1
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
2
|
Arshad A, Arshad S, Alamgeer, Mahmood A, Hussain Asim M, Ijaz M, Muhammad Irfan H, Rubab M, Ali S, Raza Hashmi A. Zeta potential changing self-nanoemulsifying drug delivery systems: A newfangled approach for enhancing oral bioavailability of poorly soluble drugs. Int J Pharm 2024; 655:123998. [PMID: 38490401 DOI: 10.1016/j.ijpharm.2024.123998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The mucus is a defensive barrier for different drug-loaded systems. To overcome this obstacle, the crucial factor is the surface charge. Due to mucus negative charge behavior; it was revealed that negatively charged formulations can move across mucus, whereas positively charged nanoformulations could not diffuse via mucus due to interactions. However, cellular intake of negatively charged nanoformulations to the epithelium by endocytosis is less prominent as compared to positively charged carriers. Self-emulsifying drug delivery systems (SEDDS) improve the drug permeability of drugs, especially which have poor oral drug solubility. Moreover, SEDDS have the ability to reduce the degradation of drugs in the GI tract. Currently, drug carrier systems that can shift zeta potential from negative to positive were developed. The benefits of inducing zeta potential changing approach are that negatively charged nanoformulations permeate quickly across the mucus and surface charges reversed to positive at epithelium surface to increase cellular uptake. Among various systems of drug delivery, zeta potential changing SEDDS seem to signify a promising approach as they can promptly diffuse over mucus due to their smaller size and shape distortion ability. Due to such findings, mucus permeation and drug diffusion may improve by the mixture of the zeta potential changing approach and SEDDS.
Collapse
Affiliation(s)
- Amina Arshad
- College of Pharmacy, University of Sargodha, 40100, Sargodha, Pakistan
| | - Shumaila Arshad
- Doctor's Institute of Health Sciences, 3-Km Sargodha Bypass Road 40100, Sargodha, Pakistan
| | - Alamgeer
- University College of Pharmacy, University of the Punjab, 54000, Lahore, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, 64141, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 51133, United Arab Emirates
| | | | - Muhammad Ijaz
- School of Veterinary Medicine, College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin 4, Ireland; Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, 54000-Lahore, Pakistan
| | | | - Mavra Rubab
- College of Pharmacy, University of Sargodha, 40100, Sargodha, Pakistan
| | - Shujaat Ali
- Department of Pharmacy, Forman Christian College (A Chartered University), 54000, Lahore, Pakistan
| | - Ahmed Raza Hashmi
- College of Pharmacy, University of Sargodha, 40100, Sargodha, Pakistan
| |
Collapse
|
3
|
Sun X, Lv G, Xiong J, Zhao J, Zhao J, Wang Z, Wang Y, Yin T, Gou J, He H, Tang X, Zhang Y. Novel solid self-emulsifying drug delivery system to enhance oral bioavailability of cabazitaxel. Int J Pharm 2024; 654:123899. [PMID: 38365068 DOI: 10.1016/j.ijpharm.2024.123899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
In this study, a novel cabazitaxel solid self-emulsifying drug delivery system (CTX S-SEDDS) was developed by solvent evaporation and liquid-solid compression technology, which overcame the limitations of the traditional SEDDS and improved the oral bioavailability. From the results of solubility, pseudo-ternary phase diagram, and single-factor analysis, Tween 80 (surfactant), Tricaprylin (oil), and Glyceryl monooleate (oil) with the ratio of 30:55:15 showed optimized particle size (140.87 nm), short emulsification and high cabazitaxel (CTX) loading capacity (50 mg·g-1). Based on the liquid-solid compression mathematical model, Syloid XDP3050 was determined as carrier material and Syloid 244FP as coating material. The prepared CTX S-SEDDS showed excellent flowability, tabletability, and reconstitution property. In vivo pharmacokinetics in rats demonstrated the absolute bioavailability of CTX S-SEDDS (17.27 %) was significantly enhanced compared with CTX solution (1.69 %), which was close to that of CTX-SEDSS (20.48 %). Lymphatic absorption was verified by in vitro imaging to be an important absorption route for self-emulsifying preparations. These results suggested that CTX S-SEDDS could enhance oral bioavailability of poorly water-soluble drug cabazitaxel while avoiding SEDDS limitations and harnessing the dual advantages of solid and liquid preparations.
Collapse
Affiliation(s)
- Xianxiong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Gaoshuai Lv
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Jian Xiong
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Jingyi Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Jiansong Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Zhipeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yuntao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Tian Yin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| |
Collapse
|
4
|
Hua T, Li S, Han B. Nanomedicines for intranasal delivery: understanding the nano-bio interactions at the nasal mucus-mucosal barrier. Expert Opin Drug Deliv 2024; 21:553-572. [PMID: 38720439 DOI: 10.1080/17425247.2024.2339335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.
Collapse
Affiliation(s)
- Tangsiyuan Hua
- School of Pharmacy, Changzhou Univesity, Changzhou, PR China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
5
|
Amekyeh H, Sabra R, Billa N. A Window for Enhanced Oral Delivery of Therapeutics via Lipid Nanoparticles. Drug Des Devel Ther 2024; 18:613-630. [PMID: 38476206 PMCID: PMC10927375 DOI: 10.2147/dddt.s439975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/25/2023] [Indexed: 03/14/2024] Open
Abstract
Oral administration of dosage forms is convenient and beneficial in several respects. Lipid nanoparticulate dosage forms have emerged as a useful carrier system in deploying low solubility drugs systemically, particularly class II, III, and IV drugs of the Biopharmaceutics Classification System. Like other nanoparticulate delivery systems, their low size-to-volume ratio facilitates uptake by phagocytosis. Lipid nanoparticles also provide scope for high drug loading and extended-release capability, ensuring diminished systemic side effects and improved pharmacokinetics. However, rapid gastrointestinal (GI) clearance of particulate delivery systems impedes efficient uptake across the mucosa. Mucoadhesion of dosage forms to the GI mucosa results in longer transit times due to interactions between the former and mucus. Delayed transit times facilitate transfer of the dosage form across the mucosa. In this regard, a balance between mucoadhesion and mucopenetration guarantees optimal systemic transfer. Furthermore, the interplay between GI anatomy and physiology is key to ensuring efficient systemic uptake. This review captures salient anatomical and physiological features of the GI tract and how these can be exploited for maximal systemic delivery of lipid nanoparticles. Materials used to impart mucoadhesion and examples of successful mucoadhesive lipid nanoformulations are highlighted in this review.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
6
|
Patharapankal EJ, Ajiboye AL, Mattern C, Trivedi V. Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. Pharmaceutics 2023; 16:66. [PMID: 38258077 PMCID: PMC10818989 DOI: 10.3390/pharmaceutics16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been a growing number of small and large molecules that could be used to treat diseases of the central nervous system (CNS). Nose-to-brain delivery can be a potential option for the direct transport of molecules from the nasal cavity to different brain areas. This review aims to provide a compilation of current approaches regarding drug delivery to the CNS via the nose, with a focus on biologics. The review also includes a discussion on the key benefits of nasal delivery as a promising alternative route for drug administration and the involved pathways or mechanisms. This article reviews how the application of various auxiliary agents, such as permeation enhancers, mucolytics, in situ gelling/mucoadhesive agents, enzyme inhibitors, and polymeric and lipid-based systems, can promote the delivery of large molecules in the CNS. The article also includes a discussion on the current state of intranasal formulation development and summarizes the biologics currently in clinical trials. It was noted that significant progress has been made in this field, and these are currently being applied to successfully transport large molecules to the CNS via the nose. However, a deep mechanistic understanding of this route, along with the intimate knowledge of various excipients and their interactions with the drug and nasal physiology, is still necessary to bring us one step closer to developing effective formulations for nasal-brain drug delivery.
