1
|
Taseva AR, Persoons T, Healy AM, D'Arcy DM. Application of shadowgraph imaging (SGI) particle characterisation data to interpret the impact of varying test conditions on powder dissolution and to develop an automated agglomeration identification method (AIM) in the USP flow-through apparatus. Int J Pharm 2024; 666:124778. [PMID: 39349225 DOI: 10.1016/j.ijpharm.2024.124778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The aims of this work were 1) to explore the application of shadowgraph imaging (SGI) as a real time monitoring tool to characterize ibuprofen particle behaviour during dissolution testing under various conditions in the USP 4 flow-through apparatus and 2) to investigate the potential to develop an SGI-based automated agglomeration identification method (AIM) for real time agglomerate detection during dissolution testing. The effect of surfactant addition, changes in the drug mass and flow rate, the use of sieved and un-sieved powder fractions, and the use of different drug crystal habits were investigated. Videos at every sampling time point during dissolution were taken and analysed by SGI. The AIM was developed to characterize agglomerates based on two criteria - size and solidity. All detections were confirmed by manual video observation and a reference agglomerate data set. The method was validated under new dissolution conditions with un-sieved particles. Characterisation of particle dispersion behaviour by SGI enabled interpretation of the impact of dissolution test conditions. Higher numbers of early detections reflected greater dissolution rates with increased surfactant concentration, using sieved fraction or plate-shaped crystals, but was impacted by drug mass tested. An AIM was successfully developed and applied to detect agglomerates during dissolution, suggesting potential, with appropriate method development, for application in quality control.
Collapse
Affiliation(s)
- Alexandra R Taseva
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Tim Persoons
- Department of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Deirdre M D'Arcy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| |
Collapse
|
2
|
Reig-López J, Cuquerella-Gilabert M, Bandín-Vilar E, Merino-Sanjuán M, Mangas-Sanjuán V, García-Arieta A. Bioequivalence risk assessment of oral formulations containing racemic ibuprofen through a chiral physiologically based pharmacokinetic model of ibuprofen enantiomers. Eur J Pharm Biopharm 2024; 199:114293. [PMID: 38641229 DOI: 10.1016/j.ejpb.2024.114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The characterization of the time course of ibuprofen enantiomers can be useful in the selection of the most sensitive analyte in bioequivalence studies. Physiologically based pharmacokinetic (PBPK) modelling and simulation represents the most efficient methodology to virtually assess bioequivalence outcomes. In this work, we aim to develop and verify a PBPK model for ibuprofen enantiomers administered as a racemic mixture with different immediate release dosage forms to anticipate bioequivalence outcomes based on different particle size distributions. A PBPK model incorporating stereoselectivity and non-linearity in plasma protein binding and metabolism as well as R-to-S unidirectional inversion has been developed in Simcyp®. A dataset composed of 11 Phase I clinical trials with 54 scenarios (27 per enantiomer) and 14,452 observations (7129 for R-ibuprofen and 7323 for S-ibuprofen) was used. Prediction errors for AUC0-t and Cmax for both enantiomers fell within the 0.8-1.25 range in 50/54 (93 %) and 42/54 (78 %) of scenarios, respectively. Outstanding model performance, with 10/10 (100 %) of Cmax and 9/10 (90 %) of AUC0-t within the 0.9-1.1 range, was demonstrated for oral suspensions, which strongly supported its use for bioequivalence risk assessment. The deterministic bioequivalence risk assessment has revealed R-ibuprofen as the most sensitive analyte to detect differences in particle size distribution for oral suspensions containing 400 mg of racemic ibuprofen, suggesting that achiral bioanalytical methods would increase type II error and declare non-bioequivalence for formulations that are bioequivalent for the eutomer.
Collapse
Affiliation(s)
- Javier Reig-López
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development, University of Valencia-Polytechnic University of Valencia, Spain
| | - Marina Cuquerella-Gilabert
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development, University of Valencia-Polytechnic University of Valencia, Spain; Simulation Department, Empresarios Agrupados Internacional S.A., Madrid, Spain
| | - Enrique Bandín-Vilar
- Pharmacy Department, University Clinical Hospital Santiago de Compostela (CHUS), Spain; Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Spain; Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Spain
| | - Matilde Merino-Sanjuán
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development, University of Valencia-Polytechnic University of Valencia, Spain
| | - Víctor Mangas-Sanjuán
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development, University of Valencia-Polytechnic University of Valencia, Spain.
