1
|
Ortega Martínez E, Morales Hernández ME, Castillo-González J, González-Rey E, Ruiz Martínez MA. Dopamine-loaded chitosan-coated solid lipid nanoparticles as a promise nanocarriers to the CNS. Neuropharmacology 2024; 249:109871. [PMID: 38412889 DOI: 10.1016/j.neuropharm.2024.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/28/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Dopamine is unable to access the central nervous system through the bloodstream. Only its precursor can do so, and with an effectiveness below 100% of the dose administered, as it is metabolized before crossing the blood-brain barrier. In this study, we describe a new solid lipid nanocarrier system designed and developed for dopamine. The nanoparticles were prepared by the melt-emulsification method and then coated with chitosan. The nanocarriers developed had a droplet size of about 250 nm, a polydispersity index of 0.2, a positive surface charge (+30 mV), and a percentage encapsulation efficiency of 36.3 ± 5.4. Transmission and scanning electron microscopy verified uniformity of particle size with spherical morphology. Various types of tests were performed to confirm that the nanoparticles designed are suitable for carrying dopamine through the blood-brain barrier. In vitro tests demonstrated the ability of these nanocarriers to pass through endothelial cell monolayers without affecting their integrity. This study shows that the formulation of dopamine in chitosan-coated solid lipid nanoparticles is a potentially viable formulation strategy to achieve the bioavailability of the drug for the treatment of Parkinson's disease in the central nervous system.
Collapse
Affiliation(s)
- Elena Ortega Martínez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Ma Encarnación Morales Hernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain.
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine "Lopez-Neyra", CSIC, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine "Lopez-Neyra", CSIC, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Ma Adolfina Ruiz Martínez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| |
Collapse
|
2
|
Godase SS, Kulkarni NS, Dhole SN. A Comprehensive Review on Novel Lipid-Based Nano Drug Delivery. Adv Pharm Bull 2024; 14:34-47. [PMID: 38585464 PMCID: PMC10997939 DOI: 10.34172/apb.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 02/21/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Novel drug delivery system opens the doors towards nano/micro formulation strategies to overcome the challenges associated with the poorly soluble and permeable drugs. Lipid based nanoparticles are widely accepted that includes liposomes, niosomes and micelles which are FDA approved. Such lipid based drug delivery allows delivery for natural phytoconstituents, biopharmaceutical classification system (BCS) class II and class IV drugs are effectively delivered to improve its solubility, permeability and bioavailability. The article provides the recent advances and application of lipid based dosage form for improvement of therapeutic efficacy.
Collapse
Affiliation(s)
| | - Nilesh Shrikant Kulkarni
- Department of Pharmaceutics, PES Modern college of Pharmacy (for ladies) Moshi, Pune. Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India
| | | |
Collapse
|
3
|
Nerli G, Gonçalves LMD, Cirri M, Almeida AJ, Maestrelli F, Mennini N, Mura PA. Design, Evaluation and Comparison of Nanostructured Lipid Carriers and Chitosan Nanoparticles as Carriers of Poorly Soluble Drugs to Develop Oral Liquid Formulations Suitable for Pediatric Use. Pharmaceutics 2023; 15:pharmaceutics15041305. [PMID: 37111790 PMCID: PMC10146291 DOI: 10.3390/pharmaceutics15041305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
There is a serious need of pediatric drug formulations, whose lack causes the frequent use of extemporaneous preparations obtained from adult dosage forms, with consequent safety and quality risks. Oral solutions are the best choice for pediatric patients, due to administration ease and dosage-adaptability, but their development is challenging, particularly for poorly soluble drugs. In this work, chitosan nanoparticles (CSNPs) and nanostructured lipid carriers (NLCs) were developed and evaluated as potential nanocarriers for preparing oral pediatric solutions of cefixime (poorly soluble model drug). The selected CSNPs and NLCs showed a size around 390 nm, Zeta-potential > 30 mV, and comparable entrapment efficiency (31-36%), but CSNPs had higher loading efficiency (5.2 vs. 1.4%). CSNPs maintained an almost unchanged size, homogeneity, and Zeta-potential during storage, while NLCs exhibited a marked progressive Zeta-potential decrease. Drug release from CSNPs formulations (differently from NLCs) was poorly affected by gastric pH variations, and gave rise to a more reproducible and controlled profile. This was related to their behavior in simulated gastric conditions, where CSNPs were stable, while NLCs suffered a rapid size increase, up to micrometric dimensions. Cytotoxicity studies confirmed CSNPs as the best nanocarrier, proving their complete biocompatibility, while NLCs formulations needed 1:1 dilution to obtain acceptable cell viability values.
Collapse
Affiliation(s)
- Giulia Nerli
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Lídia M D Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marzia Cirri
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Francesca Maestrelli
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Natascia Mennini
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Paola A Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
4
|
Damasceno Leão A, Ribeiro da Silva J, Fontana Agostini J, Dal Santo G, Duarte Vieira L, da Costa Silva Neto J, Rodrigues de Lima Porto Ramos K, Gonçalves da Silva T, Alvarez-Lorenzo C, Gonçalves Wanderley A, Lamartine Soares-Sobrinho J. Efficacy and safety of nanoparticles of glibenclamide and organomodified layered double hydroxides in diabetics rats. Int J Pharm 2023; 634:122678. [PMID: 36738803 DOI: 10.1016/j.ijpharm.2023.122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Glibenclamide (GB) is an important drug in the treatment of type II diabetes mellitus (DM II); however, its low solubility causes variability in its oral bioavailability, negatively affecting the pharmacological treatment. Nanoparticles (NP) of GB and organophilized Layered Double Hydroxide (LDH) were developed to improve oral bioavailability and tested in streptozotocin-induced diabetic rats to evaluate therapeutic efficacy and safety. Blood glucose was measured for 12 h or after 28 days of treatment. In addition, body weight, water and feed consumption, hematological, biochemistry and morphological parameters and markers of oxidative stress were determined. After the treatment, GB with LDH normalized the blood glucose level, indicating a better release profile. Water and feed intake and body weight of animals treated with GB and GB with LDH were closer to the normoglycemic group and did not indicate signs of toxicity of the nanoparticles. The biochemical, hematological and histological results also showed no significant changes related to nanotoxicity. The combination of GB with LDH proved to be critical in the oxidative balance, as it reduced the oxidative stress of vascular tissue. In conclusion, NPs are a potential controlled release system for the treatment of DM II.
Collapse
Affiliation(s)
- Amanda Damasceno Leão
- Federal University of Pernambuco-UFPE, Department of Pharmaceutical Sciences, University, Recife, Brazil.
| | - Juliano Ribeiro da Silva
- Federal University of Pernambuco-UFPE, Department of Pharmaceutical Sciences, University, Recife, Brazil
| | - Jotele Fontana Agostini
- Federal University of Pernambuco-UFPE, Department of Pharmaceutical Sciences, University, Recife, Brazil
| | - Glaucia Dal Santo
- Federal University of Pernambuco-UFPE, Department of Pharmaceutical Sciences, University, Recife, Brazil
| | - Lêucio Duarte Vieira
- Federal University of Pernambuco-UFPE, Department Physiology and Pharmacology, University, Recife, Brazil
| | | | | | | | - Carmen Alvarez-Lorenzo
- University of Santiago de Compostela-USC, Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and IDIS, 15782, Santiago de Compostela, Spain
| | - Almir Gonçalves Wanderley
- Federal University of São Paulo-UNIFESP, Department of Pharmaceutical Sciences, University, Diadema, Brazil
| | | |
Collapse
|
5
|
Application of Nanoparticles: Diagnosis, Therapeutics, and Delivery of Insulin/Anti-Diabetic Drugs to Enhance the Therapeutic Efficacy of Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122078. [PMID: 36556443 PMCID: PMC9783843 DOI: 10.3390/life12122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder of carbohydrates, lipids, and proteins due to a deficiency of insulin secretion or failure to respond to insulin secreted from pancreatic cells, which leads to high blood glucose levels. DM is one of the top four noncommunicable diseases and causes of death worldwide. Even though great achievements were made in the management and treatment of DM, there are still certain limitations, mainly related to the early diagnosis, and lack of appropriate delivery of insulin and other anti-diabetic agents. Nanotechnology is an emerging field in the area of nanomedicine and NP based anti-diabetic agent delivery is reported to enhance efficacy by increasing bioavailability and target site accumulation. Moreover, theranostic NPs can be used as diagnostic tools for the early detection and prevention of diseases owing to their unique biological, physiochemical, and magnetic properties. NPs have been synthesized from a variety of organic and inorganic materials including polysaccharides, dendrimers, proteins, lipids, DNA, carbon nanotubes, quantum dots, and mesoporous materials within the nanoscale size. This review focuses on the role of NPs, derived from organic and inorganic materials, in the diagnosis and treatment of DM.