Collapse
Affiliation(s)
- Elizabeth J. Patharapankal
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | - Adejumoke Lara Ajiboye
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | | | - Vivek Trivedi
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| |
Collapse
|
7
|
Sato H, Yamada K, Miyake M, Onoue S. Recent Advancements in the Development of Nanocarriers for Mucosal Drug Delivery Systems to Control Oral Absorption. Pharmaceutics 2023; 15:2708. [PMID: 38140049 PMCID: PMC10747340 DOI: 10.3390/pharmaceutics15122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Oral administration of active pharmaceutical ingredients is desirable because it is easy, safe, painless, and can be performed by patients, resulting in good medication adherence. The mucus layer in the gastrointestinal (GI) tract generally acts as a barrier to protect the epithelial membrane from foreign substances; however, in the absorption process after oral administration, it can also disturb effective drug absorption by trapping it in the biological sieve structured by mucin, a major component of mucus, and eliminating it by mucus turnover. Recently, functional nanocarriers (NCs) have attracted much attention due to their immense potential and effectiveness in the field of oral drug delivery. Among them, NCs with mucopenetrating and mucoadhesive properties are promising dosage options for controlling drug absorption from the GI tracts. Mucopenetrating and mucoadhesive NCs can rapidly deliver encapsulated drugs to the absorption site and/or prolong the residence time of NCs close to the absorption membrane, providing better medications than conventional approaches. The surface characteristics of NCs are important factors that determine their functionality, owing to the formation of various kinds of interactions between the particle surface and mucosal components. Thus, a deeper understanding of surface modifications on the biopharmaceutical characteristics of NCs is necessary to develop the appropriate mucosal drug delivery systems (mDDS) for the treatment of target diseases. This review summarizes the basic information and functions of the mucosal layer, highlights the recent progress in designing functional NCs for mDDS, and discusses their performance in the GI tract.
Collapse
Affiliation(s)
- Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (H.S.); (K.Y.)
| | - Kohei Yamada
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (H.S.); (K.Y.)
| | - Masateru Miyake
- Business Integrity and External Affairs, Otsuka Pharmaceutical Co., Ltd., 2-16-4 Konan, Minato-ku, Tokyo 108-8242, Japan;
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (H.S.); (K.Y.)
| |
Collapse
|
8
|
Xin J, Qin M, Ye G, Gong H, Li M, Sui X, Liu B, Fu Q, He Z. Hydrophobic ion pairing-based self-emulsifying drug delivery systems: a new strategy for improving the therapeutic efficacy of water-soluble drugs. Expert Opin Drug Deliv 2023; 20:1-11. [PMID: 36408589 DOI: 10.1080/17425247.2023.2150758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are formulations consisting of oil phase, emulsifiers, and co-emulsifiers, which can be spontaneously emulsified in the body to form O/W microemulsion. Traditionally, SEDDS are used commercially for the improvement of oral absorption and in vivo performances for poorly water-soluble drugs. However, SEDDS formulations were rarely reported for the delivery of water-soluble drugs. Recent studies have found that SEDDS have the potential for water-soluble macromolecular drugs by the application of the hydrophobic ion pairing (HIP) technology. AREAS COVERED This review summarized the characteristics of HIP complexes in SEDDS and introduced their advantages and discussed the future prospects of HIP-based SEDDS in drug delivery. EXPERT OPINION Hydrophobic ion pairing (HIP) is a technology that combines lipophilic structures on polar counterions to increase the lipophilicity through electrostatic interaction. Recent studies showed that HIP-based SEDDS offer an effective way to increase the mucosal permeability and improve the chemical stability for antibiotics, proteases, DNA-based drugs, and other water-soluble macromolecular drugs. It is believed that HIP-based SEDDS offer a potential and attractive method capable of delivering hydrophilic macromolecules with ionizable groups for oral administration.
Collapse
Affiliation(s)
- Jinghan Xin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mengdi Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Genyang Ye
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Haonan Gong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Xiaofan Sui
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
9
|
Panigrahi KC, Patra CN, Rao MEB, Jena GK, Sahoo L. SEDDS Basic Design and Recent Formulation Advancement: A Concurrent Review. Pharm Nanotechnol 2022; 10:289-298. [PMID: 35980062 DOI: 10.2174/2211738510666220817124744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/29/2022]
Abstract
In the present scenario, lipid-based novel drug delivery systems are the area of interest for the formulation scientist in order to improve the bioavailability of poorly water-soluble drugs. A selfemulsifying drug delivery system (SEDDS) upon contact with the gastrointestinal fluid, forms an o/w emulsion. SEDDS has gained popularity as a potential platform for improving the bioavailability of the lipophilic drug by overcoming several challenges. The various advantages like improved solubility, bypassing lymphatic transport, and improvement in bioavailability are associated with SMEDDS or SNEDDS. The extent of the formation of stable SEDDS depends on a specific combination of surfactant, co-surfactant, and oil. The present review highlighted the different aspects of formulation design along with optimization and characterization of SEDDS formulation. It also gives a brief description of the various aspects of the excipients used in SEDDS formulation. This review also includes the conflict between types of SEDDS based on droplet size. There is an extensive review of various research regarding different solidification techniques used for SEDDS in the last three years.
Collapse
Affiliation(s)
- K C Panigrahi
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - C N Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - M E B Rao
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - G K Jena
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - L Sahoo
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| |
Collapse
|
10
|
Liu L, Cao W, Xia M, Tian C, Wu W, Cai Y, Chu X. Self-Emulsifying Drug Delivery System Enhances Tissue Distribution of Cinnamaldehyde by Altering the Properties of the Mucus Layer. AAPS PharmSciTech 2022; 23:261. [PMID: 36131215 DOI: 10.1208/s12249-022-02416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Oral delivery is considered the preferred route of administration due to its convenience and favorable compliance. However, this delivery often faces difficulties, such as poor solubility, limited absorption, and undesirable stability, especially for some volatile oils. The aim of this study was to develop self-emulsifying drug delivery systems (SEDDS) containing cinnamaldehyde (CA) to overcome these shortcomings. The CA-SEDDS were spherical and smooth with an average size of 14.96 ± 0.18 nm. Differential scanning calorimetry (DSC) and attenuated total reflection by Fourier transform infrared (ATR-FTIR) showed that CA has been successfully loaded into SEDDS. The accumulative release of CA-SEDDS (73.39%) was approximately 2.14-fold that of free CA when using simulated intestinal fluid as the release medium. A scanning electron microscope was used to observe the mucus network structure. Rheological tests found that CA-SEDDS can appropriately enhance the viscosity of the mucus system. We found from tissue distribution studies that CA was more widely distributed in various tissues in the CA-SEDDS group compared to the free CA group. The cinnamaldehyde and cinnamon acid also accumulated more in various tissues in the CA-SEDDS group than in the free CA group, especially in the kidney. These findings hinted that SEDDS exhibited lower irritation, good release, and penetration, which demonstrated great potential for utilizing CA. Our research supports the rational implications of SEDDS in delivering similar volatile substances by improving the solubility, mucus penetration, and stability, resulting in excellent clinical efficacy.
Collapse
Affiliation(s)
- Liu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei, Anhui, 230012, People's Republic of China.,School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Wenxuan Cao
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei, Anhui, 230012, People's Republic of China
| | - Mengqiu Xia
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei, Anhui, 230012, People's Republic of China.,Wuhu Institute of Technology, Wuhu, 241000, Anhui, China
| | - Chunling Tian
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei, Anhui, 230012, People's Republic of China
| | - Wenqing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei, Anhui, 230012, People's Republic of China
| | - Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei, Anhui, 230012, People's Republic of China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei, Anhui, 230012, People's Republic of China.