| | - Alfredo García-Arieta
- Área de Farmacocinética y Medicamentos Genéricos, División de Farmacología y Evaluación Clínica, Departamento de Medicamentos de Uso Humano, Agencia Española de Medicamentos y Productos Sanitarios, Spain
| |
Collapse
|
3
|
Kowthavarapu VK, Charbe NB, Gupta C, Iakovleva T, Stillhart C, Parrott NJ, Schmidt S, Cristofoletti R. Mechanistic Modeling of In Vitro Biopharmaceutic Data for a Weak Acid Drug: A Pathway Towards Deriving Fundamental Parameters for Physiologically Based Biopharmaceutic Modeling. AAPS J 2024; 26:44. [PMID: 38575716 DOI: 10.1208/s12248-024-00912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/17/2024] [Indexed: 04/06/2024] Open
Abstract
Mechanistic modeling of in vitro experiments using metabolic enzyme systems enables the extrapolation of metabolic clearance for in vitro-in vivo predictions. This is particularly important for successful clearance predictions using physiologically based pharmacokinetic (PBPK) modeling. The concept of mechanistic modeling can also be extended to biopharmaceutics, where in vitro data is used to predict the in vivo pharmacokinetic profile of the drug. This approach further allows for the identification of parameters that are critical for oral drug absorption in vivo. However, the routine use of this analysis approach has been hindered by the lack of an integrated analysis workflow. The objective of this tutorial is to (1) review processes and parameters contributing to oral drug absorption in increasing levels of complexity, (2) outline a general physiologically based biopharmaceutic modeling workflow for weak acids, and (3) illustrate the outlined concepts via an ibuprofen (i.e., a weak, poorly soluble acid) case example in order to provide practical guidance on how to integrate biopharmaceutic and physiological data to better understand oral drug absorption. In the future, we plan to explore the usefulness of this tutorial/roadmap to inform the development of PBPK models for BCS 2 weak bases, by expanding the stepwise modeling approach to accommodate more intricate scenarios, including the presence of diprotic basic compounds and acidifying agents within the formulation.
Collapse
Affiliation(s)
- Venkata Krishna Kowthavarapu
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics Lake Nona (Orlando), College of Pharmacy, University of Florida, 6550 Sanger Road, Office 467, Orlando, Florida, 32827, USA
| | - Nitin Bharat Charbe
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics Lake Nona (Orlando), College of Pharmacy, University of Florida, 6550 Sanger Road, Office 467, Orlando, Florida, 32827, USA
| | - Churni Gupta
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics Lake Nona (Orlando), College of Pharmacy, University of Florida, 6550 Sanger Road, Office 467, Orlando, Florida, 32827, USA
| | - Tatiana Iakovleva
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics Lake Nona (Orlando), College of Pharmacy, University of Florida, 6550 Sanger Road, Office 467, Orlando, Florida, 32827, USA
| | - Cordula Stillhart
- Pharmaceutical Research & Development, Formulation & Process Development, F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Neil John Parrott
- Pharmaceutical Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics Lake Nona (Orlando), College of Pharmacy, University of Florida, 6550 Sanger Road, Office 467, Orlando, Florida, 32827, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics Lake Nona (Orlando), College of Pharmacy, University of Florida, 6550 Sanger Road, Office 467, Orlando, Florida, 32827, USA.
| |
Collapse
|
4
|
Jain KMH, Hou HH, Siegel RA. An Artificial Gut/Absorption Simulator: Understanding the Impact of Absorption on In Vitro Dissolution, Speciation, and Precipitation of Amorphous Solid Dispersions. Mol Pharm 2024; 21:1884-1899. [PMID: 38512389 DOI: 10.1021/acs.molpharmaceut.3c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Upon dissolution, amorphous solid dispersions (ASDs) of poorly water-soluble compounds can generate supersaturated solutions consisting of bound and free drug species that are in dynamic equilibrium with each other. Only free drug is available for absorption. Drug species bound to bile micelles, polymer excipients, and amorphous and crystalline precipitate can reduce the drug solute's activity to permeate, but they can also serve as reservoirs to replenish free drug in solution lost to absorption. However, with multiple processes of dissolution, absorption, and speciation occurring simultaneously, it may become challenging to understand which processes lead to an increase or decrease in drug solution concentration. Closed, nonsink dissolution testing methods used routinely, in the absence of drug removal, allow only for static equilibrium to exist and obscure the impact of each drug species on absorption. An artificial gut simulator (AGS) introduced recently consists of a hollow fiber-based absorption module and allows mass transfer of the drug from the dissolution media at a physiological rate after tuning the operating parameters. In the present work, ASDs of varying drug loadings were prepared with a BCS-II model compound, ketoconazole (KTZ), and hypromellose acetate succinate (HPMCAS) polymer. Simultaneous dissolution and absorption testing of the ASDs was conducted with the AGS, and simple analytical techniques were utilized to elucidate the impact of bound drug species on absorption. In all cases, a lower amount of crystalline precipitate was formed in the presence of absorption relative to the nonsink dissolution "control". However, formation of HPMCAS-bound drug species and crystalline precipitate significantly reduced KTZ absorption. Moreover, at high drug loading, inclusion of an absorption module was shown to enhance ASD dissolution. The rank ordering of the ASDs with respect to dissolution was significantly different when nonsink dissolution versus AGS was used, and this discrepancy could be mechanistically elucidated by understanding drug dissolution and speciation in the presence of absorption.
