOI: 10.1080/03639045.2020.1721524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uncontrolled distribution of nanoparticles (NPs) within the body can significantly decrease the efficiency of drug therapy and is considered among the main restrictions of NPs application. The aim of this study was to develop a depot combination delivery system (CDS) containing fingolimod loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) NPs dispersed into a matrix of oleic acid-grafted-aminated alginate (OA-g-AAlg) to minimize the nonspecific biodistribution (BD) of PHBV NPs. OA-g-AAlg was synthesized in two step; First, Alg was aminated by using adipic dihydrazide (ADH). The degree of hyrazide group substitution of Alg was determined by trinitro-benzene-sulfonic acid (TNBS) assay. Second, OA was attached to AAlg through formation of an amide bond. Chemical structure of OA-g-AAlg was confirmed with FTIR and HNMR spectroscopy. Furthermore, rheological properties of OA-g-AAlg with different grafting ratios were evaluated. In-vitro release studies indicated that 47% of fingolimod was released from the CDS within 28 days. Blood and tissue samples were analyzed using liquid chromatography/tandem mass spectrometry following subcutaneous (SC) injection of fingolimod-CDS into Wistar rats. The elimination phase half-life of CDS-fingolimod was significantly higher than that of fingolimod (∼32 d vs. ∼20 h). To investigate the therapeutic efficacy, lymphocyte count was assessed over a 40 day period in Wistar rats. Peripheral blood lymphocyte count decreased from baseline by 27 ± 8% in 2 days after injection. Overall, the designed CDS represented promising results in improving the pharmacokinetic properties of fingolimod. Therefore, we believe that this sustained release formulation has a great potential to be applied to delivery of various therapeutics.
Collapse
Affiliation(s)
- Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahdieh Ghofrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nika Bahari Javan
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Bayrami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdollah Tavassoli
- Department of Analytical chemistry, University of Mazandaran, Babolsar, Iran
| | - Amir Rezaie
- School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Kebriaee-Zadeh
- Department of Pharmacoeconomy and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Rafiee-Tehrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Luzardo-Álvarez A, Lamela-Gómez I, Otero-Espinar F, Blanco-Méndez J. Development, Characterization, and In Vitro Evaluation of Resveratrol-Loaded Poly-(ε-caprolactone) Microcapsules Prepared by Ultrasonic Atomization for Intra-Articular Administration. Pharmaceutics 2019; 11:E249. [PMID: 31141945 PMCID: PMC6631008 DOI: 10.3390/pharmaceutics11060249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
: Intra-articular administration of drugs to the joint in the treatment of joint disease has the potential to minimize the systemic bioavailability and the usual side-effects associated with oral drug administration. In this work, a drug delivery system is proposed to achieve an anti-inflammatory local effect using resveratrol (RSV). This study aims to develop microcapsules made of poly-(ε-caprolactone) (PCL) by ultrasonic atomization to preserve the antioxidant activity of RSV, to prevent its degradation and to suppress the inflammatory response in activated RAW 264.7 macrophages. An experimental design was performed to build a mathematical model that could estimate the effect of nozzle power and polymer concentration on particle size and encapsulation efficiency. RSV-loaded microcapsules showed adequate morphology, particle size, and loading efficiency properties. RSV formulations exhibited negligible cytotoxicity and an efficient amelioration of inflammatory responses, in terms of Nitric Oxide (NO), ROS (Reactive Oxygen Species), and lipid peroxidation in macrophages. Thus, RSV-loaded microcapsules merit consideration as a drug delivery system suitable for intra-articular administration in inflammatory disorders affecting the joint.
Collapse
Affiliation(s)
- Asteria Luzardo-Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain.
| | - Iván Lamela-Gómez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain.
| | - Francisco Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus de Santiago de Compostela, University of Santiago de Compostela, Santiago de Compostela 14875, Spain.
| | - José Blanco-Méndez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus de Santiago de Compostela, University of Santiago de Compostela, Santiago de Compostela 14875, Spain.
| |
Collapse
|
6
|
Liu D, Wu Q, Chen W, Lin H, Liu Y, Liang H, Zhu F. Tacrolimus-loaded methoxy poly(ethylene glycol)-block-poly(D,L)-lactic–co-glycolic acid micelles self-assembled in aqueous solution for treating cornea immune rejection after allogenic penetrating keratoplasty in rats. Eur J Pharm Sci 2019; 133:104-114. [DOI: 10.1016/j.ejps.2019.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023]
|
7
|
Rinker TE, Philbrick BD, Temenoff JS. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core. Acta Biomater 2017; 56:91-101. [PMID: 28013102 PMCID: PMC5478455 DOI: 10.1016/j.actbio.2016.12.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/10/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022]
Abstract
Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. STATEMENT OF SIGNIFICANCE Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic core-shell heparin-PEG microparticles presented here overcome this limitation by sequestering proteins through a PEG-based shell onto a protein-protective heparin core, temporarily isolating bound proteins from the cellular microenvironment, and re-delivering proteins only after degradation of the PEG-based shell. Thus, these core-shell microparticles have potential to be a novel tool to harness and isolate proteins produced in the cellular environment and then control when proteins are re-introduced for the most effective tissue regeneration and repair.