| |
Collapse
|
11
|
Francesco Racaniello G, Knoll P, Matteo Jörgensen A, Arduino I, Laquintana V, Assunta Lopedota A, Bernkop-Schnürch A, Denora N. Thiolation of non-ionic surfactants for the development of lipid-based mucoadhesive drug delivery systems. Eur J Pharm Biopharm 2022; 179:95-104. [PMID: 36058444 DOI: 10.1016/j.ejpb.2022.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
The aim of this study was to develop thiolated self-emulsifying drug delivery systems (SEDDS) and nanostructured lipid carriers (NLCs) with improved mucoadhesive properties. Two non-ionic surfactants bearing a short and long PEG chain, namely polyoxyethylene (10) stearyl ether (PSE10) and polyoxyethylene (100) stearyl ether (PSE100), were thiolated for the first time by substituting the terminal hydroxyl group with a thiol group. The synthesis was confirmed by FT-IR, NMR and Ellman's test. SEDDS and NLCs containing these thiolated compounds were investigated for size, polydispersity index (PDI) and ζ potential. Subsequently, mucus diffusion studies, rheological evaluations after mixing the nanocarriers with mucus and mucoadhesion studies on porcine intestinal mucosa were performed. All nanocarriers had a size less than 250 nm, a maximum PDI of 0.3 and a ζ potential < -9.0 mV. Mucus diffusion studies resulted in the rank order of increasing diffusivity: PSE10-SH < PSE100-SH < PSE10-OH < PSE100-OH for NLCs and PSE10-OH < PSE100-OH < PSE100-SH < PSE10-SH for SEDDS. The mucoadhesive properties and increase in viscosity of SEDDS and NLCs ranked: PSE100-OH < PSE10-OH < PSE100-SH < PSE10-SH. In addition, the short chain PSE10-SH showed higher mucus interactions than the long chain PSE100-SH for both SEDDS and NLCs. The thiolated PSE surfactants appeared to be promising excipients for the design of highly mucoadhesive drug delivery systems.
Collapse
Affiliation(s)
| | - Patrick Knoll
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Austria
| | - Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Austria
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Italy
| | - Valentino Laquintana
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Italy
| | | | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Austria
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Italy.
| |
Collapse
|
12
|
Puri V, Kaur VP, Singh A, Singh C. Recent advances on drug delivery applications of mucopenetrative/mucoadhesive particles: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Subramanian DA, Langer R, Traverso G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J Nanobiotechnology 2022; 20:362. [PMID: 35933341 PMCID: PMC9356434 DOI: 10.1186/s12951-022-01539-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Oral delivery of therapeutics is the preferred route of administration due to ease of administration which is associated with greater patient medication adherence. One major barrier to oral delivery and intestinal absorption is rapid clearance of the drug and the drug delivery system from the gastrointestinal (GI) tract. To address this issue, researchers have investigated using GI mucus to help maximize the pharmacokinetics of the therapeutic; while mucus can act as a barrier to effective oral delivery, it can also be used as an anchoring mechanism to improve intestinal residence. Nano-drug delivery systems that use materials which can interact with the mucus layers in the GI tract can enable longer residence time, improving the efficacy of oral drug delivery. This review examines the properties and function of mucus in the GI tract, as well as diseases that alter mucus. Three broad classes of mucus-interacting systems are discussed: mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems. For each class of system, the basis for mucus interaction is presented, and examples of materials that inform the development of these systems are discussed and reviewed. Finally, a list of FDA-approved mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems is reviewed. In summary, this review highlights the progress made in developing mucus-interacting systems, both at a research-scale and commercial-scale level, and describes the theoretical basis for each type of system.
Collapse
Affiliation(s)
- Deepak A Subramanian
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Qu B, Wang XL, Zheng DC, Mai CT, Liu ZQ, Zhou H, Xie Y. Novel treatment for refractory rheumatoid arthritis with total glucosides of paeony and nobiletin codelivered in a self-nanoemulsifying drug delivery system. Acta Pharmacol Sin 2022; 43:2094-2108. [PMID: 34873316 PMCID: PMC9343439 DOI: 10.1038/s41401-021-00801-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
Patients with refractory rheumatoid arthritis (RA) remain a substantial clinical problem, while the overexpression of P-glycoprotein (P-gp) on their lymphocytes may contribute to resistance to anti-rheumatic drugs. This study aims to develop a novel treatment for refractory RA consisting of the combination of total glucosides of paeony (TGPs) and the P-gp inhibitor nobiletin (N), which are codelivered in a self-nanoemulsifying drug delivery system (SNEDDS). Based on the solubility, compatibility, and pseudoternary phase diagram tests, a nano-SNEDDS formulation composed of capryol 90-cremophor EL35-tcranscutol HP (CET) to codeliver TGP and N was developed, and this formulation increased the bioavailability of TGP by 435.04% (indicated with paeoniflorin). A modified adjuvant-induced arthritis (AIA) rat model was verified for the overexpression of P-gp in lymphocytes and resistance to methotrexate (MTX) treatment at the reported anti-inflammatory dosage. CET formulation not only increased the solubility and permeability of TGP but also inhibited the function and expression of P-gp, leading to enhanced bioavailability and intracellular concentration in the lymphocytes of AIA rats and consequently boosting the anti-arthritic effects of TGP. Moreover, TGP and N coloaded CET reduced the expression of P-gp in AIA rats partly by inhibiting the phosphorylated AKT and HIF-1α pathways. In summary, TGP-N coloaded SNEDDS is a novel and effective treatment for refractory RA.
Collapse
Affiliation(s)
- Biao Qu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China ,grid.259384.10000 0000 8945 4455Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China
| | - Xiao-lin Wang
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China ,grid.259384.10000 0000 8945 4455School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR China
| | - De-chong Zheng
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China ,grid.259384.10000 0000 8945 4455Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China
| | - Chu-tian Mai
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China ,grid.259384.10000 0000 8945 4455Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR China
| | - Zhong-qiu Liu
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, School of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR, China. .,Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR, China.
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR, China. .,School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China.
| |
Collapse
|
15
|
Mahmood A, Haneef R, Al Meslamani AZ, Bostanudin MF, Sohail M, Sarfraz M, Arafat M. Papain-Decorated Mucopenetrating SEDDS: A Tentative Approach to Combat Absorption Issues of Acyclovir via the Oral Route. Pharmaceutics 2022; 14:pharmaceutics14081584. [PMID: 36015210 PMCID: PMC9412565 DOI: 10.3390/pharmaceutics14081584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the current study was to enhance the oral bioavailability of Acyclovir (ACV) based on the papain-functionalized self-emulsifying drug delivery systems (SEDDS). The optimum control SEDDS formulation comprised of kolliphore (40%), transcutol (30%), propylene glycol (20%) and oleoyl chloride (10%). However, in the targeted SEDDS formulation, oleoyl chloride was replaced with oleoyl chloride-papain (OC-PAP) conjugate that was synthesized via an amide bond formation between the acyl halide groups of oleoyl chloride and the amino group of papain. Prior to adding in the SEDDS formulation, the newly synthesized conjugate was evaluated quantitatively by a Bradford assay that demonstrated 45 µg of papain contents per mg of the conjugate. Moreover, the conjugate formation was qualitatively confirmed through FTIR analysis and thin layer chromatography. ACV (a BCS class III drug) was incorporated into the SEDDS formulations after being hydrophobically ion paired with sodium deoxycholate, thereby making it lipophilic. The drug-loaded formulations were emulsified in the 0.1 M phosphate buffer (pH 6.8) and evaluated in vitro with respect to drug release and rabbit mucosal permeation studies. Both the formulations illustrated a very comparable drug release over a period of 4 h, afterwards, the OC-PAP-based formulation demonstrated a more sustaining effect. The extent of mucus diffusion evaluated via the silicon tube method demonstrated a 4.92-fold and a 1.46-fold higher penetration of the drug, a 3.21-fold and a 1.56-fold higher permeation through the rabbit intestinal mucus layer, and a 22.94-fold and a 2.27-fold higher retention of the drug over the intact mucosa of rabbit intestine, illustrated by OC-PAP-based nanoemulsions compared to the drug-free solution and controlled nanoemulsion, respectively. According to these in vitro results, papain-functionalized SEDDS is a promising approach for the oral delivery of ACV and many other drugs with oral bioavailability issues, however, in vivo studies in this respect have to be employed before making a comprehensive conclusion.
Collapse
Affiliation(s)
- Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi P.O. Box 112612, United Arab Emirates; (A.Z.A.M.); (M.F.B.)
- AAU Health and Biomedical Research Center (HBRC), Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates; (M.S.); (M.A.)
- Correspondence:
| | - Rabbia Haneef
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.H.); (M.S.)
| | - Ahmad Z. Al Meslamani
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi P.O. Box 112612, United Arab Emirates; (A.Z.A.M.); (M.F.B.)