Collapse
Affiliation(s)
| | - Hao Helen Hou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., South San Francisco, California 94080, United States
| | - Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Wu F, Mousa Y, Raines K, Bode C, Tsang YC, Cristofoletti R, Zhang H, Heimbach T, Fang L, Kesisoglou F, Mitra A, Polli J, Kim MJ, Fan J, Zolnik BS, Sun D, Zhang Y, Zhao L. Regulatory utility of physiologically-based pharmacokinetic modeling to support alternative bioequivalence approaches and risk assessment: A workshop summary report. CPT Pharmacometrics Syst Pharmacol 2022; 12:585-597. [PMID: 36530026 DOI: 10.1002/psp4.12907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This report summarizes the proceedings for day 2 sessions 1 and 3 of the 2-day public workshop entitled "Regulatory Utility of Mechanistic Modeling to Support Alternative Bioequivalence Approaches," a jointly sponsored workshop by the US Food and Drug Administration (FDA) and the Center for Research on Complex Generics (CRCG). The aims of this workshop were: (1) to discuss how mechanistic modeling, including physiologically-based pharmacokinetic (PBPK) modeling and simulation, can support product development, and regulatory submissions; (2) to share the current state of mechanistic modeling for bioequivalence (BE) assessment through case studies; (3) to establish a consensus on best practices for using PBPK modeling for BE assessment to help drive further investment by the generic drug industry into mechanistic modeling and simulation; and (4) to introduce the concept of a Model Master File to improve model-sharing. The theme of day 2 covered PBPK absorption model for oral products as an alternative BE approach and a tool for supporting risk assessment and biowaiver (session 1), oral PBPK for evaluating the impact of food on BE (session 2), successful cases, and challenges for oral PBPK (session 3). This report summarizes the topics of the presentations of day 2 sessions 1 and session 3 from FDA, academia, and pharmaceutical industry, including the current status of oral PBPK, case examples as well as the challenges and opportunities in this area. In addition, panel discussions on the utility of oral PBPK in both new drugs and generic drugs from regulatory and industry perspective are also summarized.
Collapse
Affiliation(s)
- Fang Wu
- Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Maryland, Silver Spring, USA
| | - Youssef Mousa
- Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Maryland, Silver Spring, USA
| | - Kimberly Raines
- Office of New Drug Products (ONDP), Office of Pharmaceutical Quality (OPQ), CDER, U.S. FDA, Maryland, Silver Spring, USA
| | - Chris Bode
- Absorption Systems LLC, Pennsylvania, Eaton, USA
| | | | | | - Hongling Zhang
- Office of Bioequivalence, OGD, CDER, U.S. FDA, Maryland, Silver Spring, USA
| | | | - Lanyan Fang
- Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Maryland, Silver Spring, USA
| | | | - Amitava Mitra
- Janssen Research & Development, New Jersey, Raritan, USA
| | - James Polli
- University of Maryland, Maryland, College Park, USA
| | - Myong-Jin Kim
- Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Maryland, Silver Spring, USA
| | - Jianghong Fan
- Office of Clinical Pharmacology, Office of Translational Sciences, CDER, U.S. FDA, Maryland, Silver Spring, USA
| | - Banu S Zolnik
- Office of New Drug Products (ONDP), Office of Pharmaceutical Quality (OPQ), CDER, U.S. FDA, Maryland, Silver Spring, USA
| | - Duxin Sun
- University of Michigan, Michigan, Ann Arbor, USA
| | - Yi Zhang
- Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Maryland, Silver Spring, USA
| | - Liang Zhao
- Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Maryland, Silver Spring, USA
| |
Collapse
|
6
|
Haznar-Garbacz D, Hoc D, Garbacz G, Lachman M, Słomińska D, Romański M. Dissolution of a Biopharmaceutics Classification System Class II Free Acid from Immediate Release Tablets Containing a Microenvironmental pH Modulator: Comparison of a Biorelevant Bicarbonate Buffering System with Phosphate Buffers. AAPS PharmSciTech 2022; 23:203. [PMID: 35882674 DOI: 10.1208/s12249-022-02310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Poor water dissolution of active pharmaceutical ingredients (API) limits the rate of absorption from the gastrointestinal tract. Increasing the pH of a solid form microenvironment can enhance the dissolution of weakly acidic drugs, but data on this phenomenon in a physiologically relevant bicarbonate media are lacking. In this paper, we examined the effect of a microenvironmental pH modulator (Na2HPO4) on the dissolution of a Biopharmaceutics Classification System (BCS) class II free weak acid (ibuprofen) at biorelevant conditions, including an automatic bicarbonate buffering system, as well as in compendial (50 mM) and low-concentration (10 mM) phosphate buffers with no external pH control. The tablets of 200 mg ibuprofen with either Na2HPO4 (phosphate formulation, PF) or NaCl (reference formulation, RF) were manufactured using a compression method. In a pH 2 simulated gastric fluid, only PF produced a transient supersaturation of ibuprofen, dissolving a fourfold higher drug amount than RF. In a bicarbonate-buffered simulated intestinal fluid with a dynamically controlled pH (5.7, 7.2, and 5.8 to 7.7 gradient), PF dissolved more drug within 30 min than RF (p ≤ 0.019). Of note, the use of a 50 mM phosphate buffer pH 7.2 provided opposite results-RF dissolved the API much faster than PF. Moreover, 10 mM phosphate buffers of pH 5.6 and 7.2 could neither maintain a constant pH nor mimic the bicarbonate buffer performance. In conclusion, the use of a bicarbonate-buffered intestinal fluid, instead of phosphate buffers, may be essential in dissolution tests of BCS class II drugs combined with pH modulators.