Collapse
|
6
|
Li K, Pi C, Wen J, He Y, Yuan J, Shen H, Zhao W, Zeng M, Song X, Lee RJ, Wei Y, Zhao L. Formulation of the novel structure curcumin derivative-loaded solid lipid nanoparticles: synthesis, optimization, characterization and anti-tumor activity screening in vitro. Drug Deliv 2022; 29:2044-2057. [PMID: 35775475 PMCID: PMC9255223 DOI: 10.1080/10717544.2022.2092235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study investigated the effect of structural modification of Curcumin (CU) combined with the solid lipid nanoparticles (SLN) drug delivery system on anti-tumor activity in vitro. A new structure of Curcumin derivative (CU1) was successfully synthesized by modifying the phenolic hydroxyl group of CU. CU1 was two times more stable than CU at 45 °C or constant light. The SLN containing CU1 (CU1-SLN) was prepared, and the particle size, polydispersity index, entrapment efficiency, drug loading, and zeta potential of CU1-SLN were (104.1 ± 2.43) nm, 0.22 ± 0.008, (95.1 ± 0.38) %, (4.28 ± 0.02) %, and (28.3 ± 1.60) mV, respectively. X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) showed that CU1 is amorphous in SLN. CU1-SLN released the drug slowly for 48 h, while CU and CU1 were released rapidly within 8 h. In terms of cytotoxicity, CU1 exhibited a 1.5-fold higher inhibition than CU against A549 and SMMC-7721 cells, while CU1-SLN showed 2-fold higher inhibition than CU1. Both CU1 and CU1-SLN reduced the toxicity in normal hepatocytes compared with CU (2.6-fold and 12.9-fold, respectively). CU1-SLN showed a significant apoptotic effect (p < 0.05). In summary, CU1 retained the inhibitory effect of CU against tumor cells, while improving stability and safety. Additionally, CU1-SLN presents a promising strategy for the treatment of liver and lung cancer.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yingmeng He
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R China
| | - Hongping Shen
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China.,Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
7
|
Srivastava D, Fatima Z, Kaur CD, Mishra A, Sanap Nashik S, Rizvi DA, Prasad R. Glibenclamide - Malonic Acid Cocrystal with an Enhanced Solubility and Bioavailability. Drug Dev Ind Pharm 2022; 48:417-424. [PMID: 36073946 DOI: 10.1080/03639045.2022.2122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The objective of the work is to enhance the solubility, dissolution and pharmacokinetic properties of Glibenclamide (GLB) via cocrystallization technique. Significance: Glibenclamide (GLB) is an oral hypoglycemic agent used for treating non-insulin-dependent (type II) diabetes mellitus. It exhibits poor aqueous solubility and oral bioavailability, thereby compromising its therapeutic effect. Therefore, utilizing cocrystal approach for enhancing the solubility will modulate the physicochemical properties of GLB without altering its molecular structure. METHODS Cocrystal was prepared by solution crystallization method using coformer malonic acid. The cocrystal was characterized by Differential Scanning Calorimetry (DSC), Powder X-ray Diffraction (PXRD) and Fourier Transform Infrared (FT-IR) studies. The prepared cocrystal was subjected to solubility, in vitro dissolution, and pharmacokinetic studies. RESULTS The DSC endotherms, PXRD patterns and the FT-IR spectra of the cocrystal established the formation of a cocrystal. The formation of eutectic mixture was refuted upon comparing the DSC endotherm and PXRD pattern of the cocrystal with that of the physical mixture. GLB showed a two-fold enhancement in solubility and a significant improvement in the rate of dissolution (p < 0.05, Independent t-test) after cocrystallization. The pharmacokinetic parameters on male Sprague Drawly rats showed 1.45 enhancement in AUC 0-24 and 1.36 -fold enhancement in the Cmax of GLB as compared to the pure drug. CONCLUSION These findings demonstrate that cocrystallization technique was able to tailor the solubility and dissolution profile of GLB leading to an enhanced pharmacokinetic property.
Collapse
Affiliation(s)
- Dipti Srivastava
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Zeeshan Fatima
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | | | - Anjali Mishra
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sachin Sanap Nashik
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Dilshad A Rizvi
- Department of Pharmacology, Era's Lucknow Medical College and Hospital, Sarfarazganj, Lucknow, Uttar Pradesh 226003, India
| | - Rammani Prasad
- Birla Institute of Technology, Ranchi, Jharkhand, 835 215, India
| |
Collapse
|
8
|
Keshavarz-Rezaei M, Hatamian-Zarmi A, Alvandi H, Ebrahimi-Hosseinzadeh B, Mokhtari-Hosseini ZB. The HbA1c and blood glucose response to selenium-rich polysaccharide from Fomes fomentarius loaded solid lipid nanoparticles as a potential antidiabetic agent in rats. BIOMATERIALS ADVANCES 2022; 140:213084. [PMID: 36027667 DOI: 10.1016/j.bioadv.2022.213084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Fomes fomentarius is a medicinal fungus used in traditional Chinese medicine to treat various illnesses. Antidiabetic effects of F. fomentarius extracts have been reported recently. In this study, F. fomentarius extracellular polysaccharide (PS) was prepared, and then to enhance its antidiabetic effects, Na2SeO3 was added to the culture medium, and selenium-polysaccharide (PS-Se) was obtained. Also, solid lipid nanoparticles containing PS (SLN-PS) and PS-Se (SLN-PS-Se) were synthesized by the microemulsion method to compare their effects with free polysaccharides in streptozotocin (STZ) diabetic rats. Optimized SLNs had a size of 170.5 nm and drug loading of 9.27 %. EDS analysis confirmed that Se presence in PS-Se. Characterization analyses such as FTIR, DSC, TGA, and XRD suggested that SLNs have good thermal stability and crystalline nature. Release of PS from SLNs demonstrated sustained profile, and MTT assay proved that PSs and SLNs have no cytotoxicity. Furthermore, oral administration of PS, PS-Se, SLN-PS, and SLN-PS-Se for 28 days to diabetic rats significantly declined blood glucose by 48.24 %, 49.96 %, 55.50 %, and 60.47 %, respectively. Also, insulin secretion and body weight improved, and HbA1c levels decreased. Treatment by PS, PS-Se, SLN-PS, and SLN-PS-Se alleviated lipid profiles, liver enzymes, and serum proteins. Liver anti-oxidant parameters and histopathological observation of the liver, pancreas, and kidney confirmed that F. fomentarius PSs and SLNs have antidiabetic impacts. Moreover, supplementation of PS with selenium improves its anti-hyperglycemic effects. Finally, SLN-PS and SLN-PS-Se showed a higher antidiabetic impact than free PS and PS-Se.
Collapse
Affiliation(s)
- Mohammad Keshavarz-Rezaei
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Hale Alvandi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Ebrahimi-Hosseinzadeh
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zahra Beagom Mokhtari-Hosseini
- Chemical Engineering Group, Faculty of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
9
|
Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022; 10:biomedicines10092055. [PMID: 36140156 PMCID: PMC9495787 DOI: 10.3390/biomedicines10092055] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The low water solubility of pharmacoactive molecules limits their pharmacological potential, but the solubility parameter cannot compromise, and so different approaches are employed to enhance their bioavailability. Pharmaceutically active molecules with low solubility convey a higher risk of failure for drug innovation and development. Pharmacokinetics, pharmacodynamics, and several other parameters, such as drug distribution, protein binding and absorption, are majorly affected by their solubility. Among all pharmaceutical dosage forms, oral dosage forms cover more than 50%, and the drug molecule should be water-soluble. For good therapeutic activity by the drug molecule on the target site, solubility and bioavailability are crucial factors. The pharmaceutical industry’s screening programs identified that around 40% of new chemical entities (NCEs) face various difficulties at the formulation and development stages. These pharmaceuticals demonstrate less solubility and bioavailability. Enhancement of the bioavailability and solubility of drugs is a significant challenge in the area of pharmaceutical formulations. According to the Classification of Biopharmaceutics, Class II and IV drugs (APIs) exhibit poor solubility, lower bioavailability, and less dissolution. Various technologies are discussed in this article to improve the solubility of poorly water-soluble drugs, for example, the complexation of active molecules, the utilization of emulsion formation, micelles, microemulsions, cosolvents, polymeric micelle preparation, particle size reduction technologies, pharmaceutical salts, prodrugs, the solid-state alternation technique, soft gel technology, drug nanocrystals, solid dispersion methods, crystal engineering techniques and nanomorph technology. This review mainly describes several other advanced methodologies for solubility and bioavailability enhancement, such as crystal engineering, micronization, solid dispersions, nano sizing, the use of cyclodextrins, solid lipid nanoparticles, colloidal drug delivery systems and drug conjugates, referring to a number of appropriate research reports.
Collapse
|
10
|
Cornilă A, Iurian S, Tomuță I, Porfire A. Orally Dispersible Dosage Forms for Paediatric Use: Current Knowledge and Development of Nanostructure-Based Formulations. Pharmaceutics 2022; 14:pharmaceutics14081621. [PMID: 36015247 PMCID: PMC9414456 DOI: 10.3390/pharmaceutics14081621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
The paediatric population has always suffered from a lack of medicines tailored to their needs, especially in terms of accurate dosage, stability and acceptability. Orodispersible dosage forms have gone through a resurrection as an alternative to liquid formulations or fractioned solid formulations, although they are still subject to several inconveniences, among which the unpleasant taste and the low oral bioavailability of the API are the most significant hurdles in the way of achieving an optimal drug product. Nanostructures can address these inconveniences through their size and variety, owing to the plethora of materials that can be used in their manufacturing. Through the formation and functionalisation of nanostructures, followed by their inclusion in orodispersible dosage forms, safe, stable and acceptable medicines intended for paediatric use can be developed.