- AAU Health and Biomedical Research Center (HBRC), Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates; (M.S.); (M.A.)
| | - Mohammad F. Bostanudin
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi P.O. Box 112612, United Arab Emirates; (A.Z.A.M.); (M.F.B.)
- AAU Health and Biomedical Research Center (HBRC), Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates; (M.S.); (M.A.)
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.H.); (M.S.)
| | - Muhammad Sarfraz
- AAU Health and Biomedical Research Center (HBRC), Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates; (M.S.); (M.A.)
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Mosab Arafat
- AAU Health and Biomedical Research Center (HBRC), Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates; (M.S.); (M.A.)
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| |
Collapse
|
16
|
Malkawi A, Alrabadi N, Haddad R, Malkawi A, Khaled K, Ovenseri AC. Development of Self-Emulsifying Drug Delivery Systems (SEDDSs) Displaying Enhanced Permeation of the Intestinal Mucus Following Sustained Release of Prototype Thiol-Based Mucolytic Agent Load. Molecules 2022; 27:4611. [PMID: 35889482 PMCID: PMC9315686 DOI: 10.3390/molecules27144611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, mucoactive self-emulsifying drug delivery systems (SEDDSs) based on sustained release of N-acetylcysteine (NAC) were developed for providing effective intestinal mucopermeation. Polymeric ionic complexes of NAC were formed with polyethyleneimine (PEI), Eudragit E 100, and Eudragit RS 100 and loaded into a novel SEDDS. The SEDDSs exhibited a stable average size of 75 ± 12 nm (polydispersity index (PDI) < 0.3) and showed a rise in the zeta potential from −17.31 mV to −7.72 mV. On Caco-2 cells, SEDDSs at 1−3% were non-cytotoxic. An average of 91.8 ± 5.4% NAC was released from SEDDSs containing Eudragit E 100 (p ≤ 0.05) and Eudragit RS 100 (p ≤ 0.001) complexes at a significantly slower rate within 80 min, whereas the SEDDS containing PEI released NAC in a matter of seconds. Similarly, the SEDDS complexes revealed a time-dependent reduction in mucus dynamic viscosity of 52.6 ± 19.9%. Consequently, as compared with a blank SEDDS, mucodiffusion revealed about 2- and 1.8-fold significantly greater mucopermeation of SEDDSs anchoring Eudragit E 100−NAC and RS 100−NAC complexes (p ≤ 0.05), respectively. The mucoactive SEDDSs, which steadily released NAC while permeating the mucus, were linked to a significantly increased mucopermeation in vitro as a result of optimal mucolytic targeting.
Collapse
Affiliation(s)
- Ahmad Malkawi
- Faculty of Pharmacy, Cyprus International University, Nicosia 99258, Cyprus; (K.K.); (A.C.O.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, Queen Alya Airport Street, Amman 11622, Jordan
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Razan Haddad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (R.H.); (A.M.)
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, AL-Ahliyya Amman University, Amman 19328, Jordan
| | - Azhar Malkawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (R.H.); (A.M.)
| | - Khaled Khaled
- Faculty of Pharmacy, Cyprus International University, Nicosia 99258, Cyprus; (K.K.); (A.C.O.)
| | | |
Collapse
|
17
|
Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop‐Schnürch A. Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102451. [PMID: 34773391 PMCID: PMC8728822 DOI: 10.1002/advs.202102451] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Indexed: 05/03/2023]
Abstract
Advances in nanotechnology have generated a broad range of nanoparticles (NPs) for numerous biomedical applications. Among the various properties of NPs are functionalities being related to thiol substructures. Numerous biological processes that are mediated by cysteine or cystine subunits of proteins representing the workhorses of the bodies can be transferred to NPs. This review focuses on the interface between thiol chemistry and NPs. Pros and cons of different techniques for thiolation of NPs are discussed. Furthermore, the various functionalities gained by thiolation are highlighted. These include overall bio- and mucoadhesive, cellular uptake enhancing, and permeation enhancing properties. Drugs being either covalently attached to thiolated NPs via disulfide bonds or being entrapped in thiolated polymeric NPs that are stabilized via inter- and intrachain crosslinking can be released at the diseased tissue or in target cells under reducing conditions. Moreover, drugs, targeting ligands, biological analytes, and enzymes bearing thiol substructures can be immobilized on noble metal NPs and quantum dots for therapeutic, theranostic, diagnostic, biosensing, and analytical reasons. Within this review a concise summary and analysis of the current knowledge, future directions, and potential clinical use of thiolated NPs are provided.
Collapse
Affiliation(s)
- Nathalie Hock
- Thiomatrix Forschungs und Beratungs GmbHTrientlgasse 65Innsbruck6020Austria
| | | | - Sam Aspinall
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Nunzio Denora
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari “Aldo Moro”Bari70125Italy
| | - Vitaliy V. Khutoryanskiy
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology, Institute of PharmacyUniversity of InnsbruckInnrain 80/82Innsbruck6020Austria
| |
Collapse
|
18
|
Malkawi A, Alrabadi N, Kennedy RA. Dual-Acting Zeta-Potential-Changing Micelles for Optimal Mucus Diffusion and Enhanced Cellular Uptake after Oral Delivery. Pharmaceutics 2021; 13:pharmaceutics13070974. [PMID: 34199091 PMCID: PMC8309066 DOI: 10.3390/pharmaceutics13070974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
Context: Overcoming the intestinal mucosal barrier can be a challenge in drug delivery. Nanoemulsions with negative zeta potentials can effectively permeate the mucus layer, but those with positive zeta potentials are better taken up by cells; a nanoemulsion with capricious zeta potential from negative to positive can achieve both good permeation and high uptake. Objective: This study aimed to develop dual-acting zeta-potential-amphoteric micelles enabling optimal muco-permeation and enhancement of cellular uptake. Methods: A micellar pre-concentrate was prepared from 15% Labrasol, 15% Kolliphor EL, 30% Kolliphor RH 40, and 40% dimethylsulfoxide. The micellar pre-concentrate was loaded with anionic stearic acid (SA), forming ionic complexes with cationic polymers at a ratio of 25:1 with Eudragit RS 100 and Eudragit RL 100. Blank micelles and those containing complexes were separately diluted in physiological buffers and examined for their droplet sizes, polydispersity indices (PDIs), zeta potentials, and cytotoxicity. The SA release from the micellar complexes was evaluated in 0.1 mM phosphate buffer (pH 6.8) containing 0.001% fluorescein, thereby enabling an instant decrease in fluorescence. Finally, the micelles were loaded with the model drug fluorescein diacetate (FDA) and evaluated for their muco-permeation behavior and cellular uptake. Results: The micellar dilutions formed micelles at the critical micelle concentration (CMC) of 312 µg/mL and showed a uniform average droplet size of 14.2 nm, with a PDI < 0.1. Micellar dilutions were non-cytotoxic when used at 1:100 in a physiological medium. Micelles loaded with ionic complexes achieved a sustained release of 95.5 ± 3.7% of the SA in 180 min. Moreover, the zeta potential of the complex-loaded micelles shifted from −5.4 to +1.8 mV, whereas the blank micelles showed a stabilized zeta potential of −10 mV. Furthermore, the negatively charged blank and complex-loaded micelles exhibited comparable muco-permeation, with an overall average of 58.2 ± 3.7% diffusion of FDA. The complex-loaded micellar droplets, however, provided a significantly higher cellular uptake of the model drug FDA (2.2-fold, p ≤ 0.01) Conclusion: Due to undergoing a shift in zeta potential, the modified micelles significantly enhanced cellular uptake while preserving mucus-permeating properties.