Collapse
Affiliation(s)
- Torri E Rinker
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, 30332 Atlanta, GA, USA.
| | - Brandon D Philbrick
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, 30332 Atlanta, GA, USA.
| | - Johnna S Temenoff
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, 30332 Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, 30332 Atlanta, GA, USA.
| |
Collapse
|
8
|
Hossain A, Nandi U, Fule R, Nokhodchi A, Maniruzzaman M. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets. J Colloid Interface Sci 2016; 492:157-166. [PMID: 28086118 DOI: 10.1016/j.jcis.2016.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/02/2016] [Accepted: 11/06/2016] [Indexed: 01/01/2023]
Abstract
The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network.
Collapse
Affiliation(s)
- Akter Hossain
- Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK
| | - Uttom Nandi
- Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK
| | - Ritesh Fule
- Faculty of Pharmaceutics Department, H.K. College of Pharmacy, Relief Road, Oshiwara, Jogeshwari West, Mumbai 400102, Maharashtra, India
| | - Ali Nokhodchi
- Department of Pharmacy (Chemistry), School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK; Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammed Maniruzzaman
- Department of Pharmacy (Chemistry), School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK.
| |
Collapse
|
9
|
Hwang SR, Seo DH, Byun Y, Park JW. Preparation and in vivo evaluation of an orally available enteric-microencapsulated parathyroid hormone (1-34)-deoxycholic acid nanocomplex. Int J Nanomedicine 2016; 11:4231-46. [PMID: 27621618 PMCID: PMC5012625 DOI: 10.2147/ijn.s110573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The N-terminal 34-amino-acid peptide fragment of human parathyroid hormone PTH (1-34), is used clinically to treat osteoporosis; however, it is currently administered by a once-daily subcutaneous injection, resulting in poor patient compliance. We have developed enteric microcapsules containing an ionic nanocomplex between PTH (1-34) and lysine-linked deoxycholic acid (LysDOCA) for the oral delivery of PTH (1-34). We measured the particle size of the PTH/LysDOCA complex and assessed its biological activity by determining the cAMP content in MC3T3-E1 cells. We also assessed its permeability across a Caco-2 cell monolayer and the bioavailability of the intrajejunally administered PTH/LysDOCA complex compared with PTH (1-34) in rats. In addition, the antiosteoporotic activity of the PTH/LysDOCA complex, encapsulated in an enteric carrier by coaxial ultrasonic atomization, was evaluated after it was orally administered to ovariectomized (OVX) rats. The formation of an ionic complex between PTH (1-34) and LysDOCA produced nanoparticles of diameter 33.0±3.36 nm, and the bioactivity of the complex was comparable with that of PTH (1-34). The Caco-2 cell permeability and AUClast value of the PTH/LysDOCA (1:10) nanocomplex increased by 2.87- and 16.3-fold, respectively, compared with PTH (1-34) alone. Furthermore, the OVX rats treated with oral PTH/LysDOCA-loaded enteric microcapsules showed an increase in bone mineral density (159%), bone volume fraction (175%), and trabecular number (174%) compared with those in the OVX control group. Therefore, the PTH/LysDOCA nanocomplex oral delivery system is a promising treatment modality for osteoporosis because it improves osteogenesis and trabecular connectivity.
Collapse
Affiliation(s)
- Seung Rim Hwang
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju
| | - Dong-Hyun Seo
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Gangwon
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul
| | - Jin Woo Park
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea
| |
Collapse
|
10
|
Zhang Z, Eyster TW, Ma PX. Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine (Lond) 2016; 11:1611-28. [PMID: 27230960 PMCID: PMC5619097 DOI: 10.2217/nnm-2016-0083] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Biodegradable polymer microspheres have emerged as cell carriers for the regeneration and repair of irregularly shaped tissue defects due to their injectability, controllable biodegradability and capacity for drug incorporation and release. Notably, recent advances in nanotechnology allowed the manipulation of the physical and chemical properties of the microspheres at the nanoscale, creating nanostructured microspheres mimicking the composition and/or structure of natural extracellular matrix. These nanostructured microspheres, including nanocomposite microspheres and nanofibrous microspheres, have been employed as cell carriers for tissue regeneration. They enhance cell attachment and proliferation, promote positive cell-carrier interactions and facilitate stem cell differentiation for target tissue regeneration. This review highlights the recent advances in nanostructured microspheres that are employed as injectable, biomimetic and cell-instructive cell carriers.
