1
|
Boza IAF, da Silva SL, Guedes NB, Bazzo GC, Stulzer HK. Pediatric Formulation Optimization Using a Rational Design: Exploring Amorphous Solid Dispersion Technology with Terbinafine Hydrochloride as a Case Study. AAPS PharmSciTech 2025; 26:40. [PMID: 39821556 DOI: 10.1208/s12249-024-03012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
Developing orally administered pediatric formulations presents significant challenges due to the unique characteristics of pediatric patients. Terbinafine hydrochloride (TER), a powerful antifungal agent, is effective against various fungal infections, including Tinea capitis, which is common in children. However, its low aqueous solubility necessitates innovative pharmaceutical strategies to enhance its effectiveness. This study describes a rational approach to selecting suitable carriers, approved for use in children, to increase the apparent solubility of TER and to guide the development of amorphous solid dispersions containing this drug. Assessments of solubility parameters, equilibrium solubility measurements, and calculations of pediatric dose numbers guided formulation development using theoretical and experimental methodologies. Carriers like Plasdone S-360 ULTRA®, HPMCAS L, and Soluplus® demonstrated favorable solubility parameter values with TER, indicating potential for drug solubilization. The solubility of TER was strongly dependent on pH. In buffer pH 6.5 containing 10% (w/v) of Soluplus®, TER presented the highest solubility value. The solid-state characterization techniques employed to assess the precipitate formed after equilibrium solubility studies during preformulation demonstrated that there were no phase transitions and no significant interactions between the drug and the evaluated carriers. Furthermore, the results demonstrate that Soluplus® achieved the lowest dose number (0.23) for pediatric patients over 6 years old. So, it was selected for preparing the amorphous solid dispersion via spray drying, which significantly enhanced the apparent solubility of TER while maintaining prolonged supersaturation, offering a promising alternative for developing solid formulations of this drug, particularly for pediatric patients, as it aims to improve oral bioavailability.
Collapse
Affiliation(s)
- Izabelle Amorim Ferreira Boza
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Stéfani Laise da Silva
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Nicolly Bittencourt Guedes
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Giovana Carolina Bazzo
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Hellen Karine Stulzer
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
2
|
Roberts MS, Zhang Q, Mackenzie L, Medley GA. Quantitative structure permeability relationships for phenolic compounds applied to human epidermal membranes in various solvents. Eur J Pharm Sci 2025; 204:106914. [PMID: 39299466 DOI: 10.1016/j.ejps.2024.106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE This study examined how solvent-skin-solute interactions influenced the human epidermal permeation of three similar-sized phenolic compounds applied in a series of different solvents. METHODS Human epidermal permeation fluxes and lag times of three phenolic compounds were assessed in Franz cells for a range of solvents varying in molecular size and solubility parameters. In order to develop a mechanistic understanding of the determinants of the permeation findings, the solubility of the compounds in solvents and stratum corneum, the extent of solvent uptake by the stratum corneum and the impact of the solvents on skin hydration and transepidermal water loss were also measured. RESULTS Maximum epidermal fluxes and lag times varied greatly with the various solvent used. Markedly enhanced epidermal permeability fluxes, prolonged lag times and reduced diffusivities of the compounds were evident for many of the solvents. A solvent induced increase in stratum corneum solubility was associated with the uptake of solvent containing dissolved compound into the stratum corneum intercellular lipids, corneodesmosomes, lacunae and corneocytes. This uptake was dependent on both the solvent molecular size and the solubility of the compounds in the solvents. The imbibed solvent led to variable compound uptake, increased thermodynamic activity and modulated flux with, in some cases, reduced diffusion and a prolonged lag time. CONCLUSION The solubility, permeation and lag times of compounds in the stratum corneum can be modulated by solvent uptake. Whilst a solvent-induced stratum corneum reservoir effect for a compound may prolong its lag time for a compound before steady state permeation is reached, it does not affect its overall steady state transport defined by variations in SC solubility and diffusion of its free form after solvent exposure.
Collapse
Affiliation(s)
- Michael S Roberts
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Therapeutics Research Centre, Frazer Institute, University of Queensland, Brisbane, Australia.