Collapse
Affiliation(s)
- Ahmad Malkawi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, Queen Alya Airport Street, Amman 11622, Jordan
- Correspondence: ; Tel.: +43-660-310-5481
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Ross Allan Kennedy
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia;
| |
Collapse
|
19
|
Dave RS, Goostrey TC, Ziolkowska M, Czerny-Holownia S, Hoare T, Sheardown H. Ocular drug delivery to the anterior segment using nanocarriers: A mucoadhesive/mucopenetrative perspective. J Control Release 2021; 336:71-88. [PMID: 34119558 DOI: 10.1016/j.jconrel.2021.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022]
Abstract
There is a growing demand for effective treatments for ocular conditions that improve patient compliance and reduce side-effects. While methods such as implants and injections have proven effective, topical administration remains the method of choice for the delivery of therapeutics to the anterior segment of the eye. However, topical administration suffers from multiple drawbacks including low bioavailability of the target therapeutic, systemic toxicity, and the requirement for high therapeutic doses due to the effective clearance mechanisms that exist in the eye. Nanoparticles that have tunable mucoadhesion and/or mucopenetration offer outstanding potential to overcome the anatomical and physiological barriers present to improve ocular bioavailability, reduce toxicity, and increase ocular retention, among other benefits. The current review highlights recent advances in the field of developing nanocarriers with tunable mucoadhesion and mucopenetration for drug delivery to the eye.
Collapse
Affiliation(s)
- Ridhdhi S Dave
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Taylor C Goostrey
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Maya Ziolkowska
- Department of Integrated Biomedical Engineering & Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Sofia Czerny-Holownia
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
20
|
Charbaji R, Kar M, Theune LE, Bergueiro J, Eichhorst A, Navarro L, Graff P, Stumpff F, Calderón M, Hedtrich S. Design and Testing of Efficient Mucus-Penetrating Nanogels-Pitfalls of Preclinical Testing and Lessons Learned. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007963. [PMID: 33719187 DOI: 10.1002/smll.202007963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Mucosal surfaces pose a challenging environment for efficient drug delivery. Various delivery strategies such as nanoparticles have been employed so far; yet, still yielding limited success. To address the need of efficient transmucosal drug delivery, this report presents the synthesis of novel disulfide-containing dendritic polyglycerol (dPG)-based nanogels and their preclinical testing. A bifunctional disulfide-containing linker is coupled to dPG to act as a macromolecular crosslinker for poly-N-isopropylacrylamide (PNIPAM) and poly-N-isopropylmethacrylamide (PNIPMAM) in a precipitation polymerization process. A systematic analysis of the polymerization reveals the importance of a careful polymer choice to yield mucus-degradable nanogels with diameters between 100 and 200 nm, low polydispersity, and intact disulfide linkers. Absorption studies in porcine intestinal tissue and human bronchial epithelial models demonstrate that disulfide-containing nanogels are highly efficient in overcoming mucosal barriers. The nanogels efficiently degrade and deliver the anti-inflammatory biomacromolecule etanercept into epithelial tissues yielding local anti-inflammatory effects. Over the course of this work, several problems are encountered due to a limited availability of valid test systems for mucosal drug-delivery systems. Hence, this study also emphasizes how critical a combined and multifaceted approach is for the preclinical testing of mucosal drug-delivery systems, discusses potential pitfalls, and provides suggestions for solutions.
Collapse
Affiliation(s)
- Rawan Charbaji
- Freie Universität Berlin, Institute for Pharmaceutical Sciences, Königin-Luise-Strasse 2-4, 14195, Berlin, Germany
| | - Mrityunjoy Kar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustr. 3, 14195, Berlin, Germany
| | - Loryn E Theune
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustr. 3, 14195, Berlin, Germany
| | - Julián Bergueiro
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustr. 3, 14195, Berlin, Germany
| | - Anne Eichhorst
- Freie Universität Berlin, Institute for Pharmaceutical Sciences, Königin-Luise-Strasse 2-4, 14195, Berlin, Germany
| | - Lucila Navarro
- Freie Universität Berlin, Institute for Pharmaceutical Sciences, Königin-Luise-Strasse 2-4, 14195, Berlin, Germany
| | - Patrick Graff
- Freie Universität Berlin, Institute for Pharmaceutical Sciences, Königin-Luise-Strasse 2-4, 14195, Berlin, Germany
| | - Friederike Stumpff
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Marcelo Calderón
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustr. 3, 14195, Berlin, Germany
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Sarah Hedtrich
- Freie Universität Berlin, Institute for Pharmaceutical Sciences, Königin-Luise-Strasse 2-4, 14195, Berlin, Germany
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, V6T1Z3, Canada
| |
Collapse
|
21
|
Malkawi A, Kennedy R, Asim MH, Arshad S. WITHDRAWN: Self-Emulsifying Drug Delivery Systems: Mucolytic Action of N-acetylcysteine (NAC)-Polymer Hydrophobic Complexes for Effective Mucopermeation. J Pharm Sci 2021:S0022-3549(21)00089-7. [PMID: 33610567 DOI: 10.1016/j.xphs.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Ahmad Malkawi
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ross Kennedy
- School of Biomedical Science, Charles Sturt University, Wagga Wagga, New South Wales, 2650, Australia
| | | | - Shumaila Arshad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
22
|
Powell LC, Abdulkarim M, Stokniene J, Yang QE, Walsh TR, Hill KE, Gumbleton M, Thomas DW. Quantifying the effects of antibiotic treatment on the extracellular polymer network of antimicrobial resistant and sensitive biofilms using multiple particle tracking. NPJ Biofilms Microbiomes 2021; 7:13. [PMID: 33547326 PMCID: PMC7864955 DOI: 10.1038/s41522-020-00172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/24/2020] [Indexed: 01/30/2023] Open
Abstract
Novel therapeutics designed to target the polymeric matrix of biofilms requires innovative techniques to accurately assess their efficacy. Here, multiple particle tracking (MPT) was developed to characterize the physical and mechanical properties of antimicrobial resistant (AMR) bacterial biofilms and to quantify the effects of antibiotic treatment. Studies employed nanoparticles (NPs) of varying charge and size (40-500 nm) in Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus (MRSA) biofilms and also in polymyxin B (PMB) treated Escherichia coli biofilms of PMB-sensitive (PMBSens) IR57 and PMB-resistant (PMBR) PN47 strains. NP size-dependent and strain-related differences in the diffusion coefficient values of biofilms were evident between PAO1 and MRSA. Dose-dependent treatment effects induced by PMB in PMBSens E. coli biofilms included increases in diffusion and creep compliance (P < 0.05), not evident in PMB treatment of PMBR E. coli biofilms. Our results highlight the ability of MPT to quantify the diffusion and mechanical effects of antibiotic therapies within the AMR biofilm matrix, offering a valuable tool for the pre-clinical screening of anti-biofilm therapies.
Collapse
Affiliation(s)
- Lydia C Powell
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, UK.
- Centre of Nanohealth, Swansea University Medical School, Swansea University, Swansea, UK.
| | - Muthanna Abdulkarim
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| | - Joana Stokniene
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, UK
| | - Qiu E Yang
- Medical Microbiology and Infectious Disease, School of Medicine, Cardiff University, Cardiff, UK
| | - Timothy R Walsh
- Medical Microbiology and Infectious Disease, School of Medicine, Cardiff University, Cardiff, UK
| | - Katja E Hill
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, UK
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - David W Thomas
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, UK
| |
Collapse
|
23
|
Reboredo C, González-Navarro CJ, Martínez-Oharriz C, Martínez-López AL, Irache JM. Preparation and evaluation of PEG-coated zein nanoparticles for oral drug delivery purposes. Int J Pharm 2021; 597:120287. [PMID: 33524523 DOI: 10.1016/j.ijpharm.2021.120287] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 11/29/2022]
Abstract
The aim was to produce PEG-coated nanoparticles (NP-PEG), with mucus-permeating properties, for oral drug delivery purposes by using simple procedures and regulatory-approved compounds in order to facilitate a potential clinical development. For this purpose, zein nanoparticles were prepared by desolvation and, then, coated by incubation with PEG 35,000. The resulting nanocarriers displayed a mean size of about 200 nm and a negative zeta potential. The presence of PEG on the surface of nanoparticles was evidenced by electron microscopy and confirmed by FTIR analysis. Likely, the hydrophobic surface of zein nanoparticles (NP) was significantly reduce by their coating with PEG. This increase of the hydrophilicity of PEG-coated nanoparticles was associated with an important increase of their mobility in pig intestinal mucus. In laboratory animals, NP-PEG (fluorescently labelled with Lumogen® Red 305) displayed a different behavior when compared with bare nanoparticles. After oral administration, NP appeared to be trapped in the mucus mesh, whereas NP-PEG were capable of crossing the protective mucus layer and reach the epithelium. Finally, PEG-coated zein nanoparticles, prepared by a simple and reproducible method without employing reactive reagents, may be adequate carriers for promoting the oral bioavailability of biomacromolecules and other biologically active compounds with low permeability properties.