Collapse
Affiliation(s)
- Dorota Haznar-Garbacz
- Department of Drug Form Technology, Wroclaw Medical University, 211a Borowska St., 50-556, Wrocław, Poland
| | - Dagmara Hoc
- Physiolution Polska, 74 Piłsudskiego St., 50-020, Wrocław, Poland
| | - Grzegorz Garbacz
- Physiolution GmbH, 49a Walther-Rathenau-Straße, 17489, Greifswald, Germany
| | - Marek Lachman
- Budenheim KG, 27 Rheinstraße, 55257, Budenheim, Germany
| | - Daria Słomińska
- Department of Pharmacology, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806, Poznań, Poland
| | - Michał Romański
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806, Poznań, Poland.
| |
Collapse
|
7
|
Navas-Bachiller M, Persoons T, D'Arcy DM. Exploring bulk volume, particle size and particle motion definitions to increase the predictive ability of in vitro dissolution simulations. Eur J Pharm Sci 2022; 174:106185. [PMID: 35398291 DOI: 10.1016/j.ejps.2022.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
The definition of the local dissolution environment is central to accurate particle dissolution simulation, and is determined by the apparatus and conditions used. In the flow-through apparatus dissolution occurs in the cell, often in a low velocity environment, with the reservoir considered the relevant volume for dissolution kinetics. Dissolution simulations were conducted using a reduced-order model based on the Ranz-Marshall correlation for mass transfer from spherical particles. Using ibuprofen as a model drug, the effect of defining a local volume to simulate dynamic bulk concentration conditions in the flow-through and paddle apparatus was assessed by comparing use of a near particle volume (NPV), extending a distance of one radius from the particle surface, with a flow-through apparatus cell volume or paddle apparatus vessel volume as the relevant instantaneous volume for dissolution. The instantaneous inlet concentration to NPV or cell volume is the reservoir/vessel concentration at that simulation time point, reflecting the continuous input to the cell of more dilute solution from the reservoir (closed system). Additionally, inputting particle size distribution (PSD) instead of a median particle size (MPS) and enabling or disabling particle motion were investigated, in two media (resulting in low and high solubility) and with two fluid velocity conditions in each apparatus. The NPV predicted effects of fluid velocity differences on dissolution in the high solubility medium in the flow-through apparatus, but had no effect on predictive ability in the paddle apparatus. In both apparatuses, simulations were reasonable for the high solubility environment but underpredicted dissolution in the low solubility environment. The PSD option and disabling particle motion increased the predictive ability of the simulations in low solubility media in the flow-through apparatus. The results highlight the necessity to incorporate the local dynamic dissolution conditions in the flow-through apparatus for accurate dissolution simulation, and the challenges of defining an effective particle size for dissolution simulation and of reflecting hydrodynamic complexity in simulating dissolution in the paddle apparatus.
Collapse
Affiliation(s)
| | - Tim Persoons
- Department of Mechanical, Manufacturing & Biomedical Engineering Trinity College Dublin, Ireland.
| | - Deirdre M D'Arcy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland.
| |
Collapse
|
8
|
Hens B, Seegobin N, Bermejo M, Tsume Y, Clear N, McAllister M, Amidon GE, Amidon GL. Dissolution Challenges Associated with the Surface pH of Drug Particles: Integration into Mechanistic Oral Absorption Modeling. AAPS J 2022; 24:17. [PMID: 34982285 DOI: 10.1208/s12248-021-00663-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
The present work aimed to differentiate between in vitro dissolution profiles of ibuprofen as input for GastroPlus™ and to see the impact on systemic exposure. In vitro dissolution profiles of ibuprofen obtained under low- and high-buffered dissolution media were used as input using the z-factor approach. In a second step, a customized surface pH calculator was applied to predict the surface pH of ibuprofen under these low- and high-buffered dissolution conditions. These surface pH values were adopted in GastroPlus™ and simulations were performed to predict the systemic outcome. Simulated data were compared with systemic data of ibuprofen obtained under fasted state conditions in healthy subjects. The slower dissolution rate observed when working under low-buffered conditions nicely matched with the slower dissolution rate as observed during the clinical aspiration study and was in line with the systemic exposure of the drug. Finally, a population simulation was performed to explore the impact of z-factor towards bioequivalence (BE) criteria (so-called safe space). Concerning future perspectives, the customized calculator should be developed in such a way to make it possible to predict the dissolution rate (being informed by the particle size distribution) which, in its turn, can be used as a surrogate to predict the USP2 dissolution curve. Subsequently, validation can be done by using this profile as input for PBPK platforms.