| | - Qian Zhang
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Current address: Acrux DDS Pty Ltd, Melbourne, Victoria, Australia
| | - Lorraine Mackenzie
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Gregory A Medley
- Therapeutics Research Centre, Frazer Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Hussain A, Altamimi MA, Alshammari MA. Mechanistic insights of desmopressin loaded elastic liposomes for transdermal delivery: HSPiP predictive parameters and instrumental based evidences. Int J Pharm X 2024; 8:100304. [PMID: 39640078 PMCID: PMC11617381 DOI: 10.1016/j.ijpx.2024.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
Desmopressin acetate (DA) is a first-line option for the treatment of hemophilia A, von Willebrand's disease, nocturnal enuresis, central diabetes insipidus, and various traumatic injuries. We extended previously reported desmopressin-loaded elastic liposomes (ODEL1) to investigate mechanistic insights into ODEL1 mediated augmented permeation across rat skin. HSPiP software and instrumental techniques such as differential scanning calorimeter (DSC), Fourier Transform infrared (FTIR), scanning electron microscopy (SEM), and fluorescent microscopy provided better understandings of permeation behavior. HSPiP was used to compare Hansen solubility parameter (HSP) of ODEL1, DA, components, and rat skins (control and treated) in terms of dispersion forces (δd), polar forces (δp), and hydrogen bonding (δh). FTIR, DSC, fluorescence microscopy, and SEM provided a detailed mechanistic understanding of the changes occurred after treatment. The values of δd, δp, and δH for DA were 20.6, 31.9, and 18.2 MPa1/2, respectively, whereas these were 15.6, 14.97, and 2.4 MPa1/2 for ODEL1, respectively, suggesting remarkable permeation of DA by changing innate cohesive energies of the skin. DA primarily interacts through δd and δp with the ODEL1 and the skin. Furthermore, the stretching and bending vibrations (molecular interactions) of the treated skins were quite diverse as compared to the untreated skin. ODEL1 caused a substantial thermal changes (shifted 67 to 65 °C, and 79 to 82.5 °C) for the surface protein and glycoprotein as compared to the untreated skin. Fluorescence and SEM confirmed relatively intense surface perturbation of the treated skin as compared to the control. Thus, ODEL1 was efficient in interacting with the skin surface for reversible changes and subsequently resulted in high permeation and drug deposition.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Musaad A. Alshammari
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Haider MS, Mahato AK, Kotliarova A, Forster S, Böttcher B, Stahlhut P, Sidorova Y, Luxenhofer R. Biological Activity In Vitro, Absorption, BBB Penetration, and Tolerability of Nanoformulation of BT44:RET Agonist with Disease-Modifying Potential for the Treatment of Neurodegeneration. Biomacromolecules 2023; 24:4348-4365. [PMID: 36219820 PMCID: PMC10565809 DOI: 10.1021/acs.biomac.2c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/17/2022] [Indexed: 11/29/2022]
Abstract
BT44 is a novel, second-generation glial cell line-derived neurotropic factor mimetic with improved biological activity and is a lead compound for the treatment of neurodegenerative disorders. Like many other small molecules, it suffers from intrinsic poor aqueous solubility, posing significant hurdles at various levels for its preclinical development and clinical translation. Herein, we report a poly(2-oxazoline)s (POx)-based BT44 micellar nanoformulation with an ultrahigh drug-loading capacity of 47 wt %. The BT44 nanoformulation was comprehensively characterized by 1H NMR spectroscopy, differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), dynamic light scattering (DLS), and cryo-transmission/scanning electron microscopy (cryo-TEM/SEM). The DSC, XRD, and redispersion studies collectively confirmed that the BT44 formulation can be stored as a lyophilized powder and can be redispersed upon need. The DLS suggested that the redispersed formulation is suitable for parenteral administration (Dh ≈ 70 nm). The cryo-TEM measurements showed the presence of wormlike structures in both the plain polymer and the BT44 formulation. The BT44 formulation retained biological activity in immortalized cells and in cultured dopamine neurons. The micellar nanoformulation of BT44 exhibited improved absorption (after subcutaneous injection) and blood-brain barrier (BBB) penetration, and no acute toxic effects in mice were observed. In conclusion, herein, we have developed an ultrahigh BT44-loaded aqueous injectable nanoformulation, which can be used to pave the way for its preclinical and clinical development for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Malik Salman Haider
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring
11, 97070Würzburg, Germany
- University
Hospital of Würzburg, Department of Ophthalmology, Josef-Schneider-Street 11, D-97080Würzburg, Germany
| | - Arun Kumar Mahato
- Laboratory
of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014Helsinki, Finland
| | - Anastasiia Kotliarova
- Laboratory
of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014Helsinki, Finland
| | - Stefan Forster
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring
11, 97070Würzburg, Germany
| | - Bettina Böttcher
- Biocenter
and Rudolf Virchow Centre, Julius-Maximilians-University
Würzburg, Haus
D15, Josef-Schneider-Strasse 2, 97080Würzburg, Germany
| | - Philipp Stahlhut
- Department
of Functional Materials in Medicine and Dentistry, Institute of Functional
Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070Würzburg, Germany
| | - Yulia Sidorova
- Laboratory
of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014Helsinki, Finland
| | - Robert Luxenhofer
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring
11, 97070Würzburg, Germany
- Soft
Matter Chemistry, Department of Chemistry, and Helsinki Institute
of Sustainability Science, Faculty of Science, University of Helsinki, PB 55-00014Helsinki, Finland
| |
Collapse
|
5
|
Altamimi M, Hussain A, Mahdi WA, Imam SS, Alshammari MA, Alshehri S, Khan MR. Mechanistic Insights into Luteolin-Loaded Elastic Liposomes for Transdermal Delivery: HSPiP Predictive Parameters and Instrument-Based Evidence. ACS OMEGA 2022; 7:48202-48214. [PMID: 36591170 PMCID: PMC9798756 DOI: 10.1021/acsomega.2c06288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/30/2022] [Indexed: 05/14/2023]
Abstract
We evaluated mechanistic insights into luteolin (LUT)-loaded elastic liposomes (OLEL1) permeated across rat skin. HSPiP software-based parameters, thermal analysis, infrared analysis, and morphological evaluations were employed to understand mechanistic observations of drug permeation and deposition. HSPiP provided HSP values (δd, δp, and δh) of OLEL1 (based on composition), LUT, excipients, and rat skin (literature value and by-default value). Rat skin was studied via Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), fluorescence microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM) studies. The δd and δh estimation of the skin and phosphatidylcholine showed close relation in terms of δd and δh. Similarly, OLEL1 and the skin might interact with each other mainly through δd and δp forces as evidenced by the predicted values. The untreated skin showed characteristic stretching and vibrations as compared to lower frequencies caused by OLEL1. DSC showed changes in the thermal behavior of the skin after OLEL1 treatment as compared to the untreated skin. Visualization of these changes was evident under fluorescence microscopy and SEM for confirmed substantial reversible surface perturbation of the skin protein layer for improved vesicle permeation and subsequent internalization with the inner skin matrix. The AFM study confirmed the nanoscale surface roughness variation caused substantially by OLEL1 and OLEL1 placebo as compared to the untreated control and drug solution. Thus, the study clearly demonstrated mechanistic insights into LUT-loaded vesicles across rat skin for enhanced permeation and drug deposition.