Collapse
Affiliation(s)
- Zhanpeng Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Thomas W Eyster
- Department of Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Peter X Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Department of Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Macromolecular Science & Engineering Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
11
|
A novel method for drop in drop edible oils encapsulation with chitosan using a coaxial technique. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm 2016; 498:82-95. [DOI: 10.1016/j.ijpharm.2015.12.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 12/30/2022]
|
13
|
Hao Y, Huang Y, He Y, Peng J, Chen L, Hu X, Qian Z. The evaluation of cellular uptake efficiency and tumor-targeting ability of MPEG–PDLLA micelles: effect of particle size. RSC Adv 2016. [DOI: 10.1039/c5ra26563k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The study reported herein describes the cellular uptake efficiency and tumor-targeting ability of MPEG–PDLLA micelles with two different particle sizes.
Collapse
Affiliation(s)
- Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
- Chengdu
| | - YiXing Huang
- Department of Orthopaedic Surgery
- Second Affiliated Hospital of Wenzhou Medical University
- Wenzhou Medical University
- Wenzhou
- China
| | - YunQi He
- College of Chemistry
- Sichuan University
- Chengdu
- PR China
| | - JinRong Peng
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
- Chengdu
| | - LiJuan Chen
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
- Chengdu
| | - Xun Hu
- Biobank of West China Hospital
- Sichuan University
- Chengdu
- PR China
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
- Chengdu
| |
Collapse
|
14
|
Zhou L, Duan X, Zeng S, Men K, Zhang X, Yang L, Li X. Codelivery of SH-aspirin and curcumin by mPEG-PLGA nanoparticles enhanced antitumor activity by inducing mitochondrial apoptosis. Int J Nanomedicine 2015; 10:5205-18. [PMID: 26316750 PMCID: PMC4547632 DOI: 10.2147/ijn.s84326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Natural product curcumin (Cur) and H2S-releasing prodrug SH-aspirin (SH-ASA) are potential anticancer agents with diverse mechanisms, but their clinical application prospects are restricted by hydrophobicity and limited efficiency. In this work, we coencapsulated SH-ASA and Cur into methoxy poly(ethylene glycol)-poly (lactide-coglycolide) (mPEG-PLGA) nanoparticles through a modified oil-in-water single-emulsion solvent evaporation process. The prepared SH-ASA/Cur-coloaded mPEG-PLGA nanoparticles had a mean particle size of 122.3±6.8 nm and were monodispersed (polydispersity index =0.179±0.016) in water, with high drug-loading capacity and stability. Intriguingly, by treating with SH-ASA/Cur-coloaded mPEG-PLGA nanoparticles, obvious synergistic anticancer effects on ES-2 and SKOV3 human ovarian carcinoma cells were observed in vitro, and activation of the mitochondrial apoptosis pathway was indicated. Our results demonstrated that SH-ASA/Cur-coloaded mPEG-PLGA nanoparticles could have potential clinical advantages for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Biotherapy, Cancer Center and Department of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China ; Sichuan Food and Drug Safety Monitoring and Review of Certification, Adverse Reaction Monitoring Center, Drug Abuse Monitoring Center, Chengdu, People's Republic of China
| | - Xingmei Duan
- State Key Laboratory of Biotherapy, Cancer Center and Department of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China ; Sichuan Food and Drug Safety Monitoring and Review of Certification, Adverse Reaction Monitoring Center, Drug Abuse Monitoring Center, Chengdu, People's Republic of China
| | - Shi Zeng
- State Key Laboratory of Biotherapy, Cancer Center and Department of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy, Cancer Center and Department of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xueyan Zhang
- State Key Laboratory of Biotherapy, Cancer Center and Department of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy, Cancer Center and Department of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Biotherapy, Cancer Center and Department of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
15
|
Perez RA, Kim HW. Core-shell designed scaffolds for drug delivery and tissue engineering. Acta Biomater 2015; 21:2-19. [PMID: 25792279 DOI: 10.1016/j.actbio.2015.03.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/03/2015] [Accepted: 03/08/2015] [Indexed: 11/19/2022]
Abstract
Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core-shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzle extrusion, microfluidics generation, and chemical confinement reactions, have been successful in producing core-shelled nano/microfibers and nano/microspheres. Signaling molecules and drugs, spatially allocated to the core and/or shell part, can be delivered in a controllable and sequential manner for optimal therapeutic effects. Stem cells can be loaded within the core part on-demand, safely protected from the environments, which ultimately affords ex vivo culture and in vivo tissue engineering. The encapsulated cells experience three-dimensional tissue-mimic microenvironments in which therapeutic molecules are secreted to the surrounding tissues through the semi-permeable shell. Tuning the material properties of the core and shell, changing the geometrical parameters, and shaping them into proper forms significantly influence the release behaviors of biomolecules and the fate of the cells. This topical issue highlights the immense usefulness of core-shell designs for the therapeutic actions of scaffolds in the delivery of signaling molecules and stem cells for tissue regeneration and disease treatment.