Collapse
Affiliation(s)
- Bart Hens
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich, CT13 9ND, UK.
| | - Nidhi Seegobin
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich, CT13 9ND, UK.,UCL School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Marival Bermejo
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, 03550, San Juan de Alicante, Alicante, Spain
| | - Yasuhiro Tsume
- Merck & Co., Inc, 126 E Lincoln Ave, Rahway, New Jersey, 07065, USA
| | - Nicola Clear
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich, CT13 9ND, UK
| | - Mark McAllister
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich, CT13 9ND, UK
| | - Gregory E Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109-1065, USA
| | - Gordon L Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109-1065, USA.
| |
Collapse
|
9
|
Cámara-Martinez I, Blechar JA, Ruiz-Picazo A, Garcia-Arieta A, Calandria C, Merino-Sanjuan V, Langguth P, Gonzalez-Alvarez M, Bermejo M, Al-Gousous J, Gonzalez-Alvarez I. Level A IVIVC for immediate release tablets confirms in vivo predictive dissolution testing for ibuprofen. Int J Pharm 2021; 614:121415. [PMID: 34973409 DOI: 10.1016/j.ijpharm.2021.121415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 12/30/2022]
Abstract
A bioequivalence study comparing two fixed dose combination tablets containing 200 mg ibuprofen and 30 mg pseudoephedrine hydrochloride showed bioequivalence for pseudoephedrine AUC and Cmax, but the reference product showed higher Cmax than the test product in fasted conditions. The main difference between products was the presence of tribasic calcium phosphate in the reference tablet, resulting in an increased surface pH of the dissolving ibuprofen particles under gastric and intestinal conditions and, consequently, higher solubility of ibuprofen. A mechanistic model based on mass balance and ionization equilibria was used to calculate the pH of the particle surface under different buffer conditions. The discrepancies in surface pH between test and reference tablet were pronounced in 0.1 M and 0.01 M hydrochloric acid and in diluted maleate 7 mM pH 6.5 and phosphate 5 mM pH 6.7 buffers (but negligible in compendial phosphate buffer pH 6.8. Only those dissolution tests using pre-treatment in acidic conditions could be used to build a one-step in vitro-in vivo correlation (IVIVC). This work shows the potential of these discriminatory and in vivo predictive dissolution methods to obtain IVIVCs for BCS class IIa drugs and for extending BCS biowaivers to BCS class IIa drugs.
Collapse
Affiliation(s)
- I Cámara-Martinez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain; Pharmacy, Pharmaceutical Technology and Parasitology Area, University of Valencia. Spain
| | - J A Blechar
- Institute of Pharmacy and Biomedical Science, Johannes Gutenberg University, Mainz, Germany
| | - A Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - A Garcia-Arieta
- Area of Pharmacokinetics and Generic Medicines, Division of Pharmacology and Clinical Evaluation, Department of Human Use Medicines. Spanish Agency for Medicines and Health Care Products, Spain.
| | | | - V Merino-Sanjuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, USA
| | - P Langguth
- Institute of Pharmacy and Biomedical Science, Johannes Gutenberg University, Mainz, Germany
| | - M Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - M Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain.
| | - J Al-Gousous
- Institute of Pharmacy and Biomedical Science, Johannes Gutenberg University, Mainz, Germany; Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, USA
| | - I Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| |
Collapse
|
10
|
Is equilibrium slurry pH a good surrogate for solid surface pH during drug dissolution? Eur J Pharm Sci 2021; 168:106037. [PMID: 34637897 DOI: 10.1016/j.ejps.2021.106037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022]
Abstract
The purpose of the present study was to investigate the suitability of equilibrium slurry pH (pHeq) as a surrogate of solid surface pH during drug dissolution (pH0). A comprehensive calculation scheme for pHeq and pH0 was formalized based on the principle of charge neutrality (equilibrium charge neutrality for pHeq and charge flux neutrality for pH0). The formalized scheme was then used to investigate the validity of pH0 ≈ pHeq approximation. The approximation of pH0 ≈ pHeq was suggested to be accurate for small molecules (ca. MW = 150) in high concentration buffer media (ca. buffer capacity = 30 mM/ΔpH). In addition, it is valid provided no precipitation of its free form for salts (vice versa for free forms) in both the slurry pH measurement and at the dissolving drug surface. The formalized calculation scheme is simple and applicable to free and salt form drugs in unbuffered and buffered media including bicarbonate buffer. The computational expense is very small so that it is applicable to various computer simulations such as biopharmaceutics modeling and simulation.