Collapse
Affiliation(s)
- Mohammad
A. Altamimi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
- . Phone: +966564591584
| | - Wael A. Mahdi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Sarim Imam
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Musaad A. Alshammari
- Department
of Pharmacology, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department
of Pharmacology, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Zięba M, Rusak T, Misztal T, Zięba W, Marcińczyk N, Czarnecka J, Al-Gharabli S, Kujawa J, Terzyk AP. Nitrogen plasma modification boosts up the hemocompatibility of new PVDF-carbon nanohorns composite materials with potential cardiological and circulatory system implants application. BIOMATERIALS ADVANCES 2022; 138:212941. [PMID: 35913257 DOI: 10.1016/j.bioadv.2022.212941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
To design new material for blood-related applications one needs to consider various factors such as cytotoxicity, platelet adhesion, or anti-thrombogenic properties. The aim of this work is the design of new, highly effective materials possessing high blood compatibility. To do this, the new composites based on the poly(vinylidene fluoride) (PVDF) support covered with a single-walled carbon nanohorns (CNHs) layer were prepared. The PVDF-CNHs composites were subsequently used for the first time in the hemocompatibility studies. To raise the hemocompatibility a new, never applied before for CNHs, plasma-surface modifications in air, nitrogen and ammonia were implemented. This relatively cheap, facile and easy method allows generating the new hybrid materials with high effectiveness and significant differences in surface properties (water contact angle, surface ζ-potential, and surface functional groups composition). Changing those properties made it possible to select the most promising samples for blood-related applications. This was done in a fully controlled way by applying Taguchi's "orthogonal array" procedure. It is shown for the first time that nitrogen plasma treatment of new surfaces is the best tool for hemocompatibility rise and leads to very low blood platelet adhesion, no cytotoxicity, and excellent performance in thromboelastometry and hemolysis tests. We propose a possible mechanism explaining this behavior. The optimisation results are coherent with biological characterisation and are supported with Hansen Solubility Parameters. New surfaces can find potential applications in cardiological and circulatory system implants as well as other blood-related biomaterials.
Collapse
Affiliation(s)
- Monika Zięba
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland; Interdisciplinary PhD School "Academia Copernicana", Nicolaus Copernicus University in Toruń, Lwowska Street 1, 87-100 Toruń, Poland
| | - Tomasz Rusak
- Department of Physical Chemistry, Medical University of Bialystok, Adama Mickiewicza 2A, 15-089 Bialystok, Poland
| | - Tomasz Misztal
- Department of Physical Chemistry, Medical University of Bialystok, Adama Mickiewicza 2A, 15-089 Bialystok, Poland
| | - Wojciech Zięba
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland; Interdisciplinary PhD School "Academia Copernicana", Nicolaus Copernicus University in Toruń, Lwowska Street 1, 87-100 Toruń, Poland
| | - Natalia Marcińczyk
- Department of Biopharmacy, Medical University of Bialystok, Adama Mickiewicza 2C, 15-089 Bialystok, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska Street 1, 87-100 Toruń, Poland
| | - Samer Al-Gharabli
- Pharmaceutical and Chemical Engineering Department, German Jordanian University, Amman 11180, Jordan
| | - Joanna Kujawa
- Faculty of Chemistry, Department of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland.
| | - Artur P Terzyk
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland.
| |
Collapse
|
7
|
Ito L, Yamamoto H. Prediction of acute oral toxicity using the Hansen solubility parameter. Toxicol In Vitro 2022; 83:105408. [PMID: 35660067 DOI: 10.1016/j.tiv.2022.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022]
Abstract
Acute oral toxicity is primarily determined using animal testing, as stated in the Organization for Economic Cooperation and Development (OECD) Test Guideline (TG) 420, 423, and 425. Currently, regarding animal welfare, few alternatives to animal testing such as in vitro approaches have been evaluated. Therefore, in this preliminary study examining a new method to determine acute oral toxicity, we investigated whether UN Globally Harmonized System all categories can be predicted using the Hansen solubility parameter (HSP). In particular, Hansen spheres were produced based on oral toxicity information of the test substances and their HSP values, and the respective parameters were identified. A comparison of these potential parameters with the HSP value of each test substance showed an accuracy of 84.1% (53/63), 10.0% (3/30) false negatives, and 21.2% (7/33) false positives. By comparing the HSP of the resulting potential parameters with a test substance, it is possible to predict acute oral toxicity with high accuracy.
Collapse
Affiliation(s)
- Len Ito
- Department of Chemical, Energy and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, Japan; Development Headquarters, Milbon Co. Ltd., Japan.