Collapse
Affiliation(s)
- C Reboredo
- Department of Chemistry and Pharmaceutical Technology, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain
| | - C J González-Navarro
- Centre for Nutrition Research, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain
| | - C Martínez-Oharriz
- Department of Chemistry, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain
| | - A L Martínez-López
- Department of Chemistry and Pharmaceutical Technology, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain
| | - J M Irache
- Department of Chemistry and Pharmaceutical Technology, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain.
| |
Collapse
|
24
|
Buya AB, Beloqui A, Memvanga PB, Préat V. Self-Nano-Emulsifying Drug-Delivery Systems: From the Development to the Current Applications and Challenges in Oral Drug Delivery. Pharmaceutics 2020; 12:E1194. [PMID: 33317067 PMCID: PMC7764143 DOI: 10.3390/pharmaceutics12121194] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately one third of newly discovered drug molecules show insufficient water solubility and therefore low oral bio-availability. Self-nano-emulsifying drug-delivery systems (SNEDDSs) are one of the emerging strategies developed to tackle the issues associated with their oral delivery. SNEDDSs are composed of an oil phase, surfactant, and cosurfactant or cosolvent. SNEDDSs characteristics, their ability to dissolve a drug, and in vivo considerations are determinant factors in the choice of SNEDDSs excipients. A SNEDDS formulation can be optimized through phase diagram approach or statistical design of experiments. The characterization of SNEDDSs includes multiple orthogonal methods required to fully control SNEDDS manufacture, stability, and biological fate. Encapsulating a drug in SNEDDSs can lead to increased solubilization, stability in the gastro-intestinal tract, and absorption, resulting in enhanced bio-availability. The transformation of liquid SNEDDSs into solid dosage forms has been shown to increase the stability and patient compliance. Supersaturated, mucus-permeating, and targeted SNEDDSs can be developed to increase efficacy and patient compliance. Self-emulsification approach has been successful in oral drug delivery. The present review gives an insight of SNEDDSs for the oral administration of both lipophilic and hydrophilic compounds from the experimental bench to marketed products.
Collapse
Affiliation(s)
- Aristote B. Buya
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| | - Patrick B. Memvanga
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| |
Collapse
|
25
|
Adapted nano-carriers for gastrointestinal defense components: surface strategies and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102277. [DOI: 10.1016/j.nano.2020.102277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022]
|
26
|
Routray SB, Patra CN, Raju R, Panigrahi KC, Jena GK. Lyophilized SLN of Cinnacalcet HCl: BBD enabled optimization, characterization and pharmacokinetic study. Drug Dev Ind Pharm 2020; 46:1080-1091. [PMID: 32486863 DOI: 10.1080/03639045.2020.1775632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: The objective of the present research is to formulate solid lipid nanoparticles (SLN) of CH to improve its oral bioavailability.Methods: Cinnacalcet hydrochloride (CH) exhibits poor oral bioavailability of 20 to 25% because of low aqueous solubility and first pass metabolism. The SLN formulations were optimized using Box-Behnken Design. SLN formulation was prepared using hot homogenization technique followed by ultra-sonication and evaluated. The optimized SLN formulation was lyophilized to improve the stability of the formulation further.Results: Compritol 888 ATO (COM), Soya lecithin (SL) and poloxamer 188 (POL) were selected as lipid, surfactant and co-surfactant respectively. For optimistaion, the desirable goal was fixed for variour responses vis-a-vis entrapment efficiency (EE), particle size (PS) and (time taken for diffusion of 85% drug) T85%. The optimized single dose of SLN obtained using BBD consisting of 30 mg of CH, 100 mg of COM, 150 mg of SL and 0.1% w/v of POL. The pharmacokinetic study revealed that optimized SLN and lyophilized SLN were found to increase the oral bioavailability nearly two times compared to an aqueous suspension of pure drug.Conclusion: Thus lyophilized SLN formulation explicated the potential of lipid-based nanoparticles as a potential carrier in improving the oral delivery and stability of CH.
Collapse
Affiliation(s)
- Sudhansu Bhusan Routray
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| | - Ch Niranjan Patra
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| | - Rajarani Raju
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| | - Kahnu Charan Panigrahi
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| | - Goutam Kumar Jena
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| |
Collapse
|
27
|
Wright L, Barnes TJ, Prestidge CA. Oral delivery of protein-based therapeutics: Gastroprotective strategies, physiological barriers and in vitro permeability prediction. Int J Pharm 2020; 585:119488. [PMID: 32504774 DOI: 10.1016/j.ijpharm.2020.119488] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/08/2023]
Abstract
The number of biological molecules emerging as therapeutics is growing exponentially due to their higher specificity and tolerability profiles compared to small molecules. Despite this, their traditionally parenteral delivery often results in poor patient compliance and incomplete treatment. Current research is focussed on developing effective oral delivery strategies to facilitate administration of these biomolecules, however no universal method exists to simultaneously provide gastric protection as well as enhance transport across the gastrointestinal epithelium. Furthermore, for efficient formulation development it is imperative that we can reliably analyse permeability of biomolecules through the gastrointestinal tract, highlighting the importance of the continual development and ongoing evaluation of in vitro predictive permeability tools. Here, we review the physiological obstacles associated with peptide and protein delivery throughout the gastrointestinal tract. Furthermore, we highlight methods utilised to circumvent these barriers and promote improved intestinal permeability. Lastly, we explore in vitro models employed to predict epithelial transport. Key findings highlight the need to carefully understand gastrointestinal physiology, allowing specific engineering of oral delivery systems for biomolecules. Significant importance is placed upon understanding enzymatic degradation susceptibility as well as uptake mechanisms for particulate and protein-based therapeutics for the development of successful oral protein delivery platforms.
Collapse
Affiliation(s)
- Leah Wright
- School of Pharmacy and Medical Science, University of South Australia, 5001, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UniSA, Australia
| | - Timothy J Barnes
- School of Pharmacy and Medical Science, University of South Australia, 5001, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Science, University of South Australia, 5001, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UniSA, Australia.
| |
Collapse
|
28
|
Prüfert F, Fischer F, Leichner C, Zaichik S, Bernkop-Schnürch A. Development and In Vitro Evaluation of Stearic Acid Phosphotyrosine Amide as New Excipient for Zeta Potential Changing Self-Emulsifying Drug Delivery Systems. Pharm Res 2020; 37:79. [PMID: 32253523 PMCID: PMC7136179 DOI: 10.1007/s11095-020-02802-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/18/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Development of zeta potential changing SEDDS containing newly synthesized derivative stearic acid phosphotyrosine amide. METHODS Stearoyl chloride was conjugated with phosphotyrosine, which is substrate for the brush border enzyme intestinal alkaline phosphate. The synthesized derivative was implemented in different SEDDS formulations and the zeta potential changing properties and the concluding mucus diffusion abilities were evaluated. RESULTS Stearic acid phosphotyrosine amide was successfully synthesized and incorporated into SEDDS. A SEDDS formulation containing the new derivative showed a zeta potential of -14 mV before, and + 2 mV after enzymatic cleavage by intestinal alkaline phosphatase. Experiments on a Caco-2 monolayer demonstrated that the phosphate cannot only be cleaved by isolated enzyme, but also by enzyme, which was expressed by cells. The mucus diffusion abilities of the untreated, negatively charged SEDDS were significantly higher compared to the enzymatically cleaved, positively charged SEDDS. CONCLUSION The developed stearic acid phosphotyrosine represents a promising excipient for zeta potential changing SEDDS. Graphical Abstract.