Collapse
|
11
|
Yoshida H, Abe Y, Tomita N, Izutsu KI. Utilization of Diluted Compendial Media as Dissolution Test Solutions with Low Buffer Capacity for the Investigation of Dissolution Rate of Highly Soluble Immediate Release Drug Products. Chem Pharm Bull (Tokyo) 2020; 68:664-670. [PMID: 32612001 DOI: 10.1248/cpb.c20-00247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Research from the past decade has shown that the buffer capacities of intestinal fluids are much lower than those in the media used for dissolution test of many solid formulations. The purpose of this study was to elucidate the effect of buffer capacity on the dissolution profiles of highly soluble drug products, using metoclopramide (a biopharmaceutics classification system [BCS] class III drug) tablets as a model. The dissolution profiles of three metoclopramide products were obtained in Japanese pharmacopeia dissolution medium (pH 1.2 and 6.8), diluted medium with low buffer capacity comparable to that of gastrointestinal fluid, and other biorelevant media. One product showed slower dissolution in the medium with lower buffer capacity (bio-relevant, diluted compendial solution), but substantially similar dissolution in the compendial test solutions. Disintegration difference was implied to be involved in the different dissolution profiles depending on the medium buffer capacity. This study indicated the importance of media buffer capacity as a factor inducing different dissolution between products of highly soluble active pharmaceutical ingredients. The diluted compendial media would be a useful alternative to biorelevant media for the detection of the different formulation performances depending on the buffer capacities.
Collapse
Affiliation(s)
| | - Yasuhiro Abe
- Division of Drugs, National Institute of Health Sciences
| | - Naomi Tomita
- Division of Drugs, National Institute of Health Sciences
| | | |
Collapse
|
12
|
Biphasic Dissolution as an Exploratory Method During Early Drug Product Development. Pharmaceutics 2020; 12:pharmaceutics12050420. [PMID: 32370237 PMCID: PMC7284338 DOI: 10.3390/pharmaceutics12050420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/24/2023] Open
Abstract
Dissolution testing is a major tool used to assess a drug product's performance and as a quality control test for solid oral dosage forms. However, compendial equipment and methods may lack discriminatory power and the ability to simulate aspects of in vivo dissolution. Using low buffer capacity media combined with an absorptive phase (biphasic dissolution) increases the physiologic relevance of in vitro testing. The purpose of this study was to use non-compendial and compendial dissolution test conditions to evaluate the in vitro performance of different formulations. The United States Pharmacopeia (USP)-recommended dissolution method greatly lacked discriminatory power, whereas low buffer capacity media discriminated between manufacturing methods. The use of an absorptive phase in the biphasic dissolution test assisted in controlling the medium pH due to the drug removal from the aqueous medium. Hence, the applied non-compendial methods were more discriminative to drug formulation differences and manufacturing methods than conventional dissolution conditions. In this study, it was demonstrated how biphasic dissolution and a low buffer capacity can be used to assess in vitro drug product performance differences. This can be a valuable approach during the early stages of drug product development for investigating in vitro drug release with improved physiological relevance.
Collapse
|
13
|
Uekusa T, Oki J, Omori M, Watanabe D, Inoue D, Sugano K. Effect of buffer capacity on dissolution and supersaturation profiles of pioglitazone hydrochloride. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Mudie DM, Samiei N, Marshall DJ, Amidon GE, Bergström CAS. Selection of In Vivo Predictive Dissolution Media Using Drug Substance and Physiological Properties. AAPS JOURNAL 2020; 22:34. [PMID: 31989343 PMCID: PMC6985051 DOI: 10.1208/s12248-020-0417-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/04/2020] [Indexed: 12/20/2022]
Abstract
The rate and extent of drug dissolution in the gastrointestinal (GI) tract are highly dependent upon drug physicochemical properties and GI fluid properties. Biorelevant dissolution media (BDM), which aim to facilitate in vitro prediction of in vivo dissolution performance, have evolved with our understanding of GI physiology. However, BDM with a variety of properties and compositions are available, making the choice of dissolution medium challenging. In this tutorial, we describe a simple and quantitative methodology for selecting practical, yet physiologically relevant BDM representative of fasted humans for evaluating dissolution of immediate release formulations. Specifically, this methodology describes selection of pH, buffer species, and concentration and evaluates the importance of including bile salts and phospholipids in the BDM based upon drug substance log D, pKa, and intrinsic solubility. The methodology is based upon a mechanistic understanding of how three main factors affect dissolution, including (1) drug ionization at gastrointestinal pH, (2) alteration of surface pH by charged drug species, and (3) drug solubilization in mixed lipidic aggregates comprising bile salts and phospholipids. Assessment of this methodology through testing and comparison with literature reports showed that the recommendations correctly identified when a biorelevant buffer capacity or the addition of bile salts and phospholipids to the medium would appreciably change the drug dissolution profile. This methodology can enable informed decisions about when a time, complexity, and/or cost-saving buffer is expected to lead to physiologically meaningful in vitro dissolution testing, versus when a more complex buffer would be required.