| | - Hideki Yamamoto
- Department of Chemical, Energy and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, Japan
| |
Collapse
|
8
|
Murase M, Yamada Y, Goto Y, Mizoshita N. Adsorption Index Based on Hansen Solubility Parameters of Solutes, Solvents, and a Solid Surface and Its Application to Laser Desorption/Ionization Mass Spectrometry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masakazu Murase
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Yuri Yamada
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Yasutomo Goto
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Norihiro Mizoshita
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
9
|
Hosseini M, Roberts MS, Aboofazeli R, Moghimi HR. Measurement of Hansen Solubility Parameters of third-degree burn eschar. Burns 2022; 48:860-871. [PMID: 34893367 DOI: 10.1016/j.burns.2021.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Topical drug therapy is one of the most effective approaches in third-degree burn wound treatments. To optimize and enhance drug permeation through burn eschar, we need to characterize this barrier, most importantly, its affinity to drugs; the subject of this investigation. Hansen Solubility Parameters (HSP), as polarity and affinity scale, were measured here for human third-degree burn eschar through uptake studies using 19 solvents at 25 °C and 32 °C and two hydration levels by gravimetric method combined with thermal analysis and Karl Fischer titration. HSP parameters of dispersion (δD), bipolar (δP), and hydrogen bonding (δH) were calculated by HSPiP software. Results showed δD, δP, and δH of 17.0, 12.5, 14.6 and 16.8, 12.4, 14.4 at 25 and 32 °C respectively for normally-hydrated samples. Full hydration increased HSP values to 17.2, 12.9, 15.3 (25 °C) and 17.1, 12.8, 15.1 (32 °C). Good correlations between solvents uptakes and HSP values were observed for all parameters; higher for δP. Increased temperature decreased them with more changes in δH. Relative Energy Differences (RED) were calculated and shown to be a good parameter for predicting drug-eschar affinity. The obtained information is useful for drug selection and carrier design in drug delivery through burn eschar.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael S Roberts
- Therapeutics Research Centre, School of Medicine, Translational Research Institute, University of Queensland, Brisbane 4102, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia
| | - Reza Aboofazeli
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid R Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Highly Porous-Cellulose-Acetate-Nanofiber Filters Fabricated by Nonsolvent-Induced Phase Separation during Electrospinning for PM 2.5 Capture. NANOMATERIALS 2022; 12:nano12030404. [PMID: 35159748 PMCID: PMC8839121 DOI: 10.3390/nano12030404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
Highly porous-cellulose-acetate (CA) nanofibers were prepared by an electrospinning process based on a nonsolvent-induced phase separation (NIPS) mechanism, and their PM2.5 capture efficiencies were evaluated. The NIPS condition during the electrospinning process was achieved by selecting appropriate good and poor solvents based on the Hansen solubility parameters of CA. N,N-dimethylacetamide (DMAc) was used as the good solvent, while dichloromethane (DCM), tetrahydrofuran (THF), and acetone were used as poor solvents. Porous-CA nanofibers were observed upon using the binary solvent systems of DCM:DMAc = 1:9, DCM:DMAc = 2:8, and THF:DMAc = 1:9, and the CA nanofibers formed using the DCM/DMAc system with DCM:DMAc = 1:9 were found to have the highest specific surface area of 1839 m2/g. Based on the optimized binary solvent system with DCM:DMAc = 1:9, porous-CA nanofibers were prepared and characterized according to the CA content in the electrospinning mixture. The results confirmed that a porous structure was formed well from the surface to the core of the nanofibers. The composition range of the ternary mixture of CA and two solvents capable of producing porous-CA nanofibers was mapped on a ternary phase diagram, and highly efficient PM2.5 capture with 98.2% efficiency was realized using porous-CA nanofibers obtained using a 10 wt.% CA solution. This work provides a new strategy for improving the efficiency of porous-nanofiber filters for PM2.5 capture.
Collapse
|
11
|
Hussain A, Alshehri S, Ramzan M, Afzal O, Altamimi AS, Alossaimi MA. Biocompatible solvent selection based on thermodynamic and computational solubility models, in-silico GastroPlus prediction, and cellular studies of ketoconazole for subcutaneous delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kurotani A, Kakiuchi T, Kikuchi J. Solubility Prediction from Molecular Properties and Analytical Data Using an In-phase Deep Neural Network (Ip-DNN). ACS OMEGA 2021; 6:14278-14287. [PMID: 34124451 PMCID: PMC8190808 DOI: 10.1021/acsomega.1c01035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Materials informatics is an emerging field that allows us to predict the properties of materials and has been applied in various research and development fields, such as materials science. In particular, solubility factors such as the Hansen and Hildebrand solubility parameters (HSPs and SP, respectively) and Log P are important values for understanding the physical properties of various substances. In this study, we succeeded at establishing a solubility prediction tool using a unique machine learning method called the in-phase deep neural network (ip-DNN), which starts exclusively from the analytical input data (e.g., NMR information, refractive index, and density) to predict solubility by predicting intermediate elements, such as molecular components and molecular descriptors, in the multiple-step method. For improving the level of accuracy of the prediction, intermediate regression models were employed when performing in-phase machine learning. In addition, we developed a website dedicated to the established solubility prediction method, which is freely available at "http://dmar.riken.jp/matsolca/".
Collapse
Affiliation(s)
- Atsushi Kurotani
- RIKEN
Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Toshifumi Kakiuchi
- AGC
Yokohama Technical Center, 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- RIKEN
Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate
School of Bioagricultural Sciences, Nagoya
University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
| |
Collapse
|
13
|
Ezati N, Roberts MS, Zhang Q, Moghimi HR. Measurement of Hansen Solubility Parameters of Human Stratum Corneum. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:572-578. [PMID: 33680052 PMCID: PMC7758015 DOI: 10.22037/ijpr.2019.112435.13755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hansen Solubility Parameters (HSP) of human stratum corneum (SC) represent its polarity and are very important for design and optimization of dermatological formulations. However, there is no directly measured data available in the literature for such a crucial property, which is the subject of the present investigation. HSP of the SC was measured by solvent uptake here. 18 solvents/mixtures with different HSP values were selected and their uptake by the SC was measured at 32 °C. The solvents were then divided into good and bad solvents according to their uptake into the SC. The HSP discrete parts of "atomic dispersion forces (δD)", "dipolar intermolecular forces (δP)", and "hydrogen bonding (δH)" were then calculated using uptake data and HSPiP software. Results showed that δD, δP, and δH values of the SC at 32 °C are 16.5, 12, 7.7 respectively. The obtained HSP values, which were measured for the first time here, were then used to interpret enhancement effects of permeation enhancers and the uptake of vehicles by the SC using Relative Energy Difference (RED), with good correlations. SC HSP values can be further used in transdermal drug delivery, cosmetic formulations, safety issues, etc.