Collapse
|
11
|
Waghule T, Saha RN, Alexander A, Singhvi G. Tailoring the multi-functional properties of phospholipids for simple to complex self-assemblies. J Control Release 2022; 349:460-474. [PMID: 35841998 DOI: 10.1016/j.jconrel.2022.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/20/2022]
Abstract
The unique interfacial properties, huge diversity, and biocompatible nature of phospholipids make them an attractive pharmaceutical excipient. The amphiphilic nature of these molecules offers them the property to self-assemble into distinct structures. The solubility, chemical and structural properties, surface charge, and critical packing parameters of phospholipids play an essential role during formulation design. This review focuses on the relationship between the structural features of a phospholipid molecule and the formation of different lipid-based nanocarrier drug delivery systems. This provides a rationale and guideline for the selection of appropriate phospholipids while designing a drug delivery system. Finally, we refer to relevant recent case studies covering different types of phospholipid-based systems including simple to complex assemblies. Different carriers in the size range of 50 nm to a few microns can be prepared using phospholipids. The carriers can be delivered through oral, intravenous, nasal, dermal, transmucosal, and subcutaneous routes. A wide range of applicability can be achieved by incorporating various hydrophilic and lipophilic additives in the phospholipid bilayer. Advanced research has led to the discovery of phospholipid complexes and cell membrane mimicking lipids. Overall, phospholipids remain a versatile pharmaceutical excipient for drug delivery. They play multiple roles as solubilizer, emulsifier, surfactant, permeation enhancer, coating agent, release modifier, and liposome former.
Collapse
Affiliation(s)
- Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Ranendra Narayan Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India.
| |
Collapse
|
12
|
Kamarehei F. The effects of combination therapy by solid lipid nanoparticle and dental stem cells on different degenerative diseases. Am J Transl Res 2022; 14:3327-3343. [PMID: 35702091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Stem cells have multiple therapeutic applications, as well as solid lipid nanoparticles. Solid lipid nanoparticle has appeared as a field of nano lipid technology with various potential applications in drug delivery, clinical medicine and research. Besides, the stem cells have a high proliferation rate and could differentiate into a variety of tissues. Stem cells derived from human dental pulp tissue differ from other sources of mesenchymal stem cells due to their embryonic neural crest source and neurotrophic potential. These consist of both dental pulp stem cells from dental pulp tissues of human permanent teeth and stem cells from human exfoliated deciduous teeth. With the emergence of stem cell banks, stem cells are considering for tissue engineering with respect to therapies attitude and regenerative medicine. The present study aimed to evaluate the advantages and disadvantages of the solid lipid nanoparticle and stem cells combination therapy in different therapeutic applications. The solid lipid nanoparticles have anticancer activity against tumors, induce neural differentiation in pluripotent stem cells, and regulate the mesenchymal stem cells. They also have immunomodulatory effects on human mesenchymal stem cells, the gene transfection efficiency, osteogenic differentiation and bone regeneration. But, the crucial health hazards related to stem cell transplantation such as immune rejection reactions and the interaction with other tissues and the effect of solid lipid nanoparticles must not be neglected. Overall, more experiments need to approve the synergism and antagonism effects of the stem cells and solid lipid nanoparticle combination therapy on different degenerative diseases.
Collapse
Affiliation(s)
- Farideh Kamarehei
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences Hamadan, Iran
| |
Collapse
|
13
|
Torrisi C, Cardullo N, Muccilli V, Tringali C, Castelli F, Sarpietro MG. Characterization and Interaction with Biomembrane Model of Benzo[k,l]xanthene Lignan Loaded Solid Lipid Nanoparticles. MEMBRANES 2022; 12:membranes12060615. [PMID: 35736322 PMCID: PMC9227282 DOI: 10.3390/membranes12060615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023]
Abstract
Benzo[k,l]xanthene lignans are a group of rare natural products belonging to the class of polyphenols with promising biological activities and are studied as potential chemotherapeutic agents. The lipophilic character of a xanthene core makes these molecules difficult to be used in an aqueous medium, limiting their employment in studies for pharmaceutical applications. To overcome this problem, a drug-delivery system which is able to improve the stability and bioavailability of the compound can be used. In this study, a bioactive benzoxanthene lignan (BXL) has been included in SLN. Unloaded and BXL-loaded SLN have been prepared using the Phase Inversion Temperature method and characterized in terms of size, zeta potential, entrapment efficiency and stability. Differential scanning calorimetry was used to evaluate the thermotropic behavior and ability of SLN to act as carriers for BXL. A biomembrane model, represented by multilamellar vesicles, was used to simulate the interaction of the SLN with the cellular membrane. Unloaded and loaded SLN were incubated with the MLV, and their interactions were evaluated through variations in their calorimetric curves. The results obtained suggest that SLN could be used as a delivery system for BXL.
Collapse
Affiliation(s)
- Cristina Torrisi
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.T.); (F.C.)
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (N.C.); (V.M.); (C.T.)
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (N.C.); (V.M.); (C.T.)
| | - Corrado Tringali
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (N.C.); (V.M.); (C.T.)
| | - Francesco Castelli
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.T.); (F.C.)
| | - Maria Grazia Sarpietro
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.T.); (F.C.)
- Correspondence:
| |
Collapse
|
14
|
Elmowafy M, Shalaby K, Elkomy M, Alruwaili NK, Mostafa EM, Afzal M, Alharbi KS, Mohammed EF, Ali HM, Salama A, Barakat EH. Impact of highly phospholipid-containing lipid nanocarriers on oral bioavailability and pharmacodynamics performance of genistein. Pharm Dev Technol 2022; 27:435-447. [DOI: 10.1080/10837450.2022.2076111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| | - Mohammed Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| | - Khalid S. Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| | - Elshaer F. Mohammed
- Department of Biology, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| | - Hazim M. Ali
- Department of Chemistry, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Elsaied H. Barakat
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
15
|
Unnisa A, Chettupalli AK, Al Hagbani T, Khalid M, Jandrajupalli SB, Chandolu S, Hussain T. Development of Dapagliflozin Solid Lipid Nanoparticles as a Novel Carrier for Oral Delivery: Statistical Design, Optimization, In-Vitro and In-Vivo Characterization, and Evaluation. Pharmaceuticals (Basel) 2022; 15:ph15050568. [PMID: 35631394 PMCID: PMC9143250 DOI: 10.3390/ph15050568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Controlling hyperglycemia and avoiding glucose reabsorption are significant goals in type 2 diabetes treatments. Among the numerous modes of medication administration, the oral route is the most common. Introduction: Dapagliflozin is an oral hypoglycemic agent and a powerful, competitive, reversible, highly selective, and orally active human SGLT2 inhibitor. Dapagliflozin-loaded solid lipid nanoparticles (SLNs) are the focus of our present investigation. Controlled-release lipid nanocarriers were formulated by integrating them into lipid nanocarriers. The nanoparticle size and lipid utilized for formulation help to regulate the release of pharmaceuticals over some time. Dapagliflozin-loaded nanoparticles were formulated by hot homogenization followed by ultra-sonication. The morphology and physicochemical properties of dapagliflozin-SLNs have been characterized using various techniques. The optimized dapagliflozin-SLNs have a particle size ranging from 100.13 ± 7.2 to 399.08 ± 2.4 nm with 68.26 ± 0.2 to 94.46 ± 0.7% entrapment efficiency (%EE). Dapagliflozin-SLNs were optimized using a three-factor, three-level Box–Behnken design (BBD). Polymer concentration (X1), surfactant concentration (X2), and stirring duration (X3) were chosen as independent factors, whereas %EE, cumulative drug release (%CDR), and particle size were selected as dependent variables. Interactions between drug substances and polymers were studied using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and atomic force microscopy (AFM) analysis indicated the crystalline change from the drug to the amorphous crystal. Electron microscope studies revealed that the SLNs’ structure is nearly perfectly round. It is evident from the findings that dapagliflozin-SLNs could lower elevated blood glucose levels to normal in STZ-induced diabetic rats, demonstrating a better hypoglycemic impact on type 2 diabetic patients. The in vivo pharmacokinetic parameters of SLNs exhibited a significant rise in Cmax (1258.37 ± 1.21 mcg/mL), AUC (5247.04 mcg/mL), and oral absorption (2-fold) of the drug compared to the marketed formulation in the Sprague Dawley rats.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Correspondence: ; Tel.: +966-537860207
| | - Ananda K. Chettupalli
- Department of Pharmaceutical Sciences, School of Pharmacy, Anurag University, Hyderabad 500088, India;
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Suresh B. Jandrajupalli
- Department of Preventive Dental Sciences, College of Dentistry, University of Hail, Hail 81442, Saudi Arabia; (S.B.J.); (S.C.)
| | - Swarnalatha Chandolu
- Department of Preventive Dental Sciences, College of Dentistry, University of Hail, Hail 81442, Saudi Arabia; (S.B.J.); (S.C.)