Collapse
Affiliation(s)
- Deanna M Mudie
- Global Research and Development, Lonza, Bend, Oregon, 97703, USA.
| | - Nasim Samiei
- Department of Pharmacy, Uppsala Biomedical Centre, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden
| | - Derrick J Marshall
- Global Research and Development, Lonza, Bend, Oregon, 97703, USA.,Pivotal Drug Product Technologies, Amgen, Cambridge, Massachusetts, 02141, USA
| | - Gregory E Amidon
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, 48103, USA
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Centre, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden
| |
Collapse
|
15
|
Hamed R. Physiological parameters of the gastrointestinal fluid impact the dissolution behavior of the BCS class IIa drug valsartan. Pharm Dev Technol 2019; 23:1168-1176. [PMID: 30320540 DOI: 10.1080/10837450.2018.1536996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The objective of this study was to investigate the effect of the physiological parameters (pH, buffer capacity, and ionic strength) of the gastrointestinal (GI) fluid on the dissolution behavior of the class II weakly acidic (BCS class IIa) drug valsartan. A series of in vitro dissolution studies was carried out on Diovan® immediate release tablets using media that cover the physiological range of pH (1.2-7.8), buffer capacity (0-0.047 M/ΔpH), and ionic strength (0-0.4 mol/L) of the GI fluid during fasted and fed states using the conventional USP II apparatus. Valsartan exhibited pH- and buffer capacity-dependent dissolution behavior, where valsartan release was slow and incomplete in media simulating gastric fluid with low pH, and fast and complete in media simulating intestinal fluid with high pH. In addition, the rate of valsartan release increased with increasing the buffer capacity of the dissolution medium. In water and NaCl solutions, valsartan release was incomplete and the dissolution profiles were similar regardless of the ionic strength of the medium, indicating an ionic strength-independent dissolution behavior. These results highlight the significant effect of the physiological parameters of the GI fluid on the dissolution behavior of BCS class IIa drugs.
Collapse
Affiliation(s)
- Rania Hamed
- a Department of Pharmacy, Faculty of Pharmacy , Al-Zaytoonah University of Jordan , Amman , Jordan
| |
Collapse
|
16
|
Cristofoletti R, Hens B, Patel N, Esteban VV, Schmidt S, Dressman J. Integrating Drug- and Formulation-Related Properties With Gastrointestinal Tract Variability Using a Product-Specific Particle Size Approach: Case Example Ibuprofen. J Pharm Sci 2019; 108:3842-3847. [PMID: 31539541 DOI: 10.1016/j.xphs.2019.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022]
Abstract
In the present study, an in vitro-in vivo extrapolation of dissolution integrated to a physiologically based pharmacokinetics modeling approach, considering a product-specific particle size distribution and a self-buffering effect of the drug, is introduced and appears to be a promising translational modeling strategy to support drug product development, manufacturing changes and setting clinically relevant specifications for immediate release formulations containing ibuprofen and other weak acids with similar properties.
Collapse
Affiliation(s)
- Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827.
| | - Bart Hens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Nikunjkumar Patel
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, Sheffield, UK
| | - Valvanera Vozmediano Esteban
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Hofsäss MA, Dressman JB. The Discriminatory Power of the BCS-Based Biowaiver: A Retrospective With Focus on Essential Medicines. J Pharm Sci 2019; 108:2824-2837. [DOI: 10.1016/j.xphs.2019.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 11/25/2022]
|
18
|
Amaral Silva D, Al-Gousous J, Davies NM, Bou Chacra N, Webster GK, Lipka E, Amidon G, Löbenberg R. Simulated, biorelevant, clinically relevant or physiologically relevant dissolution media: The hidden role of bicarbonate buffer. Eur J Pharm Biopharm 2019; 142:8-19. [PMID: 31195131 DOI: 10.1016/j.ejpb.2019.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 01/15/2023]
Abstract
In-vitro dissolution testing of pharmaceutical formulations has been used as a quality control test for many years. At early drug product development, in vivo predictive dissolution testing can be used for guidance in the rational selection of candidate formulations that best fit the desired in vivo dissolution characteristics. At present, the most widely applied dissolution media are phosphate-based buffers and, in some cases, the result of dissolution tests performed in such media have demonstrated reasonable/acceptable IVIVCs. However, the presence of phosphates in human GI luminal fluids is insignificant, which makes the use of such media poorly representative of the in vivo environment. The gastrointestinal lumen has long been shown to be buffered by bicarbonate. Hence, much interest in the development of suitable biorelevant in vitro dissolution media based on bicarbonate buffer systems has evolved. However, there are inherent difficulties associated with these buffers, such as maintaining the pH throughout the dissolution test, as CO2 tends to leave the system. Various mathematical models have been proposed to analyze bicarbonate buffers and they are discussed in this review. Approaches such as using simpler buffer systems instead of bicarbonate have been proposed as surrogate buffers to produce an equivalent buffer effect on drug dissolution on a case-by-case basis. There are many drawbacks related to simpler buffers systems including their poor in vivo predictability. Considerable discrepancies between phosphate and bicarbonate buffer dissolution results have been reported for certain dosage forms, e.g. enteric coated formulations. The role and need of bicarbonate-based buffers in quality control testing requires scientific analysis. This review also encompasses on the use of bicarbonate-based buffers as a potentially in vivo predictive dissolution medium for enteric coated dosage forms.