Collapse
Affiliation(s)
- Negin Ezati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael Stephen Roberts
- Therapeutics Research Centre, School of Medicine, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Qian Zhang
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Alshehri S, Hussain A, Ahsan MN, Ali R, Siddique MUM. Thermodynamic, Computational Solubility Parameters in Organic Solvents and In Silico GastroPlus Based Prediction of Ketoconazole. ACS OMEGA 2021; 6:5033-5045. [PMID: 33644612 PMCID: PMC7905953 DOI: 10.1021/acsomega.0c06234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/02/2021] [Indexed: 05/19/2023]
Abstract
The study aimed to select a suitable solvent capable to solubilize ketoconazole (KETO) and serve as a permeation enhancer across the skin. Experimental solubility and Hansen solubility parameters were obtained in ethanol, dimethyl sulfoxide (DMSO), ethylene glycol, oleic acid, span 80, limonene, eugenol, transcutol (THP), labrasol, and propylene glycol. Thermodynamic functional parameters and computational models (van't Hoff and Apelblat) validated the determined solubility in various solvents at T = 298.2 K to 318.2 K and P = 0.1 MPa. The HSPiP software estimated the solubility parameters in the solvents. The maximum mole fractional solubility values of KETO were found to be in an order as oleic acid (8.5 × 10-3) > limonene (7.3 × 10-3) > span 80 (6.9 × 10-2) > THP (4.9 × 10-2) > eugenol (4.5 × 10-3) at T = 318.2 K. The results of the apparent thermodynamic analysis confirmed that the dissolution rate was endothermic and entropy driven. The GastroPlus program predicted significantly high permeation of KETO (79.1%) in human skin from the KETO-THP construct as compared to drug solution (38%) and excellent immediate release from THP-solubilized construct (90% < 1 h). Hence, THP could be a better option for topical, transdermal, and oral formulation.
Collapse
Affiliation(s)
- Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd Neyaz Ahsan
- Department
of Medical Laboratory Technology University Polytechnic, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Raisuddin Ali
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd Usman Mohd Siddique
- Department
of Pharmaceutical Chemistry, Shri Vile Parley
Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharastra, India
| |
Collapse
|
15
|
An alternative predictor of eye irritation that utilizes potential parameters of the human corneal epithelium model calculated based on Hansen solubility parameters. Toxicol Lett 2021; 342:1-5. [PMID: 33545305 DOI: 10.1016/j.toxlet.2021.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
Eye irritation predictions are very important in the development of cosmetics and pharmaceuticals. For animal protection, alternative tests are being developed to replace the Draize test, which involves the use of rabbits to test eye irritation. The Vitrigel-eye irritancy test (Vitrigel-EIT), is one such alternative. As a preliminary study, we evaluated if Hansen solubility parameter (HSP) values can be used to predict Vitrigel-EIT results. An Hansen sphere was created based on the HSP values and Vitrigel-EIT results from 61 substances. Substances inside and outside of the sphere were designated as dangerous and safe substances, respectively. The safety of each test substance was predicted by comparing the center point (Ro) of the sphere with the relative energy difference, i.e., the ratio of each test substance (Ra). The accuracy, false negativity, and false positivity of the "irritant" and "nonirritant" designations, as determined by the Vitrigel-EIT results and Hansen sphere, were 91.8% (56/61), 2.3% (1/43), and 22.2% (4/18), respectively. These results indicated that HSP values can be used to predict Vitrigel-EIT results with high reproducibility, and thus are useful for evaluating the safety of substances.
Collapse
|
16
|
Highly accurate predictor of eye irritation utilizing potential parameters of a reconstructed human cornea epithelium model calculated based on Hansen solubility parameters. Toxicol In Vitro 2020; 70:105039. [PMID: 33137446 DOI: 10.1016/j.tiv.2020.105039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
Concerns regarding animal welfare have led to the need for alternatives to animal eye irritation tests. The reconstructed human cornea-like epithelium (RhCE) test is described in the OECD TG 492 as an alternative to animal eye irritation tests. However, the accuracy and labor investment of this method can be improved if the results can be predicted before the experiment. In this study, we evaluated whether Hansen solubility parameter (HSP) values can be used to predict the results of RhCE method using the LabCyte CORNEA-MODEL for 65 test substances. We found that HSP values can predict the RhCE method with high correlation (accuracy 84.6% (55/65), false-negative rate of 16.2% (7/43), and false-positive rate of 13.6% (3/22). These results indicate that HSP values can be used to predict the results RhCE method using LabCyte CORNEA-MODEL with high reproducibility, and thus are useful for evaluating the safety of substances.