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| |
Collapse
|
16
|
Desai J, Thakkar H. Mechanistic evaluation of lymphatic targeting efficiency of Atazanavir sulfate loaded lipid nanocarriers: In-vitro and in-vivo studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Bertoni S, Hasa D, Albertini B, Perissutti B, Grassi M, Voinovich D, Passerini N. Better and greener: sustainable pharmaceutical manufacturing technologies for highly bioavailable solid dosage forms. Drug Deliv Transl Res 2022; 12:1843-1858. [PMID: 34988827 DOI: 10.1007/s13346-021-01101-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/03/2022]
Abstract
In the last decades, Green Chemistry has been gaining widespread attention within the pharmaceutical field. It is thus very important to bring more sustainable approaches into the design and manufacture of effective oral drug delivery systems. This review focuses on spray congealing and mechanochemical activation, two technologies endorsing different principles of green chemistry, and at the same time, addressing some of the challenges related to the transformation of poorly water-soluble drugs in highly bioavailable solid dosage forms. We therefore present an overview of the basic principles, equipment, and application of these particle-engineering technologies, with specific attention to case studies carried out by the groups working in Italian Universities.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Beatrice Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127, Trieste, Italy
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Nadia Passerini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy.
| |
Collapse
|
18
|
Russell PS, Hong J, Trevaskis NL, Windsor JA, Martin ND, Phillips ARJ. Lymphatic Contractile Function: A Comprehensive Review of Drug Effects and Potential Clinical Application. Cardiovasc Res 2021; 118:2437-2457. [PMID: 34415332 DOI: 10.1093/cvr/cvab279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The lymphatic system and the cardiovascular system work together to maintain body fluid homeostasis. Despite that, the lymphatic system has been relatively neglected as a potential drug target and a source of adverse effects from cardiovascular drugs. Like the heart, the lymphatic vessels undergo phasic contractions to promote lymph flow against a pressure gradient. Dysfunction or failure of the lymphatic pump results in fluid imbalance and tissue oedema. While this can due to drug effects, it is also a feature of breast cancer-associated lymphoedema, chronic venous insufficiency, congestive heart failure and acute systemic inflammation. There are currently no specific drug treatments for lymphatic pump dysfunction in clinical use despite the wealth of data from pre-clinical studies. AIM To identify (1) drugs with direct effects on lymphatic tonic and phasic contractions with potential for clinical application, and (2) drugs in current clinical use that have a positive or negative side effect on lymphatic function. METHODS We comprehensively reviewed all studies that tested the direct effect of a drug on the contractile function of lymphatic vessels. RESULTS Of the 208 drugs identified from 193 studies, about a quarter had only stimulatory effects on lymphatic tone, contraction frequency and/or contraction amplitude. Of FDA-approved drugs, there were 14 that increased lymphatic phasic contractile function. The most frequently used class of drug with inhibitory effects on lymphatic pump function were the calcium channels blockers. CONCLUSION This review highlights the opportunity for specific drug treatments of lymphatic dysfunction in various disease states and for avoiding adverse drug effects on lymphatic contractile function.
Collapse
Affiliation(s)
- Peter S Russell
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jiwon Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Natalie L Trevaskis
- Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - John A Windsor
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Niels D Martin
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anthony R J Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Pandya P, Giram P, Bhole RP, Chang HI, Raut SY. Nanocarriers based oral lymphatic drug targeting: Strategic bioavailability enhancement approaches. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Abdel-Rashid RS, Abd Allah FI, Hassan AA, Hashim FM. Design, optimization, and in-vivo hypoglycaemic effect of nanosized glibenclamide for inhalation delivery. J Liposome Res 2021; 31:291-303. [PMID: 32762273 DOI: 10.1080/08982104.2020.1806874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The aim of this research was the development and optimization of nanoniosomes for delivery of glibenclamide (Gbn) as hypoglycaemic agent to the lung in an inhaler dosage form. Fifteen formulae of niosomal dispersions were prepared according to Box-Behnken design. The effect of drug amount, Cholesterol molar ratio, and Hydrophilic lipophilic balance (HLB) values of the surfactant on the mean vesicle size, Zeta potential (ZP), polydispersity index (PDI), entrapment efficiency, and in-vitro released of Gbn were investigated. A quality control check was performed on an inhaler filled with the optimum nanoniosomal formula. The in-vivo hypoglycaemic effect of nanoniosomal inhalation was also evaluated. The vesicle size observed of the optimized formula was 172 ± 4.6 nm, PDI was 0.304 ± 0.06 and ZP was -49.9 ± 1.5 mv with 69 ± 9.3% in-vitro drug release after 2 h. The Cholesterol molar ratio and the HLB value showed a statistically significant effect on dependent variables. In-vivo results proved that nanoniosomes were efficiently delivered from the inhalation canister showing a mass median aerodynamic diameter of 1.4 micron. The inhaled nanoniosomal dispersion loaded with Gbn showed a decrease in blood glucose level of hyperglycaemic rats by 51.42 ± 5.2%± after 180 min which was nearly two folds compared to oral Gbn. Gibenclamide nanoniosomes inhaler could be suggested as a novel effective dosage form for the treatment of Diabetes mellitus.
Collapse
Affiliation(s)
| | - Fathy I Abd Allah
- Faculty of Pharmacy, Pharmaceutics and Industrial Pharmacy, Al-Azhar university, Cairo, Egypt
| | | | - Fahima M Hashim
- Faculty of Pharmacy, Pharmaceutics Department, Helwan University, Cairo, Egypt
| |
Collapse
|
21
|
Surfactant-Free Glibenclamide Nanoparticles: Formulation, Characterization and Evaluation of Interactions with Biological Barriers. Pharm Res 2021; 38:1081-1092. [PMID: 34002324 DOI: 10.1007/s11095-021-03056-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The aim of this work was to formulate and characterize surfactant-free glibenclamide nanoparticles using Eudragit RLPO and polyethylene glycol as sole stabilizer. METHODS Glibenclamide nanoparticles were obtained by nanoprecipitation and evaluated in terms of drug content, encapsulation efficiency, apparent saturation solubility, drug release profile, solid state and storage stability. The influence of different stirring speed on the particle size, size distribution and zeta potential of the nanoparticles was investigated. The nanoparticle biocompatibility and permeability were analyzed in vitro on Caco-2 cell line (clone HTB-37) and its interaction with mucin was also investigated. RESULTS It was found that increasing the molecular weight of polyethylene glycol from 400 to 6000 decreased drug encapsulation, whereas the aqueous solubility and dissolution rate of the drug increased. Particle size of the nanoformulations, with and without polyethylene glycol, were between 140 and 460 nm. Stability studies confirmed that glibenclamide nanoparticles were stable, in terms of particle size, after 120 days at 4°C. In vitro studies indicated minimal interactions of glibenclamide nanoparticles and mucin glycoproteins suggesting favorable properties to address the intestinal mucus barrier. Cell viability studies confirmed the safety profile of these nanoparticles and showed an increased permeation through epithelial cells. CONCLUSION Taking into consideration these findings, polyethylene glycol is a useful polymer for stabilizing these surfactant-free glibenclamide nanoparticles and represent a promising alternative to improve the treatment of non-insulin dependent diabetes.
Collapse
|
22
|
Xu Y, Michalowski CB, Beloqui A. Advances in lipid carriers for drug delivery to the gastrointestinal tract. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101414] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
De Gaetano F, Cristiano MC, Venuti V, Crupi V, Majolino D, Paladini G, Acri G, Testagrossa B, Irrera A, Paolino D, Tommasini S, Ventura CA, Stancanelli R. Rutin-Loaded Solid Lipid Nanoparticles: Characterization and In Vitro Evaluation. Molecules 2021; 26:1039. [PMID: 33669321 PMCID: PMC7920302 DOI: 10.3390/molecules26041039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
This study was aimed at preparing and characterizing solid lipid nanoparticles loading rutin (RT-SLNs) for the treatment of oxidative stress-induced diseases. Phospholipon 80H® as a solid lipid and Polysorbate 80 as surfactant were used for the SLNs preparation, using the solvent emulsification/diffusion method. We obtained spherical RT-SLNs with low sizes, ranging from 40 to 60 nm (hydrodynamic radius) for the SLNs prepared starting from 2% and 5% (w/w) theoretical amount. All prepared formulations showed negative zeta-potential values. RT was efficiently encapsulated within SLNs, obtaining high encapsulation efficiency and drug content percentages, particularly for SLNs prepared with a 5% theoretical amount of RT. In vitro release profiles and analysis of the obtained data applying different kinetic models revealed Fickian diffusion as the main mechanism of RT release from the SLNs. The morphology of RT-SLNs was characterized by scanning electron microscopy (SEM), whereas the interactions between RT and the lipid matrix were investigated by Raman spectroscopy, evidencing spectral modifications of characteristic bands of RT due to the establishment of new interactions. Finally, antioxidant activity assay on human glioblastoma astrocytoma (U373) culture cells showed a dose-dependent activity for RT-SLNs, particularly at the highest assayed dose (50 μM), whereas the free drug showed the lesser activity.