Collapse
Affiliation(s)
- Felix Prüfert
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Franz Fischer
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Christina Leichner
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Sergey Zaichik
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
29
|
Taipaleenmäki E, Städler B. Recent Advancements in Using Polymers for Intestinal Mucoadhesion and Mucopenetration. Macromol Biosci 2020; 20:e1900342. [PMID: 32045102 DOI: 10.1002/mabi.201900342] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Oral administration of actives is the most desired form of delivery, but the formulations need to overcome a variety of barriers including the intestinal mucus. This feature article summarizes the developments from the past 2-3 years in this context focusing on polymer-based formulations. The progress in assembling mucopenetrating nanoparticles is outlined considering coatings using noninteracting polymers as well as virus-like particles and charge-shifting particles. Next, polymers and their modification to enhance mucoadhesion are discussed, followed by providing examples of double-encapsulation systems that aim to combine mucopenetration with mucoadhesion in the same formulation. Finally, a short outlook is provided highlighting a few of the most pressing challenges to address.
Collapse
Affiliation(s)
- Essi Taipaleenmäki
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
30
|
Xie Z, Zhang Z, Lv H. Rapamycin loaded TPGS-Lecithins-Zein nanoparticles based on core-shell structure for oral drug administration. Int J Pharm 2019; 568:118529. [DOI: 10.1016/j.ijpharm.2019.118529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022]
|
31
|
Mahmood A, Bernkop-Schnürch A. SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs. Adv Drug Deliv Rev 2019; 142:91-101. [PMID: 29981355 DOI: 10.1016/j.addr.2018.07.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
Since the development of self-emulsifying drug delivery systems (SEDDS) in 1980's, they attract the attention of researchers in order to confront the challenge of poor water-solubility of orally given drugs. Within recent years, SEDDS were also discovered for oral administration of hydrophilic macromolecular drugs such as peptides, proteins, polysaccharides and pDNA. Due to hydrophobic ion pairing (HIP) with oppositely charged lipophilic auxiliary agents the resulting complexes can be incorporated in the lipophilic phase of SEDDS. Depending on the solubility of the complex in the SEDDS pre-concentrate and in the release medium drug release can be adjusted on purpose by choosing more or less lipophilic auxiliary agents in appropriate quantities for HIP. Within the oily droplets formed in the GI-tract drugs are protected towards degradation by proteases and nucleases and thiol-disulfide exchange reactions with dietary proteins. The oily droplets can be made mucoadhesive or highly mucus permeating depending on their target site. Furthermore, even their cellular uptake properties can be tuned by adjusting their zeta potential or decorating them with cell penetrating peptides. The potential of SEDDS for oral administration of hydrophilic macromolecular drugs could meanwhile be demonstrated via various in vivo studies showing a bioavailability at least in the single digit percentage range. Owing to these properties advanced SEDDS turned out to be a game changing approach for the oral administration of hydrophilic macromolecular drugs.
Collapse
Affiliation(s)
- Arshad Mahmood
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmacy, COMSATS Institute of Information Technology Abbottabad, Abbottabad 22060, Pakistan
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
32
|
Abdulkarim M, Sharma PK, Gumbleton M. Self-emulsifying drug delivery system: Mucus permeation and innovative quantification technologies. Adv Drug Deliv Rev 2019; 142:62-74. [PMID: 30974131 DOI: 10.1016/j.addr.2019.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022]
Abstract
Mucus is a dynamic barrier which covers and protects the underlying mucosal epithelial membrane against bacteria and foreign particles. This protection mechanism extends to include therapeutic macromolecules and nanoparticles (NPs) through trapping of these particles. Mucus is not only a physical barrier that limiting particles movements based on their sizes but it selectively binds with particles through both hydrophilic and lipophilic interactions. Therefore, nano-carriers for mucosal delivery should be designed to eliminate entrapment by the mucus barrier. For this reason, different strategies have been approached for both solid nano-carriers and liquid core nano-carriers to synthesise muco-diffusive nano-carrier. Among these nano-strategies, Self-Emulsifying Drug Delivery System (SEDDS) was recognised as very promising nano-carrier for mucus delivery. The system was introduced to enhance the dissolution and bioavailability of orally administered insoluble drugs. SEDDS has shown high stability against intestinal enzymatic activity and more importantly, relatively rapid permeation characteristics across mucus barrier. The high diffusivity of SEDDS has been tested using various in vitro measurement techniques including both bulk and individual measurement of droplets diffusion within mucus. The selection and processing of an optimum in vitro technique is of great importance to avoid misinterpretation of the diffusivity of SEDDS through mucus barrier. In conclusion, SEDDS is a system with high capacity to diffuse through intestinal mucus even though this system has not been studied to the same extent as solid nano-carriers.
Collapse
Affiliation(s)
- Muthanna Abdulkarim
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Peeyush Kumar Sharma
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK; Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
33
|
Inchaurraga L, Martínez-López AL, Abdulkarim M, Gumbleton M, Quincoces G, Peñuelas I, Martin-Arbella N, Irache JM. Modulation of the fate of zein nanoparticles by their coating with a Gantrez® AN-thiamine polymer conjugate. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100006. [PMID: 31517271 PMCID: PMC6733281 DOI: 10.1016/j.ijpx.2019.100006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/01/2023]
Abstract
The aim of this work was to evaluate the mucus-permeating properties of nanocarriers using zein nanoparticles (NPZ) coated with a Gantrez® AN-thiamine conjugate (GT). NPZ were coated by incubation at different GT-to-zein ratios: 2.5% coating with GT (GT-NPZ1), 5% (GT-NPZ2) and 10% (GT-NPZ3). During the process, the GT conjugate formed a polymer layer around the surface of zein nanoparticles. For GT-NPZ2, the thickness of this corona was estimated between 15 and 20 nm. These nanocarriers displayed a more negative zeta potential than uncoated NPZ. The diffusivity of nanoparticles was evaluated in pig intestinal mucus by multiple particle tracking analysis. GT-NPZ2 displayed a 28-fold higher diffusion coefficient within the mucus layer than NPZ particles. These results align with in vivo biodistribution studies in which NPZ displayed a localisation restricted to the mucus layer, whereas GT-NPZ2 were capable of reaching the intestinal epithelium. The gastro-intestinal transit of mucoadhesive (NPZ) and mucus-permeating nanoparticles (GT-NPZ2) was also found to be different. Thus, mucoadhesive nanoparticles displayed a significant accumulation in the stomach of animals, whereas mucus-penetrating nanoparticles appeared to exit the stomach more rapidly to access the small intestine of animals.
Collapse
Affiliation(s)
- Laura Inchaurraga
- NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, University of Navarra, Spain
| | - Ana L Martínez-López
- NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, University of Navarra, Spain
| | - Muthanna Abdulkarim
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Gemma Quincoces
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Spain
| | - Ivan Peñuelas
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Spain
| | - Nekane Martin-Arbella
- NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, University of Navarra, Spain
| | - Juan M Irache
- NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, University of Navarra, Spain
| |
Collapse
|
34
|
Rohrer J, Lupo N, Bernkop-Schnürch A. Advanced formulations for intranasal delivery of biologics. Int J Pharm 2018; 553:8-20. [PMID: 30316796 DOI: 10.1016/j.ijpharm.2018.10.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The global biologics market has been ever increasing over the last decades and is predicted to top Euro 350 by 2020. Facing this scenario, the parenteral route of biologics administration as hitherto standard route is inconvenient for the future. Among the alternatives, the intranasal delivery of therapeutic biologicals seems to be most promising but researchers are still facing challenges as indicated by the scarce number of successfully marketed peptide drugs. AREAS COVERED This review article is a compilation of current research focusing on achievements in the field of auxiliary agents for biologics delivery. First, the key benefits of the nose as most promising alternative route of drug administration are highlighted. Then, the potential of the different auxiliary agents in preclinical research is in detail discussed. Moreover, the most used permeation enhancing agents, mucolytic agents, mucoadhesive agents, in situ gelling agents and enzyme inhibiting agents in the formulation of nasal drug delivery systems are described. Thus, the overall purpose of this review is to highlight recent achievements in nasal delivery of biologics and to encourage researchers to work in the direction of needle-free nasal administration of biologics. EXPERT OPINION The nasal epithelium is a promising route for biologics administration, which is reflected in a number of well-established products on the market treating chronic diseases as well as a large number of clinical trials currently in progress. The nasal route of drug administration might be a chance to improve therapy of biologics however break-through advances, especially for very complex molecules, such as antibodies, are still needed.