Collapse
|
17
|
Delbecq F, Adenier G, Ogue Y, Kawai T. Gelation properties of various long chain amidoamines: Prediction of solvent gelation via machine learning using Hansen solubility parameters. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Haq A, Chandler M, Michniak-Kohn B. Solubility-physicochemical-thermodynamic theory of penetration enhancer mechanism of action. Int J Pharm 2020; 575:118920. [DOI: 10.1016/j.ijpharm.2019.118920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
|
19
|
The use of quantitative analysis and Hansen solubility parameter predictions for the selection of excipients for lipid nanocarriers to be loaded with water soluble and insoluble compounds. Saudi Pharm J 2020; 28:308-315. [PMID: 32194332 PMCID: PMC7078564 DOI: 10.1016/j.jsps.2020.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/26/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of these studies was to determine the miscibility of different API with lipid excipients to predict drug loading and encapsulation properties for the production of solid lipid nanoparticles and nanostructured lipid carriers. Five API exhibiting different physicochemical characteristics, viz., clarithromycin, efavirenz, minocycline hydrochloride, mometasone furoate, and didanosine were used and six solid lipids in addition to four liquid lipids were investigated. Determination of solid and liquid lipids with the best solubilization potential for each API were performed using a traditional shake-flask method and/or a modification thereof. Hansen solubility parameters of the API and different solid and liquid lipids were estimated from their chemical structure using Hiroshi Yamamoto’s molecular breaking method of Hansen Solubility Parameters in Practice software. Experimental results were in close agreement with solubility parameter predictions for systems with ΔδT < 4.0 MPa1/2. A combination of Hansen solubility parameters with experimental drug-lipid miscibility tests can be successfully applied to predict lipids with the best solubilizing potential for different API prior to manufacture of solid lipid nanoparticles and nanostructured lipid carriers.
Collapse
|
20
|
Adamska K, Voelkel A, Sandomierski M. Characterization of mesoporous aluminosilicate materials by means of inverse liquid chromatography. J Chromatogr A 2020; 1610:460544. [DOI: 10.1016/j.chroma.2019.460544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/21/2022]
|
21
|
Haider MS, Schreiner J, Kendl S, Kroiss M, Luxenhofer R. A Micellar Mitotane Formulation with High Drug-Loading and Solubility: Physico-Chemical Characterization and Cytotoxicity Studies in 2D and 3D In Vitro Tumor Models. Macromol Biosci 2019; 20:e1900178. [PMID: 31596553 DOI: 10.1002/mabi.201900178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/16/2019] [Indexed: 01/26/2023]
Abstract
Adrenocortical carcinoma (ACC) is a rare tumor and prognosis is overall poor but heterogeneous. Mitotane (MT) has been used for treatment of ACC for decades, either alone or in combination with cytotoxic chemotherapy. Even at doses up to 6 g per day, more than half of the patients do not achieve targeted plasma concentration (14-20 mg L-1 ) even after many months of treatment due to low water solubility, bioavailability, and unfavorable pharmacokinetic profile. Here a novel MT nanoformulation with very high MT concentrations in physiological aqueous media is reported. The MT-loaded nanoformulations are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction which confirms the amorphous nature of the drug. The polymer itself does not show any cytotoxicity in adrenal and liver cell lines. By using the ACC model cell line NCI-H295 both in monolayers and tumor cell spheroids, micellar MT is demonstrated to exhibit comparable efficacy to its ethanol solution. It is postulated that this formulation will be suitable for i.v. application and rapid attainment of therapeutic plasma concentrations. In conclusion, the micellar formulation is considered a promising tool to alleviate major drawbacks of current MT treatment while retaining bioactivity toward ACC in vitro.
Collapse
Affiliation(s)
- Malik Salman Haider
- Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis, Faculty of Chemistry and Pharmacy, University of Würzburg and Bavarian Polymer Institute, Röntgenring 11, 97070, Würzburg, Germany
| | - Jochen Schreiner
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology/Diabetology, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Sabine Kendl
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology/Diabetology, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Matthias Kroiss
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology/Diabetology, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis, Faculty of Chemistry and Pharmacy, University of Würzburg and Bavarian Polymer Institute, Röntgenring 11, 97070, Würzburg, Germany
| |
Collapse
|
22
|
Altamimi M, Haq N, Alshehri S, Qamar W, Shakeel F. Enhanced Skin Permeation of Hydrocortisone Using Nanoemulsion as Potential Vehicle. ChemistrySelect 2019. [DOI: 10.1002/slct.201902007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mohammad Altamimi
- Department of PharmaceuticsCollege of PharmacyKing Saud University, P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Nazrul Haq
- Department of PharmaceuticsCollege of PharmacyKing Saud University, P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Sultan Alshehri
- Department of PharmaceuticsCollege of PharmacyKing Saud University, P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Wajhul Qamar
- Central LaboratoryCollege of PharmacyKing Saud University, P.O. Box 2457 Riyadh 11451 Saudi Arabia
- Department of Pharmacology and ToxicologyCollege of PharmacyKing Saud University, P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Faiyaz Shakeel
- Department of PharmaceuticsCollege of PharmacyKing Saud University, P.O. Box 2457 Riyadh 11451 Saudi Arabia
| |
Collapse
|
23
|
Jameel BM, Huynh A, Chadha A, Pandey S, Duncan J, Chandler M, Baki G. Computer-based formulation design and optimization using Hansen solubility parameters to enhance the delivery of ibuprofen through the skin. Int J Pharm 2019; 569:118549. [PMID: 31394188 DOI: 10.1016/j.ijpharm.2019.118549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
Abstract
Trial-and-error approach to formulation development is long and costly. With growing time and cost pressures in the pharmaceutical industry, the need for computer-based formulation design is greater than ever. In this project, emulgels were designed and optimized using Formulating for Efficacy™ (FFE) for the topical delivery of ibuprofen. FFE helped select penetration enhancers, design and optimize emulgels and simulate skin penetration studies. pH, viscosity, spreadability, droplet size and stability of emulgels were evaluated. Franz cell studies were performed to test in vitro drug release on regenerated cellulose membrane, drug permeation in vitro on Strat-M® membrane and ex vivo on porcine ear skin, a marketed ibuprofen gel served as control. Emulgels had skin compatible pH, viscosity and spreadability comparable to a marketed emulgel, were opaque and stable at 25 °C for 6 months. Oleyl alcohol (OA), combined with either dimethyl isosorbide (DMI) or diethylene glycol monoethyl ether (DGME) provided the highest permeation in 24 h in vitro, which was significantly higher than the marketed product (p < 0.01). OA + DGME significantly outperformed OA ex vivo (p < 0.05). The computer predictions, in vitro and ex vivo penetration results correlated well. FFE was a fast, valuable and reliable tool for aiding in topical product design for ibuprofen.