Collapse
Affiliation(s)
- Federica De Gaetano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| | - Maria Chiara Cristiano
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Catanzaro “Magna Græcia”, Campus Universitario “S. Venuta”, Viale S. Venuta, 88100 Catanzaro, Italy; (M.C.C.); (D.P.)
| | - Valentina Venuti
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.)
| | - Vincenza Crupi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| | - Domenico Majolino
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.)
| | - Giuseppe Paladini
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.)
| | - Giuseppe Acri
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, c/o A.O.U. Policlinico “G. Martino” Via Consolare Valeria 1, 98125 Messina, Italy; (G.A.); (B.T.)
| | - Barbara Testagrossa
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, c/o A.O.U. Policlinico “G. Martino” Via Consolare Valeria 1, 98125 Messina, Italy; (G.A.); (B.T.)
| | - Alessia Irrera
- CNR-IPCF Istituto per i Processi Chimico Fisici, Viale Ferdinando Stagno D’Alcontres 37, 98158 Messina, Italy;
| | - Donatella Paolino
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Catanzaro “Magna Græcia”, Campus Universitario “S. Venuta”, Viale S. Venuta, 88100 Catanzaro, Italy; (M.C.C.); (D.P.)
| | - Silvana Tommasini
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| | - Cinzia Anna Ventura
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| | - Rosanna Stancanelli
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| |
Collapse
|
24
|
Fernández M, Holgado MÁ, Cayero-Otero MD, Pineda T, Yepes LM, Gaspar DP, Almeida AJ, Robledo SM, Martín-Banderas L. Improved antileishmanial activity and cytotoxicity of a novel nanotherapy for N-iodomethyl-N,N-dimethyl-N-(6,6-diphenylhex-5-en-1-yl)ammonium iodide. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Wang Y, Wang C, Li K, Song X, Yan X, Yu L, He Z. Recent advances of nanomedicine-based strategies in diabetes and complications management: Diagnostics, monitoring, and therapeutics. J Control Release 2021; 330:618-640. [PMID: 33417985 DOI: 10.1016/j.jconrel.2021.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by the presence of chronic hyperglycemia driven by insulin deficiency or resistance, imposing a significant global burden affecting 463 million people worldwide in 2019. This review has comprehensively summarized the application of nanomedicine with accurate, patient-friendly, real-time properties in the field of diabetes diagnosis and monitoring, and emphatically discussed the unique potential of various nanomedicine carriers (e.g., polymeric nanoparticles, liposomes, micelles, microparticles, microneedles, etc.) in the management of diabetes and complications. Novel delivery systems have been developed with improved pharmacokinetics and pharmacodynamics, excellent drug biodistribution, biocompatibility, and therapeutic efficacy, long-term action safety, as well as the improved production methods. Furthermore, the effective nanomedicine for the treatment of several major diabetic complications with significantly improved life qualities of diabetic patients were discussed in detail. Going through the literature review, several critical issues of the nanomedicine-based strategies applications need to be addressed such as stabilities and long-term safety effects in vivo, the deficiency of standard for formulation administration, feasibility of scale-up, etc. Overall, the review provides an insight into the design, advantages and limitations of novel nanomedicine application in the diagnostics, monitoring, and therapeutics of DM.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Chunhui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Keyang Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China.
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China.
| |
Collapse
|
26
|
Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces 2020; 196:111305. [DOI: 10.1016/j.colsurfb.2020.111305] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
|
27
|
Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed Pharmacother 2020; 131:110708. [DOI: 10.1016/j.biopha.2020.110708] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
|
28
|
Rangaraj N, Pailla SR, Shah S, Prajapati S, Sampathi S. QbD aided development of ibrutinib-loaded nanostructured lipid carriers aimed for lymphatic targeting: evaluation using chylomicron flow blocking approach. Drug Deliv Transl Res 2020; 10:1476-1494. [PMID: 32519202 DOI: 10.1007/s13346-020-00803-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ibrutinib (IBR) is the choice of drug for the treatment of chronic lymphocytic leukaemia (CLL) and mantle cell lymphoma (MCL). IBR has low oral bioavailability of 2.9% owing to its high first pass metabolism. Present study was aimed to develop the nanostructured lipid carriers (NLC) using glyceryl monostearate (GMS) as solid lipid and Capryol™ PGMC as liquid lipid. Plackett-Burman design (PBD) was applied to screen the significant factors; furthermore, these significant factors were subjected to optimisation using Central Composite design (CCD). The size, poly dispersity index (PDI) and entrapment efficiency (E.E.) of the developed NLC were 106.4 ± 8.66 nm, 0.272 ± 0.005 and 70.54 ± 5.52% respectively. Morphological evaluation using transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM) revealed spherical particles. Furthermore, differential scanning calorimetry (DSC) indicates the formation of molecular dispersion of drug in the melted lipid matrix while Powder X-Ray Diffraction (PXRD) studies reveal the absence of crystalline drug peaks in the formulation diffractogram. In-vivo pharmacokinetics of NLC displayed an increase in Cmax (2.89-fold), AUC0-t (5.32-fold) and mean residence time (MRT) (1.82-fold) compared with free drug. Furthermore, lymphatic uptake was evaluated by chylomicron flow blocking approach using cycloheximide (CXI). The pharmacokinetic parameters Cmax, AUC0-t and MRT of NLC without CXI were 2.75, 3.57 and 1.30 folds higher compared with NLC with CXI. The difference in PK parameters without CXI indicates significant lymphatic uptake of the formulation. Hence, NLC can be a promising approach to enhance the oral bioavailability of drugs with high first-pass metabolism. Graphical abstract.
Collapse
Affiliation(s)
- Nagarjun Rangaraj
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| | - Sravanthi Reddy Pailla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| | - Shubham Prajapati
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| | - Sunitha Sampathi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
29
|
Shaveta S, Singh J, Afzal M, Kaur R, Imam SS, Alruwaili NK, Alharbi KS, Alotaibi NH, Alshammari MS, Kazmi I, Yasir M, Goyel A, Ameeduzzafar. Development of solid lipid nanoparticle as carrier of pioglitazone for amplification of oral efficacy: Formulation design optimization, in-vitro characterization and in-vivo biological evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101674] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Mura P. Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. Int J Pharm 2020; 579:119181. [PMID: 32112928 DOI: 10.1016/j.ijpharm.2020.119181] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Complexation with cyclodextrins (CDs) has been widely and successfully used in pharmaceutical field, mainly for enhancing solubility, stability and bioavailability of a variety of drugs. However, some important drawbacks, including rapid removal from the bloodstream after in vivo administration, or possible replacement, in biological media, of the entrapped drug moieties by other molecules with higher affinity for the CD cavity, can limit the CDs effectiveness as drug carriers. This review is focused on combined strategies simultaneously exploiting CD complexation, and loading of the complexed drug into various colloidal carriers (liposomes, niosomes, polymeric nanoparticles, lipid nanoparticles, nanoemulsions, micelles) which have been investigated as a possible means for circumventing the problems associated with both such carriers, when used separately, and join their relative benefits in a unique delivery system. Several examples of applications have been reported, to illustrate the possible advantages achievable by such a dual strategy, depending on the CD-nanocarrier combination, and mainly resulting in enhanced performance of the delivery system and improved biopharmaceutical properties and therapeutic efficacy of drugs. The major problems and/or drawbacks found in the development of such systems, as well as the (rare) case of failures in achieving the expected improvements have also been highlighted.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, Florence University, via Schiff 6, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
31
|
Nazief AM, Hassaan PS, Khalifa HM, Sokar MS, El-Kamel AH. Lipid-Based Gliclazide Nanoparticles for Treatment of Diabetes: Formulation, Pharmacokinetics, Pharmacodynamics and Subacute Toxicity Study. Int J Nanomedicine 2020; 15:1129-1148. [PMID: 32110012 PMCID: PMC7038779 DOI: 10.2147/ijn.s235290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/12/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Solid lipid nanoparticles (SLNs) are considered a promising system in enhancing the oral bioavailability of poorly water-soluble drugs; owing to their intrinsic ability to increase the solubility together with protecting the incorporated drugs from extensive metabolism. Objective Exploiting such properties, SLNs loaded with gliclazide (GLZ) were developed in an attempt to improve the oral bioavailability and the anti-diabetic action of GLZ, together with prolonging its duration of action for better glycemic control. Methods SLNs were prepared by ultra-sonication technique using glyceryl behenate (Compritol®888 ATO) as a lipid matrix and poloxamer 188 (PLX) as a stabilizer. A 2*3 asymmetrical factorial design was adopted to study the effect of different stabilizer concentrations at different sonication times on the shape, and size of the particles, PDI and drug loading. The selected optimum formulation was then freeze dried using trehalose di-hydrate as a cryo-protectant in different ratios with respect to glyceryl behenate concentration. After freeze drying, the formulation was tested for in-vitro drug release, pharmacokinetics, and pharmacodynamics. Safety of the selected formula was established after carrying out a subacute toxicity study. Results The factorial design experiment resulted in an optimum formulation coded 10F2 (150 mg PLX/10 min sonication). Scanning electron micrographs showed spherical particles with smooth surface, whereas a ratio of 2:1 cryo-protectant:lipid was found to be optimum with particle size of 245.9 ± 26.2 nm, polydispersity index of 0.482 ± 0.026, and biphasic in-vitro release with an initial burst effect, followed by a prolonged release phase. On the other hand, the selected SLNs exhibited prolonged drug release when compared with the GLZ commercial immediate release (IR) tablets (Diamicron®). Pharmacokinetics study showed about 5-fold increase in GLZ oral bioavailability loaded in SLNs when compared with raw GLZ powder. Pharmacodynamics study on a diabetic rat model confirmed the better anti-diabetic action of GLZ loaded SLNs when compared to raw GLZ powder. Subacute toxicity study indicated the safety of SLNs upon repetitive oral administration.