Collapse
Affiliation(s)
- Julia Rohrer
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Noemi Lupo
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, Austria.
| |
Collapse
|
35
|
Menzel C, Holzeisen T, Laffleur F, Zaichik S, Abdulkarim M, Gumbleton M, Bernkop-Schnürch A. In vivo evaluation of an oral self-emulsifying drug delivery system (SEDDS) for exenatide. J Control Release 2018; 277:165-172. [DOI: 10.1016/j.jconrel.2018.03.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/10/2018] [Accepted: 03/18/2018] [Indexed: 12/15/2022]
|
36
|
|
37
|
Bonengel S, Jelkmann M, Abdulkarim M, Gumbleton M, Reinstadler V, Oberacher H, Prüfert F, Bernkop-Schnürch A. Impact of different hydrophobic ion pairs of octreotide on its oral bioavailability in pigs. J Control Release 2018; 273:21-29. [DOI: 10.1016/j.jconrel.2018.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/15/2018] [Indexed: 01/26/2023]
|
38
|
Menzel C, Bernkop-Schnürch A. Enzyme decorated drug carriers: Targeted swords to cleave and overcome the mucus barrier. Adv Drug Deliv Rev 2018; 124:164-174. [PMID: 29079537 DOI: 10.1016/j.addr.2017.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/16/2017] [Accepted: 10/11/2017] [Indexed: 01/04/2023]
Abstract
The use of mucus permeating drug carrier systems being able to overcome the mucus barrier can lead to a remarkable enhancement in bioavailability. One promising approach is the design of mucolytic enzyme decorated carrier systems (MECS). These systems include micro- and nanoparticles as well as self-emulsifying drug delivery systems (SEDDS) decorated with mucin cleaving enzymes such as papain (PAP) or bromelain (BRO). MECS are able to cross the mucus barrier in a comparatively efficient manner by cleaving mucus substructures in front of them on their way to the epithelium. Thereby these enzymes hydrolyze peptide bonds of mucus glycoproteins forming tiny holes or passages through the mucus. In various in vitro and in vivo studies MECS proved to be superior in their mucus permeating properties over nanocarriers without enzyme decoration. PAP decorated nanoparticles, for instance, remained 3h after oral administration to an even 2.5-fold higher extend in rat small intestine than the corresponding undecorated nanoparticles permeating the intestinal mucus gel layer to a much lower degree. As MECS break up the mucus network only locally without destroying its overall protective barrier function, even long term treatments with such systems seem feasible. Within this review article we address different drug carrier systems decorated with various types of enzymes, their particular pros and cons and potential applications.
Collapse
Affiliation(s)
- Claudia Menzel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
39
|
Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm 2017; 532:555-572. [PMID: 28917986 PMCID: PMC5744044 DOI: 10.1016/j.ijpharm.2017.09.018] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
Mucus is a selective barrier to particles and molecules, preventing penetration to the epithelial surface of mucosal tissues. Significant advances in transmucosal drug delivery have recently been made and have emphasized that an understanding of the basic structure, viscoelastic properties, and interactions of mucus is of great value in the design of efficient drug delivery systems. Mucins, the primary non-aqueous component of mucus, are polymers carrying a complex and heterogeneous structure with domains that undergo a variety of molecular interactions, such as hydrophilic/hydrophobic, hydrogen bonds and electrostatic interactions. These properties are directly relevant to the numerous mucin-associated diseases, as well as delivering drugs across the mucus barrier. Therefore, in this review we discuss regional differences in mucus composition, mucus physicochemical properties, such as pore size, viscoelasticity, pH, and ionic strength. These factors are also discussed with respect to changes in mucus properties as a function of disease state. Collectively, the review seeks to provide a state of the art roadmap for researchers who must contend with this critical barrier to drug delivery.
Collapse
Affiliation(s)
- Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA.
| |
Collapse
|
40
|
Schattling P, Taipaleenmäki E, Zhang Y, Städler B. A Polymer Chemistry Point of View on Mucoadhesion and Mucopenetration. Macromol Biosci 2017; 17. [PMID: 28675773 DOI: 10.1002/mabi.201700060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/07/2017] [Indexed: 12/20/2022]
Abstract
Although oral is the preferred route of administration of pharmaceutical formulations, the long-standing challenge for medically active compounds to efficiently cross the mucus layer barrier limits its wider applicability. Efforts in nanomedicine to overcome this hurdle consider mucoadhesive and mucopenetrating drug carriers by selectively designing (macromolecular) building blocks. This review highlights and critically discusses recent strategies developed in this context including poly(ethylene glycol)-based modifications, cationic and thiolated polymers, as well as particles with high charge density, zeta-potential shifting ability, or mucolytic properties. The latest advances in ex vivo test platforms are also reviewed.
Collapse
Affiliation(s)
- Philipp Schattling
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav-Wieds Vej 14, 8000, Aarhus, Denmark
| | - Essi Taipaleenmäki
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav-Wieds Vej 14, 8000, Aarhus, Denmark
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav-Wieds Vej 14, 8000, Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav-Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
41
|
Turner JH, Wu J, Dorminy CA, Chandra RK. Safety and tolerability of surfactant nasal irrigation. Int Forum Allergy Rhinol 2017; 7:809-812. [DOI: 10.1002/alr.21959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/11/2017] [Accepted: 04/25/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Justin H. Turner
- Department of Otolaryngology-Head and Neck Surgery; Vanderbilt University Medical Center; Nashville TN
| | - Jeffanie Wu
- Department of Otolaryngology-Head and Neck Surgery; Vanderbilt University Medical Center; Nashville TN
| | - Cindy A. Dorminy
- Department of Otolaryngology-Head and Neck Surgery; Vanderbilt University Medical Center; Nashville TN
| | - Rakesh K. Chandra
- Department of Otolaryngology-Head and Neck Surgery; Vanderbilt University Medical Center; Nashville TN
| |
Collapse
|
42
|
Suchaoin W, Bernkop-Schnürch A. Nanocarriers protecting toward an intestinal pre-uptake metabolism. Nanomedicine (Lond) 2017; 12:255-269. [PMID: 28093952 DOI: 10.2217/nnm-2016-0331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pre-uptake metabolism within the GI tract is responsible for the poor oral bioavailability of numerous drugs. As nanocarriers function as a 'shield', protecting incorporated drugs from enzymatic attack, there is an increasing interest in utilizing them as a tool for overcoming drug degradation. Degradation of carriers resulting in the release of incorporated drugs, mucus permeation, enzyme inhibitory properties and their toxicity are crucial factors that must be taken into account when designing proper nanocarriers. The use of polymer- and lipid-based nanocarriers as protective vehicles are discussed within this review. Lipid-based carriers and novel mucopenetrating particles seem to have a great potential in avoiding metabolizing enzymes. Accordingly, nanocarriers are promising tools for improving the bioavailability of drugs, being sensitive to a pre-uptake metabolism.
Collapse
Affiliation(s)
- Wongsakorn Suchaoin
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
43
|
Suchaoin W, Pereira de Sousa I, Netsomboon K, Lam HT, Laffleur F, Bernkop-Schnürch A. Development and in vitro evaluation of zeta potential changing self-emulsifying drug delivery systems for enhanced mucus permeation. Int J Pharm 2016; 510:255-62. [DOI: 10.1016/j.ijpharm.2016.06.045] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/03/2016] [Accepted: 06/17/2016] [Indexed: 12/31/2022]
|
44
|
Leonaviciute G, Zupančič O, Prüfert F, Rohrer J, Bernkop-Schnürch A. Impact of lipases on the protective effect of SEDDS for incorporated peptide drugs towards intestinal peptidases. Int J Pharm 2016; 508:102-8. [DOI: 10.1016/j.ijpharm.2016.04.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
|