Collapse
Affiliation(s)
- Bshaer M Jameel
- The University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacy Practice, 3000 Arlington Ave, Toledo, OH 43614, United States.
| | - An Huynh
- The University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacy Practice, 3000 Arlington Ave, Toledo, OH 43614, United States.
| | - Aastha Chadha
- The University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacy Practice, 3000 Arlington Ave, Toledo, OH 43614, United States
| | - Sujata Pandey
- The University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacy Practice, 3000 Arlington Ave, Toledo, OH 43614, United States.
| | - Jacalyn Duncan
- The University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacy Practice, 3000 Arlington Ave, Toledo, OH 43614, United States.
| | - Mark Chandler
- ACT Solutions Corp, 550 S. College Ave., Suite 110, Newark, DE 19713, United States.
| | - Gabriella Baki
- The University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacy Practice, 3000 Arlington Ave, Toledo, OH 43614, United States.
| |
Collapse
|
24
|
Application of Multivariate Adaptive Regression Splines (MARSplines) for Predicting Hansen Solubility Parameters Based on 1D and 2D Molecular Descriptors Computed from SMILES String. J CHEM-NY 2019. [DOI: 10.1155/2019/9858371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new method of Hansen solubility parameters (HSPs) prediction was developed by combining the multivariate adaptive regression splines (MARSplines) methodology with a simple multivariable regression involving 1D and 2D PaDEL molecular descriptors. In order to adopt the MARSplines approach to QSPR/QSAR problems, several optimization procedures were proposed and tested. The effectiveness of the obtained models was checked via standard QSPR/QSAR internal validation procedures provided by the QSARINS software and by predicting the solubility classification of polymers and drug-like solid solutes in collections of solvents. By utilizing information derived only from SMILES strings, the obtained models allow for computing all of the three Hansen solubility parameters including dispersion, polarization, and hydrogen bonding. Although several descriptors are required for proper parameters estimation, the proposed procedure is simple and straightforward and does not require a molecular geometry optimization. The obtained HSP values are highly correlated with experimental data, and their application for solving solubility problems leads to essentially the same quality as for the original parameters. Based on provided models, it is possible to characterize any solvent and liquid solute for which HSP data are unavailable.
Collapse
|
25
|
Campos JR, Fernandes AR, Sousa R, Fangueiro JF, Boonme P, Garcia ML, Silva AM, Naveros BC, Souto EB. Optimization of nimesulide-loaded solid lipid nanoparticles (SLN) by factorial design, release profile and cytotoxicity in human Colon adenocarcinoma cell line. Pharm Dev Technol 2019; 24:616-622. [PMID: 30477410 DOI: 10.1080/10837450.2018.1549075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of this work is development of a nontoxic, long-term stable solid lipid nanoparticles (SLN) formulation for the loading of Nimesulide (NiM) by a 22 factorial design. The optimized formulation was composed of 10 wt% of glyceryl behenate and 2.5 wt% of poloxamer 188. Immediately after production, Z-Ave of NiM-SLN was 166.1 ± 0.114 nm, with a polydispersity index (PI) of 0.171 ± 0051 and zeta potential nearly neutral (-3.10 ± 0.166 mV). A slight increase of Z-Ave was recorded for NiM-SLN stored at 25 °C for a period of 15 days, whereas at 4 °C particles kept size within similar range. Long-term stability was monitored using TurbiscanLab®, showing a high stability of the nanoparticles with variations in the backscattering profiles below 10%. The release profile of NiM-SLN followed a sustained pattern with ca. 30% of drug released up to 24 h. Empty-SLN and NiM-SLN were nontoxic after exposing Caco-2 cells to the highest concentration (100 μg/mL) up to 48 hours (cell viability higher than 80%). NiM-SLN were lyophilized using different cryoprotectants, producing particles of 463.1 ± 36.63 nm (PI 0.491 ± 0.027) with 5% trehalose. Solid character of NiM-SLN was confirmed by DSC, recording a recrystallization index of 83% for NiM-SLN and of 74% for lyophilized SLN.