Collapse
Affiliation(s)
- Daniela Amaral Silva
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jozef Al-Gousous
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Neal M Davies
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nadia Bou Chacra
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Gregory K Webster
- Research and Development, AbbVie Inc., North Chicago, IL, United States
| | | | - Gordon Amidon
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Raimar Löbenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
19
|
Tsume Y, Patel S, Fotaki N, Bergstrӧm C, Amidon GL, Brasseur JG, Mudie DM, Sun D, Bermejo M, Gao P, Zhu W, Sperry DC, Vertzoni M, Parrott N, Lionberger R, Kambayashi A, Hermans A, Lu X, Amidon GE. In Vivo Predictive Dissolution and Simulation Workshop Report: Facilitating the Development of Oral Drug Formulation and the Prediction of Oral Bioperformance. AAPS JOURNAL 2018; 20:100. [PMID: 30191341 DOI: 10.1208/s12248-018-0260-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Yasuhiro Tsume
- College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA. .,Merck & Co., Inc., 126 E Lincoln Ave, Rahway, New Jersey, 07065, USA.
| | - Sanjaykumar Patel
- Merck & Co., Inc., 126 E Lincoln Ave, Rahway, New Jersey, 07065, USA
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | - Gordon L Amidon
- College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA
| | - James G Brasseur
- Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, USA
| | | | - Duxin Sun
- College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA
| | | | - Ping Gao
- Abbvie, Inc., Chicago, Illinois, USA
| | - Wei Zhu
- Merck & Co., Inc., West Point, Pennsylvania, 19486, USA
| | - David C Sperry
- Eli Lilly and Company, Indianapolis, Indiana, 46285, USA
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Neil Parrott
- F. Hoffmann-La Roche, Ltd., Roche Innovation Center, Basel, Switzerland
| | | | | | - Andre Hermans
- Merck & Co., Inc., West Point, Pennsylvania, 19486, USA
| | - Xujin Lu
- Bristol-Myers Squibb Company, New Brunswick, New Jersey, 08903, USA
| | - Gregory E Amidon
- College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
20
|
Litou C, Vertzoni M, Xu W, Kesisoglou F, Reppas C. The impact of reduced gastric acid secretion on dissolution of salts of weak bases in the fasted upper gastrointestinal lumen: Data in biorelevant media and in human aspirates. Eur J Pharm Biopharm 2017; 115:94-101. [PMID: 28214603 DOI: 10.1016/j.ejpb.2017.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/19/2017] [Accepted: 02/13/2017] [Indexed: 12/28/2022]
|
21
|
Cristofoletti R, Dressman JB. Bridging the Gap Between In Vitro Dissolution and the Time Course of Ibuprofen-Mediating Pain Relief. J Pharm Sci 2016; 105:3658-3667. [DOI: 10.1016/j.xphs.2016.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022]
|
22
|
Cristofoletti R, Dressman JB. FaSSIF-V3, but not compendial media, appropriately detects differences in the peak and extent of exposure between reference and test formulations of ibuprofen. Eur J Pharm Biopharm 2016; 105:134-40. [DOI: 10.1016/j.ejpb.2016.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 12/31/2022]
|
23
|
Cristofoletti R, Dressman JB. Dissolution Methods to Increasing Discriminatory Power of In Vitro Dissolution Testing for Ibuprofen Free Acid and Its Salts. J Pharm Sci 2016; 106:92-99. [PMID: 27397434 DOI: 10.1016/j.xphs.2016.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/01/2016] [Indexed: 11/26/2022]
Abstract
The predictive capacity of in vitro dissolution tests using the Biopharmaceutics Classification System (BCS)-based experimental setup to anticipate in vivo bioequivalence outcomes for BCS class 2 weak acids has been questioned. In this work, the effect of buffer concentration media was investigated as a possible approach to ensuring the discriminative capacity of the in vitro dissolution methods. The case example used to test this approach was ibuprofen, formulated as either the free acid or in various salt forms. By matching the concentration of buffers commonly used to prepare media which aim to simulate the intestinal conditions with that of bicarbonate buffer, which is the predominant buffer species in vivo, to arrive at the same surface pH (pH0), the discriminative power of the in vitro dissolution tests was improved. To simulate the in vivo results even better, a pretreatment at acidic pH was added to the dissolution test simulating the gastric conditions to create a 2-stage test. With the 2-stage test, it was possible to account for differences in disintegration in a more physiologically relevant way and thus to better reflect the in vivo performance of the various formulations.
Collapse
Affiliation(s)
- Rodrigo Cristofoletti
- Division of Therapeutic Equivalence, Brazilian Health Surveillance Agency (ANVISA), Brasilia, Brazil; Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Jennifer B Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|