Collapse
Affiliation(s)
- Roman A Perez
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea.
| |
Collapse
|
16
|
Jensen KT, Larsen FH, Cornett C, Löbmann K, Grohganz H, Rades T. Formation Mechanism of Coamorphous Drug–Amino Acid Mixtures. Mol Pharm 2015; 12:2484-92. [DOI: 10.1021/acs.molpharmaceut.5b00295] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katrine Tarp Jensen
- Department of Pharmacy and ‡Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Hofmann Larsen
- Department of Pharmacy and ‡Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Claus Cornett
- Department of Pharmacy and ‡Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Korbinian Löbmann
- Department of Pharmacy and ‡Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Holger Grohganz
- Department of Pharmacy and ‡Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy and ‡Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Pacheco DP, Amaral MH, Reis RL, Marques AP, Correlo VM. Development of an injectable PHBV microparticles-GG hydrogel hybrid system for regenerative medicine. Int J Pharm 2014; 478:398-408. [PMID: 25448558 DOI: 10.1016/j.ijpharm.2014.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
Uncontrollable displacements that greatly affect the concentration of active agents at the target tissues are among a major limitation of the use of microparticulate drug delivery systems (DDS). Under this context a biphasic injectable DDS combining poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) microparticles (MPs) and a gellan gum (GG) injectable hydrogel is herein proposed for the localized delivery and long-term retention of MPs carrying hydrophilic and hydrophobic model active agents. A double emulsion-solvent evaporation method was adopted to develop the PHBV MPs, carrying bovine serum albumin (BSA) or dexamethasone (Dex) as hydrophilic and hydrophobic active agents' models, respectively. Moreover, this method was modified, together with the properties of the hydrogel to tailor the delivery profile of the active agents. Variations of the composition of the organic phase during the process allowed tuning surface topography, particle size distribution and core porosity of the PHBV MPs and, thus, the in vitro release profile of Dex but not of BSA. Besides, after embedding hydrogels of higher GG concentration led to a slower and more sustained release of both active agents, independently of the processing conditions of the microparticulate system.
Collapse
Affiliation(s)
- Daniela P Pacheco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria H Amaral
- Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vítor M Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
18
|
Chen Y, Yan Y, Li X, Li H, Tan H, Li H, Zhu Y, Niemeyer P, Yaega M, Yu B. Application of ultrasound on monitoring the evolution of the collagen fiber reinforced nHAC/CS composites in vivo. BIOMED RESEARCH INTERNATIONAL 2014; 2014:418302. [PMID: 24822206 PMCID: PMC4009107 DOI: 10.1155/2014/418302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/04/2014] [Indexed: 11/17/2022]
Abstract
To date, fiber reinforce scaffolds have been largely applied to repair hard and soft tissues. Meanwhile, monitoring the scaffolds for long periods in vivo is recognized as a crucial issue before its wide use. As a consequence, there is a growing need for noninvasive and convenient methods to analyze the implantation remolding process in situ and in real time. In this paper, diagnostic medical ultrasound was used to monitor the in vivo bone formation and degradation process of the novel mineralized collagen fiber reinforced composite which is synthesized by chitosan (CS), nanohydroxyapatite (nHA), and collagen fiber (Col). To observe the impact of cells on bone remodeling process, the scaffolds were planted into the back of the SD rats with and without rat bone mesenchymal stem cells (rBMSCs). Systematic data of scaffolds in vivo was extracted from ultrasound images. Significant consistency between the data from the ultrasound and DXA could be observed (P < 0.05). This indicated that ultrasound may serve as a feasible alternative for noninvasive monitoring the evolution of scaffolds in situ during cell growth.
Collapse
Affiliation(s)
- Yan Chen
- Department of Ultrasonic Diagnosis, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Yuting Yan
- The Second Clinical Medical College of Southern Medical University, Guangzhou 510282, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - He Li
- The Second Clinical Medical College of Southern Medical University, Guangzhou 510282, China
| | - Huiting Tan
- The Second Clinical Medical College of Southern Medical University, Guangzhou 510282, China
| | - Huajun Li
- The Second Clinical Medical College of Southern Medical University, Guangzhou 510282, China
| | - Yanwen Zhu
- The Second Clinical Medical College of Southern Medical University, Guangzhou 510282, China
| | - Philipp Niemeyer
- Department of Orthopaedic surgery and Traumatology, Freiburg University Hospital, Freiburg, Germany
| | - Matin Yaega
- Department of Orthopaedic surgery and Traumatology, Freiburg University Hospital, Freiburg, Germany
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| |
Collapse
|