Collapse
Affiliation(s)
- Alaa Mohamed Nazief
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Passainte Saber Hassaan
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hoda Mahmoud Khalifa
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Magda Samir Sokar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal Hassan El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Mukherjee S, Maity S, Ghosh B, Chakraborty T, Mondal A, Bishayee A. Assessment of the antidiabetic potentiality of glyburide loaded glyceryl monostearate solid lipid nanoparticles. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Zhang Q, Yang H, Sahito B, Li X, Peng L, Gao X, Ji H, Wang L, Jiang S, Guo D. Nanostructured lipid carriers with exceptional gastrointestinal stability and inhibition of P-gp efflux for improved oral delivery of tilmicosin. Colloids Surf B Biointerfaces 2019; 187:110649. [PMID: 31767412 DOI: 10.1016/j.colsurfb.2019.110649] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 11/17/2022]
Abstract
Tilmicosin (TMS) is widely applied to treat porcine bacterial respiratory diseases in veterinary medicine. However, oral administration of TMS is greatly limited due to its physicochemical properties, such as poor water solubility, gastric acid sensitivity and bitterness. Therefore, nanostructured lipid carriers (NLCs) were developed as an oral delivery system for TMS by the high shear method combined with ultrasonic techniques in this study. The results showed that TMS-NLCs were approximately spherical with a hydrodynamic diameter of 283.03 nm and a zeta potential of -30.04 mV. TMS was almost entirely encapsulated in the NLCs by interacting with the lipid matrix, as characterized by differential scanning calorimetry and fourier transform infrared spectroscopy. Thus, TMS-NLCs had an excellent encapsulation efficiency and loading capacity with values of 93.46% and 9.23%, respectively. TMS-NLCs maintained good stability not only during storage at 4 ℃, 25 ℃ and 40 ℃ for 90 days but also in stimulated gastrointestinal (GI) fluids at 37 ℃ for 7 days. Therefore, TMS-NLCs displayed low and sustained release in vitro without an initial burst release in stimulated GI fluids. Furthermore, TMS-NLCs showed higher oral bioavailability in piglets compared to the API suspension. Subsequently, Caco-2 cell monolayers were utilized to analyze the mechanism of NLC-enhanced oral adsorption of TMS. The data revealed that NLCs not only increased cellular uptake of TMS but also inhibited the efflux of P-gp in Caco-2 cells. Additionally, TMS-NLCs mainly entered Caco-2 cells via the caveolae/lipid raft-mediated endocytosis pathway. Moreover, nanoparticles were transported across Caco-2 cell monolayers in the intact form to the basolateral side, as identified by transmission electron microscopy, indicating that TMS-NLCs escape lysosome degradation. Taken together, these results indicate that NLCs are a potential delivery carrier for improving the solubility, permeability and oral bioavailability of TMS.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haifeng Yang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Department of Animal Pharmacy, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Benazir Sahito
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinyu Li
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Peng
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiuge Gao
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hui Ji
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liping Wang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shanxiang Jiang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dawei Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
34
|
Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Emerging Lipid Based Drug Delivery Systems. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02017-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Mohseni R, ArabSadeghabadi Z, Ziamajidi N, Abbasalipourkabir R, RezaeiFarimani A. Oral Administration of Resveratrol-Loaded Solid Lipid Nanoparticle Improves Insulin Resistance Through Targeting Expression of SNARE Proteins in Adipose and Muscle Tissue in Rats with Type 2 Diabetes. NANOSCALE RESEARCH LETTERS 2019; 14:227. [PMID: 31290033 PMCID: PMC6616559 DOI: 10.1186/s11671-019-3042-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/06/2019] [Indexed: 04/14/2023]
Abstract
In the current study, we developed resveratrol (RES)-loaded solid lipid nanoparticle (SLN-RES) in order to improve insulin resistance through the upregulation of SNARE protein complex in rats with type 2 diabetes. The SLN-RES characteristics include the following: the average size of 248 nm, the zeta potential of - 16.5 mV, and 79.9% RES entrapment efficiency. The release profile of SLN-RES showed an initial burst followed by a sustained release in natural condition. Infrared spectroscopy results revealed good incorporation of RES into core SLN. Spherical nanoparticle with less aggregation was observed under electronic microscopic examination. Oral administration of SLN-RES prevented weight loss and showed better hypoglycemic effect than RES. Serum oxidative stress status was restored to the normal level by SLN-RES. Furthermore, expression of synaptosomal-associated protein 23 (Snap23), syntaxin-4 (Stx4), and vesicle-associated membrane protein 2 (Vamp2) as the major elements of SNARE protein complex were reduced by SLN-RES more significantly than RES treatment in muscle tissue. However, SLN-RES has a similar effect to RES treatment in adipose tissue. Taken together, our results revealed SLN-RES could be a modern and interestingly therapeutic approach for the improvement of insulin resistance through targeting the expression of Snap23, Stx4, and Vamp2 in adipose and muscle tissues.
Collapse
Affiliation(s)
- Roohollah Mohseni
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra ArabSadeghabadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Azam RezaeiFarimani
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
36
|
Banerjee S, Pillai J. Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs. Expert Opin Drug Metab Toxicol 2019; 15:499-515. [PMID: 31104522 DOI: 10.1080/17425255.2019.1621289] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Solid matrix mediated lipid nanoparticle formulations (LNFs) retain some of the best features of ideal drug carriers necessary for improving the oral absorption and bioavailability (BA) of both hydrophilic and hydrophobic drugs. LNFs with solid matrices may be typically categorized into three major types of formulations, viz., solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) and lipid-drug conjugate nanoparticles (LDC-NPs). Solid matrix based LNFs are, potentially, the most appropriate delivery systems for poorly water soluble drugs in need of improved drug solubility, permeability, absorption, or increased oral BA. In addition, LNFs as matrices are able to encapsulate both hydrophobic and hydrophilic drugs in a single matrix based on their excellent ability to form cores and shells. Interestingly, LNFs also act as delivery devices to impart chemical stability to various orally administered drugs. Areas covered: Aim of the review is to forecast the presentation of pharmacokinetic characteristics of solid lipid matrix based nanocarriers which are typically biocompatible, biodegradable and non-toxic carrier systems for efficient oral delivery of various drugs. Efficient delivery is broadly mediated by the fact that lipophilic drugs are readily soluble in lipidic substrates that are capable of permeating across the gut epithelium following oral administration, subsequently delivering the moiety of interest more efficiently across the gut mucosal membrane. This enhances the overall BA of many drugs facing oral delivery challenges by improving their pharmacokinetic profile. This article specifically focuses on the biopharmaceutical and pharmacokinetic aspects of such solid lipid matrix based nanoformulations and possible mechanisms for better drug absorption and improved BA following oral administration. It also briefly reviews methods to access the efficacy of LNFs for improving oral BA of drugs, regulatory aspects and some interesting lipid-derived commercial formulations, with a concluding remark. Expert opinion: LNFs enhance the overall BA of many drugs facing oral delivery challenges by improving their pharmacokinetic profile.
Collapse
Affiliation(s)
- Subham Banerjee
- a Department of Pharmaceutics , National Institute of Pharmaceutical Education & Research (NIPER) , Guwahati , Assam , India.,b Centre for Bio-design (CBD) , Translational Health Science & Technology Institute (THSTI) , Faridabad , Haryana , India
| | - Jonathan Pillai
- b Centre for Bio-design (CBD) , Translational Health Science & Technology Institute (THSTI) , Faridabad , Haryana , India
| |
Collapse
|
37
|
Cirri M, Maestrini L, Maestrelli F, Mennini N, Mura P, Ghelardini C, Di Cesare Mannelli L. Design, characterization and in vivo evaluation of nanostructured lipid carriers (NLC) as a new drug delivery system for hydrochlorothiazide oral administration in pediatric therapy. Drug Deliv 2019; 25:1910-1921. [PMID: 30451015 PMCID: PMC6249610 DOI: 10.1080/10717544.2018.1529209] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The hydrochlorothiazide (HCT) low solubility and permeability give rise to limited and variable bioavailability; its low stability makes it difficult to develop stable aqueous liquid formulations; its low dose makes the achievement of a homogeneous drug distribution very difficult. Thus, the aim of this study was to investigate the effectiveness of a strategy based on the development of nanostructured lipid carriers (NLC) as an innovative oral pediatric formulation of HCT with improved therapeutic efficacy. The performance of various synthetic and natural liquid lipids was examined and two different preparation methods were employed, i.e. homogenization-ultrasonication (HU) and microemulsion (ME), in order to evaluate their influence on the NLC properties in terms of size, polydispersity index, ζ-potential, entrapment efficiency, gastric stability, and drug release properties. Precirol®ATO5 was used as solid lipid and Tween®80 and Pluronic®F68 as surfactants, formerly selected in a previous study focused on the development of HCT-solid lipid nanoparticles (SLNs). The presence of Pluronic®F68 did not allow ME formation. On the contrary, using Tween®80, the ME method enabled a higher entrapment efficiency than the HU. Regardless of the preparation method, NLCs exhibited great entrapment efficiency values clearly higher than previous SLNs. Moreover, NLC-ME formulations provided a prolonged release, which lasted for 6 h. In particular, NLC-ME containing Tween®20 as Co-Surfactant showed the best performances, giving rise to a complete drug release, never achieved with previous SLN formulations, despite their successful results. In vivo studies on rats confirmed these results, displaying their best diuretic profile. Moreover, all HCT-loaded NLC formulations showed higher stability than the corresponding SLNs.