Collapse
Affiliation(s)
- Joana R Campos
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba , Coimbra , Portugal
| | - Ana R Fernandes
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba , Coimbra , Portugal
| | - Raquel Sousa
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba , Coimbra , Portugal
| | - Joana F Fangueiro
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba , Coimbra , Portugal
| | - Prapaporn Boonme
- b Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences , Prince of Songkla University , Songkhla , Thailand.,c Nanotec-PSU Center of Excellence on Drug Delivery System , Songkhla , Thailand
| | - Maria Luisa Garcia
- d Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences , University of Barcelona , Barcelona , Spain.,e Institute of Nanoscience and Nanotechnology , University of Barcelona , Barcelona , Spain
| | - Amelia M Silva
- f Department of Biology and Environment , University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados , Vila Real , Portugal.,g Centre for Research and Technology of Agro-Environmental and Biological Sciences , CITAB, UTAD, Quinta de Prados , Vila Real , Portugal
| | - Beatriz C Naveros
- h Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy , University of Granada , Granada , Spain
| | - Eliana B Souto
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba , Coimbra , Portugal.,i CEB - Centre of Biological Engineering , University of Minho, Campus de Gualtar , Braga , Portugal
| |
Collapse
|
26
|
Schittny A, Ogawa H, Huwyler J, Puchkov M. A combined mathematical model linking the formation of amorphous solid dispersions with hot-melt-extrusion process parameters. Eur J Pharm Biopharm 2018; 132:127-145. [DOI: 10.1016/j.ejpb.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|
27
|
Kerai LV, Bardés J, Hilton S, Murdan S. Two strategies to enhance ungual drug permeation from UV-cured films: Incomplete polymerisation to increase drug release and incorporation of chemical enhancers. Eur J Pharm Sci 2018; 123:217-227. [DOI: 10.1016/j.ejps.2018.07.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
|
28
|
Sanchez‐Lengeling B, Roch LM, Perea JD, Langner S, Brabec CJ, Aspuru‐Guzik A. A Bayesian Approach to Predict Solubility Parameters. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Loïc M. Roch
- Department of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
| | - José Darío Perea
- Institute of Materials for Electronics and Energy Technology (i-MEET) Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Martensstrasse 7 91058 Erlangen Germany
| | - Stefan Langner
- Institute of Materials for Electronics and Energy Technology (i-MEET) Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Martensstrasse 7 91058 Erlangen Germany
| | - Christoph J. Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET) Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Martensstrasse 7 91058 Erlangen Germany
- Bavarian Center for Applied Energy Research (ZAE Bayern) Immerwahrstrasse 2 91058 Erlangen Germany
| | - Alán Aspuru‐Guzik
- Department of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
- Canadian Institute for Advanced Research Toronto Ontario M5G 1Z8 Canada
- Department of Computer Science University of Toronto Toronto Ontario M5S 3H7 Canada
| |
Collapse
|
29
|
Jankovic S, Tsakiridou G, Ditzinger F, Koehl NJ, Price DJ, Ilie AR, Kalantzi L, Kimpe K, Holm R, Nair A, Griffin B, Saal C, Kuentz M. Application of the solubility parameter concept to assist with oral delivery of poorly water-soluble drugs – a PEARRL review. J Pharm Pharmacol 2018; 71:441-463. [DOI: 10.1111/jphp.12948] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/28/2018] [Indexed: 01/29/2023]
Abstract
Abstract
Objectives
Solubility parameters have been used for decades in various scientific fields including pharmaceutics. It is, however, still a field of active research both on a conceptual and experimental level. This work addresses the need to review solubility parameter applications in pharmaceutics of poorly water-soluble drugs.
Key findings
An overview of the different experimental and calculation methods to determine solubility parameters is provided, which covers from classical to modern approaches. In the pharmaceutical field, solubility parameters are primarily used to guide organic solvent selection, cocrystals and salt screening, lipid-based delivery, solid dispersions and nano- or microparticulate drug delivery systems. Solubility parameters have been applied for a quantitative assessment of mixtures, or they are simply used to rank excipients for a given drug.
Summary
In particular, partial solubility parameters hold great promise for aiding the development of poorly soluble drug delivery systems. This is particularly true in early-stage development, where compound availability and resources are limited. The experimental determination of solubility parameters has its merits despite being rather labour-intensive because further data can be used to continuously improve in silico predictions. Such improvements will ensure that solubility parameters will also in future guide scientists in finding suitable drug formulations.
Collapse
Affiliation(s)
- Sandra Jankovic
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Georgia Tsakiridou
- Pharmathen SA, Product Design & Evaluation, Athens, Greece
- Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Felix Ditzinger
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Daniel J Price
- Merck Group, Molecule Characterisation, Darmstadt, Germany
- Goethe University, Frankfurt, Germany
| | - Alexandra-Roxana Ilie
- School of Pharmacy, University College Cork, Cork, Ireland
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | - Lida Kalantzi
- Pharmathen SA, Product Design & Evaluation, Athens, Greece
| | - Kristof Kimpe
- Pharmaceutical Sciences, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | - Anita Nair
- Merck Group, Molecule Characterisation, Darmstadt, Germany
| | | | - Christoph Saal
- Merck Group, Molecule Characterisation, Darmstadt, Germany
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
30
|
Rizi K, Mohammed IK, Xu K, Kinloch AJ, Charalambides MN, Murdan S. A systematic approach to the formulation of anti-onychomycotic nail patches. Eur J Pharm Biopharm 2018. [PMID: 29530581 DOI: 10.1016/j.ejpb.2018.02.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nail patches have a potential role as drug carriers for the topical treatment of nail diseases such as onychomycosis, a common condition. Our aim was therefore to develop a systematic and novel approach to the formulation of a simple drug-in-adhesive ungual patch. Twelve pressure-sensitive adhesives (PSAs), four backing membranes, two release liners and three drugs were screened for pharmaceutical and mechanical properties. From this initial screening, two PSAs, two drugs, one backing membrane and one release liner were selected for further investigation. Patches were prepared by solvent-casting and characterised. The patches had good uniformity of thickness and of drug content, and showed minimal drug crystallisation during six months of storage. Meanwhile, the drug stability in the patch upon storage and patch adhesion to the nail was influenced by the nature of the drug, the PSA and the backing membrane. The reported methodology paves the way for a systematic formulation of ungual nail patches to add to the armamentarium of nail medicines. Further, from this work, the best patch formulation has been identified.
Collapse
Affiliation(s)
- K Rizi
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - I K Mohammed
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - K Xu
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - A J Kinloch
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - M N Charalambides
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - S Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|