Collapse
Affiliation(s)
- Marzia Cirri
- a Department of Chemistry, School of Human Health Sciences , University of Florence , Florence , Italy
| | | | - Francesca Maestrelli
- a Department of Chemistry, School of Human Health Sciences , University of Florence , Florence , Italy
| | - Natascia Mennini
- a Department of Chemistry, School of Human Health Sciences , University of Florence , Florence , Italy
| | - Paola Mura
- a Department of Chemistry, School of Human Health Sciences , University of Florence , Florence , Italy
| | - Carla Ghelardini
- c Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section , University of Florence , Florence , Italy
| | - Lorenzo Di Cesare Mannelli
- c Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section , University of Florence , Florence , Italy
| |
Collapse
|
38
|
Ali HSM, Hanafy AF, Alqurshi A. Engineering of solidified glyburide nanocrystals for tablet formulation via loading of carriers: downstream processing, characterization, and bioavailability. Int J Nanomedicine 2019; 14:1893-1906. [PMID: 30936692 PMCID: PMC6422418 DOI: 10.2147/ijn.s194734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Presenting poorly water-soluble drugs as nanoparticles has shown to be an effective technique in enhancing drug dissolution rate, intrinsic solubility, and thus oral bioavailability. Nevertheless, working with nanoparticles introduces many challenges, one of which is their physical instability. Formulating nanoparticles into a solid dosage form may overcome such challenges and thus unlock the potential benefits of nanosizing. METHODS The current work investigates the possibility of developing a novel solid dosage form, with enhanced dissolution rate, whereby nanocrystals (~400 nm) of the class II Biopharmaceutical Classification System drug, glyburide (GBD) were fabricated through combined precipitation and homogenization procedures. Using a novel, but scalable, spraying technique, GBD nanocrystals were loaded onto commonly used tablet fillers, water-soluble lactose monohydrate (LAC), and water insoluble microcrystalline cellulose (MCC). Conventional tableting processes were then used to convert the powders generated into a tablet dosage form. RESULTS Studies of redispersibility showed considerable preservation of size characteristics of GBD nanocrystals during downstream processing with redispersibility indices of 105 and 118 for GBD-LAC and GBD-MCC, respectively. Characterization by differential scanning calorimetry, powder X-ray diffraction, and scanning electron microscopy showed that the powders generated powders contained nanosized crystals of GBD which adhered to carrier surfaces. Powder flowability was characterized using Hausner ratio (HR) and Carr's index (CI). GBD-LAC-loaded particles exhibited poor flowability with CI and HR of 37.5% and 1.60, respectively, whilst GBD-MCC particles showed a slightly improved flowability with CI and HR of 26.47% and 1.36, respectively. The novel tablet dosage form met US Pharmacopeia specifications, including drug content, hardness, and friability. CONCLUSION Higher dissolution rates were observed from the nanocrystal-based tablets compared to the microsized and commercial drug formulations. Moreover, the novel nanocrystal tablet dosage forms showed enhanced in vivo performance with area under the plasma concentration- time curve in the first 24 hours values 1.97 and 2.24 times greater than that of marketed tablets.
Collapse
Affiliation(s)
- Hany S M Ali
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia,
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt,
| | - Ahmed F Hanafy
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia,
- Research and Development Department, Al Andalous Pharmaceutical Industries, Cairo, Egypt
| | - Abdulmalik Alqurshi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia,
| |
Collapse
|
39
|
Deng W, Wang H, Wu B, Zhang X. Selenium-layered nanoparticles serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the antidiabetic effect. Acta Pharm Sin B 2019; 9:74-86. [PMID: 30766779 PMCID: PMC6361850 DOI: 10.1016/j.apsb.2018.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) remains a great challenge in treatment due to pathological complexity. It has been proven that phytomedicines and natural medicines have prominent antidiabetic effects. This work aimed to develop selenium-layered nanoparticles (SeNPs) for oral delivery of mulberry leaf and Pueraria Lobata extracts (MPE), a group of phytomedicines with significant hypoglycemic activities, to achieve a synergic antidiabetic effect. MPE-loaded SeNPs (MPE-SeNPs) were prepared through a solvent diffusion/in situ reduction technique and characterized by particle size, ζ potential, morphology, entrapment efficiency (EE) and drug loading (DL). The resulting MPE-SeNPs were 120 nm around in particle size with EE of 89.38% for rutin and 90.59% for puerarin, two marker components in MPE. MPE-SeNPs exhibited a slow drug release and good physiological stability in the simulated digestive fluid. After oral administration, MPE-SeNPs produced significant hypoglycemic effects both in the normal and diabetic rats. Ex vivo intestinal imaging and cellular examinations demonstrated that MPE-SeNPs were provided with outstanding intestinal permeability and transepithelial transport aptness. It was also revealed that MPE-SeNPs could alleviate the oxidative stress, improve the pancreatic function, and promote the glucose utilization by adipocytes. Our study provides new insight into the use of integrative nanomedicine containing phytomedicines and selenium for DM treatment.
Collapse
Affiliation(s)
| | | | - Baojian Wu
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
40
|
Siwach R, Pandey P, Chawla V, Dureja H. Role of Nanotechnology in Diabetic Management. RECENT PATENTS ON NANOTECHNOLOGY 2019; 13:28-37. [PMID: 30608045 DOI: 10.2174/1872210513666190104122032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diabetes Mellitus (DM) has emerged as an epidemic that has affected millions of people worldwide in the last few decades. Nanotechnology is a discipline that is concerned with material characteristics at nanoscale and offers novel techniques for disease detection, management and prevention. OBJECTIVE Diabetes mellitus is an epidemic disease that has affected millions of people globally. Nanotechnology has greatly enhanced the health status by providing non-obtrusive techniques for the management and treatment of diabetic patients. METHOD In diabetes research, the nanotechnology has encouraged the advancement of novel glucose monitoring and several modalities for insulin delivery holding possibilities to enhance the personal satisfaction and life quality for diabetic patients. RESULT Nanoparticles hold a great potential in the areas of drug delivery and are explored as vehicles for orally administered insulin formulations. Glucose biosensors equipped with nanoscale materials such as Quantum Dots (QDs), Carbon Nanotubes (CNTs), Magnetic Nanoparticles (MNPs) etc. have shown greater sensitivity. Nanotechnology in diabetic research is heading towards the novel techniques which can provide continuous glucose monitoring offering accurate information and improving patient's compliance. CONCLUSION The present review addresses the different aspects of nanoparticles and recent patents related to diabetic management based on nanotechnology.
Collapse
Affiliation(s)
- Reena Siwach
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak-124001, India
| | - Viney Chawla
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot-151203, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| |
Collapse
|
41
|
Cirri M, Maestrelli F, Mura P, Ghelardini C, Di Cesare Mannelli L. Combined Approach of Cyclodextrin Complexationand Nanostructured Lipid Carriers for the Development of a Pediatric Liquid Oral Dosage Form of Hydrochlorothiazide. Pharmaceutics 2018; 10:pharmaceutics10040287. [PMID: 30572649 PMCID: PMC6321408 DOI: 10.3390/pharmaceutics10040287] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
The development of specific and age-appropriate pediatric formulations is essential to assure that all children and their care-givers can easily access to safe and effective dosage forms. The need for developing specific pediatric medicinal products has been highlighted by the European Medicines Agency. The aim of this study was to investigate the effectiveness of combining the advantages of both cyclodextrin (CD) complexation and loading into nanostructured lipid carriers (NLC), to obtain a liquid oral pediatric formulation of hydrochlorothiazide (HCT), endowed with safety, dosage accuracy, good stability and therapeutic efficacy. Equimolar drug combinations as physical mixture (P.M.) or coground product (GR) with hydroxypropyl-β-cyclodextrin (HPβCD) or sulfobutylether-β-cyclodextrin (SBEβCD) were loaded into NLC, then characterized for particle size, homogeneity, Zeta potential, entrapment efficiency, gastric and storage stability. The presence of HPβCD allowed higher entrapment efficacy than NLC loaded with the plain drug, and enabled, in the case of GR systems a complete and sustained drug release, attributable to the wetting and solubilising properties of HPβCD toward HCT. In vivo studies on rats proved the superior therapeutic effectiveness of HCT-in HPβCD-in NLC formulations compared to the corresponding free HCT-loaded NLC, thus confirming the successfulness of the proposed approach in the development of an efficacious liquid oral formulation of the drug.
Collapse
Affiliation(s)
- Marzia Cirri
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Schiff 6, Sesto Fiorentino 50019 Florence, Italy.
| | - Francesca Maestrelli
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Schiff 6, Sesto Fiorentino 50019 Florence, Italy.
| | - Paola Mura
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Schiff 6, Sesto Fiorentino 50019 Florence, Italy.
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
42
|
Combination of Roll Grinding and High-Pressure Homogenization Can Prepare Stable Bicelles for Drug Delivery. NANOMATERIALS 2018; 8:nano8120998. [PMID: 30513913 PMCID: PMC6316440 DOI: 10.3390/nano8120998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022]
Abstract
To improve the solubility of the drug nifedipine (NI), NI-encapsulated lipid-based nanoparticles (NI-LNs) have been prepared from neutral hydrogenated soybean phosphatidylcholine and negatively charged dipalmitoylphosphatidylglycerol at a molar ratio of 5/1 using by roll grinding and high-pressure homogenization. The NI-LNs exhibited high entrapment efficiency, long-term stability, and enhanced NI bioavailability. To better understand their structures, cryo transmission electron microscopy and atomic force microscopy were performed in the present study. Imaging from both instruments revealed that the NI-LNs were bicelles. Structures prepared with a different drug (phenytoin) or with phospholipids (dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, and distearoylphosphatidylcholine) were also bicelles. Long-term storage, freeze-drying, and high-pressure homogenization did not affect the structures; however, different lipid ratios, or the presence of cholesterol, did result in liposomes (5/0) or micelles (0/5) with different physicochemical properties and stabilities. Considering the result of long-term stability, standard NI-LN bicelles (5/1) showed the most long-term stabilities, providing a useful preparation method for stable bicelles for drug delivery.
Collapse
|
43
|
Kumar V, Chaudhary H, Kamboj A. Development and evaluation of isradipine via rutin-loaded coated solid-lipid nanoparticles. Interv Med Appl Sci 2018; 10:236-246. [PMID: 30792921 PMCID: PMC6376350 DOI: 10.1556/1646.10.2018.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 11/19/2022] Open
Abstract
The objective was to develop a stable and non-compliance coated solid-lipid nanoparticles (coated SLN) using polymer (Eudragit L100) and lipoid (glycerol monostearate: soya lecithin) for partial dose reduction of isradipine [ISR; 2.5 mg by combination of bioenhancing agent (rutin; Ru) in equivalent ratio]. The physicochemical characterizations were performed by FT-IR and DSC of elected model drug (ISR), drug mixer with Ru/polymer and coated SLN with Ru (ONbp); the resulted distinctive peaks demonstrated that no chemical interaction and incompatibility found between them. The plasma samples of formulation (ONbp) were analyzed by liquid chromatography (HPLC) using UV-spectrometer. Data were integrated and analyzed with the help of a computer-designed program "Kinetica Software" (Thermo Scientific Kinetica, PK/PD Analysis, version 5.0, Philadelphia, PA). The pharmacokinetic study showed 3.2- to 4.7-folds enhancement in oral bioavailability of coated SLN of ISR with Ru (ONbp) when compared to a coated formulation of ISR without Ru (ONps) and conventional drug suspension. In vivo studies were revealed significantly at greater extent in (drug stability and solubility) oral absorption, which has shown potential entrapment efficiency (97.85% ± 1.02%) to improve biological activity against hypertension. Hence, nano-system of ISR against hypertension is achieved with consequent dose reduction with enhanced systemic bioavailability.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of RIC, I. K. Gujral Punjab Technical University, Kapurthala, India
| | | | - Anjoo Kamboj
- Chandigarh College of Pharmacy, Chandigarh, India
| |
Collapse
|
44
|
Uppal S, Italiya KS, Chitkara D, Mittal A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy. Acta Biomater 2018; 81:20-42. [PMID: 30268916 DOI: 10.1016/j.actbio.2018.09.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022]
Abstract
Emergence of nanoparticulate drug delivery systems in diabetes has facilitated improved delivery of small molecule drugs which could dramatically improve the quality of life for diabetics. Conventional dosage forms of the anti-diabetic drugs exhibit variable/less bioavailability and short half-life, demanding frequent dosing and causing increased side-effects resulting in ineffectiveness of therapy and non-compliance with the patients. Considering the chronic nature of diabetes, nanotechnology-based approaches are more promising in terms of providing site-specific delivery of drugs with higher bioavailability and reduced dosage regimen. Nanomedicines act at the cellular and molecular levels to enhance the uptake of the drug into the cells or block the efflux mechanisms thus retaining the drug inside the cell for a longer duration of time. Many studies have hinted at the possibility of administering peptide drugs like glucagon like peptides orally by encapsulation into nanoparticles. Nanoparticles also allow further modifications including their encapsulation into microparticles, polyethylene glycol (PEG)-PEGylation- or functionalization with ligands for active targeting. Nevertheless, such remarkable benefits are fraught with their long-term safety concerns, regulatory hurdles, limitations of scale-up and ineffective patent protection which have hindered their commercialization. This review summarizes the latest advances in the area of nanoformulations as applied to the delivery of anti-diabetics. STATEMENT OF SIGNIFICANCE: The present work describes the latest advancements in the area of nanoformulations for anti-diabetic therapy along with highlighting the advantages that these nanoformulations offer at molecular level for diabetes. Although several potent orally active anti-hyperglycemic agents are available, the current challenges in efficient management of diabetes include optimization of the present therapies to ensure an optimum and stable level of glucose, and also to reduce the occurrence of long term complications associated with diabetes. Nanoformulations because of their high surface area to volume ratio provide improved efficacy, targeting their delivery to the desired site of action tends to minimize adverse effects and administration of peptide drugs by oral route is also possible by encapsulating them in nanoparticles. As we reflect on the success and failures of latest research on nanoformulations for the treatment of diabetes, it is important not to dwell on lack of FDA approvals but rather define future directions that guarantee more effective anti-diabetic treatment. In proposed review we have explored the latest advancement in anti-diabetic nanotechnology based formulations.
Collapse
Affiliation(s)
- Siddharth Uppal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| | - Kishan S Italiya
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India.
| |
Collapse
|
45
|
Synthesis of an oleic acid based pH-responsive lipid and its application in nanodelivery of vancomycin. Int J Pharm 2018; 550:149-159. [DOI: 10.1016/j.ijpharm.2018.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
|
46
|
Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs. Pharmaceutics 2018; 10:E74. [PMID: 29937483 PMCID: PMC6161168 DOI: 10.3390/pharmaceutics10030074] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
Over the past decades, a large number of drugs as well as drug candidates with poor dissolution characteristics have been witnessed, which invokes great interest in enabling formulation of these active ingredients. Poorly water-soluble drugs, especially biopharmaceutical classification system (BCS) II ones, are preferably designed as oral dosage forms if the dissolution limit can be broken through. Minimizing a drug’s size is an effective means to increase its dissolution and hence the bioavailability, which can be achieved by specialized dispersion techniques. This article reviews the most commonly used dispersion techniques for pharmaceutical processing that can practically enhance the dissolution and bioavailability of poorly water-soluble drugs. Major interests focus on solid dispersion, lipid-based dispersion (nanoencapsulation), and liquisolid dispersion (drug solubilized in a non-volatile solvent and dispersed in suitable solid excipients for tableting or capsulizing), covering the formulation development, preparative technique and potential applications for oral drug delivery. Otherwise, some other techniques that can increase the dispersibility of a drug such as co-precipitation, concomitant crystallization and inclusion complexation are also discussed. Various dispersion techniques provide a productive platform for addressing the formulation challenge of poorly water-soluble drugs. Solid dispersion and liquisolid dispersion are most likely to be successful in developing oral dosage forms. Lipid-based dispersion represents a promising approach to surmounting the bioavailability of low-permeable drugs, though the technique needs to traverse the obstacle from liquid to solid transformation. Novel dispersion techniques are highly encouraged to develop for formulation of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Huijie Xing
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Yue Zhao
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Zhiguo Ma
- Department of Pharmaceutics, College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| |
Collapse
|
47
|
Kuo YC, Rajesh R. Current development of nanocarrier delivery systems for Parkinson's disease pharmacotherapy. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci 2018; 13:288-303. [PMID: 30065762 PMCID: PMC6040163 DOI: 10.4103/1735-5362.235156] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During the recent years, more attentions have been focused on lipid base drug delivery system to overcome some limitations of conventional formulations. Among these delivery systems solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are promising delivery systems due to the ease of manufacturing processes, scale up capability, biocompatibility, and also biodegradability of formulation constituents and many other advantages which could be related to specific route of administration or nature of the materials are to be loaded to these delivery systems. The aim of this article is to review the advantages and limitations of these delivery systems based on the route of administration and to emphasis the effectiveness of such formulations.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| |
Collapse
|
49
|
Optimization and evaluation of zein nanoparticles to improve the oral delivery of glibenclamide. In vivo study using C. elegans. Eur J Pharm Biopharm 2017; 121:104-112. [DOI: 10.1016/j.ejpb.2017.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 12/17/2022]
|
50
|
Maestrelli F, Mura P, González-Rodríguez ML, Cózar-Bernal MJ, Rabasco AM, Di Cesare Mannelli L, Ghelardini C. Calcium alginate microspheres containing metformin hydrochloride niosomes and chitosomes aimed for oral therapy of type 2 diabetes mellitus. Int J Pharm 2017; 530:430-439. [DOI: 10.1016/j.ijpharm.2017.07.083] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|