1
|
Zhang RY, Wen Y, He CB, Zhou SH, Wu YH, Wang EY, Feng RR, Ding D, Du JJ, Gao XF, Guo J. Conjugation of TLR7 and TLR7/8 agonists onto weak protein antigen via versatile oxime ligation for enhanced vaccine efficacy. Int J Biol Macromol 2024; 278:134620. [PMID: 39127274 DOI: 10.1016/j.ijbiomac.2024.134620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Protein-based subunit vaccines are weakly immunogenic, and developing self-adjuvanting vaccines with adjuvant conjugated to antigen is a promising approach for generating optimal immune responses. Here, we report a novel adjuvant-protein conjugate vaccine based on versatile oxime ligation technique. Firstly, the adjuvant properties of a series of TLR7 and TLR7/8 small molecule agonists in self-adjuvanting vaccines were systematically compared by coupling them to proteins in consistent ratio via p-carboxybenzaldehyde (p-CBA) for the first time. All conjugate vaccines induced cytokine secretion in murine and human macrophages in vitro, and promoted specific antibody production in vivo. Notably, a conjugate containing imidazoquinoline TLR7/8 agonist (TLR7/8a1) showed the greatest enhancement in Th1/2 balanced antibody response. To minimize the interference with the protein antigenic integrity, we further developed a systematic glycoconjugation strategy to conjugate this TLR7/8a1 onto the glycan chains of SARS-CoV-2 S1 glycoprotein via oxime ligation, in which S1 containing different numbers of aldehyde groups were obtained by differential periodate oxidation. The resulting TLR7/8a1-S1 conjugate triggered a potent humoral and cellular immunity in vivo. Together these data demonstrate the promise of these TLR7 and TLR7/8 agonists as effective built-in adjuvants, and the versatile oxime ligation strategy might broaden potential applications in designing different conjugate vaccines.
Collapse
Affiliation(s)
- Ru-Yan Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China; Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Yu Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen-Bin He
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shi-Hao Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ye-Hui Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - En-Yang Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ran-Ran Feng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dong Ding
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Jun Guo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
2
|
Powers N, Massena C, Crouse B, Smith M, Hicks L, Evans JT, Miller S, Pravetoni M, Burkhart D. Self-Adjuvanting TLR7/8 Agonist and Fentanyl Hapten Co-Conjugate Achieves Enhanced Protection against Fentanyl Challenge. Bioconjug Chem 2023; 34:1811-1821. [PMID: 37758302 PMCID: PMC10587865 DOI: 10.1021/acs.bioconjchem.3c00347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Currently approved pharmacotherapies for opioid use disorders (OUDs) and overdose reversal agents are insufficient to slow the spread of OUDs due to the proliferation of fentanyl. This is evident in the 31% rise in drug overdose deaths from 2019 to 2022, with rates increasing from 21.6 to 28.3 overdoses per 100,000 deaths. Vaccines are a potential alternative or adjunct therapy for the treatment of several substance use disorders (nicotine, cocaine) but have shown limited clinical success due to suboptimal antibody titers. In this study, we demonstrate that coconjugation of a Toll-like receptor 7/8 (TLR7/8) agonist (UM-3006) alongside a fentanyl-based hapten (F1) on the surface of the carrier protein cross-reactive material 197 (CRM) significantly increased generation of high-affinity fentanyl-specific antibodies. This demonstrated enhanced protection against fentanyl challenges relative to an unconjugated (admix) adjuvant control in mice. Inclusion of aluminum hydroxide (alum) adjuvant further increased titers and enhanced protection, as determined by analysis of fentanyl concentration in serum and brain tissue. Collectively, our findings present a promising approach to enhance the efficacy of antiopioid vaccines, underscoring the need for extensive exploration of TLR7/8 agonist conjugates as a compelling strategy to combat opioid use disorders.
Collapse
Affiliation(s)
- Noah Powers
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Casey Massena
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Bethany Crouse
- Department
of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mira Smith
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Linda Hicks
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Jay T. Evans
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Shannon Miller
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Marco Pravetoni
- Department
of Psychiatry and Behavioral Sciences, University
of Washington School of Medicine, Seattle, Washington 98195, United States
| | - David Burkhart
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| |
Collapse
|
3
|
Wen Y, Zhang RY, Wang J, Zhou SH, Peng XQ, Ding D, Zhang ZM, Wei HW, Guo J. Novel sialoglycan linkage for constructing adjuvant-protein conjugate as potent vaccine for COVID-19. J Control Release 2023; 355:238-247. [PMID: 36716860 PMCID: PMC9907060 DOI: 10.1016/j.jconrel.2023.01.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Self-adjuvanting protein vaccines have been proved to be highly immunogenic with efficient codelivery of adjuvant and antigen. Current protein vaccines with built-in adjuvants are all modified at the peptide backbone of antigen protein, which could not achieve minor epitope interference and adjuvant multivalency at the same time. Herein, we developed a new conjugate strategy to construct effective adjuvant-protein vaccine with adjuvant cluster effect and minimal epitope interference. The toll-like receptor 7 agonist (TLR7a) is covalently conjugated on the terminal sialoglycans of SARS-CoV-2-S1 protein, leading to intracellular release of the small-molecule stimulators with greatly reduced risks of systemic toxicity. The resulting TLR7a-S1 conjugate elicited strong activation of immune cells in vitro, and potent antibody and cellular responses with a significantly enhanced Th1-bias in vivo. TLR7a-S1-induced antibody also effectively cross-neutralized all variants of concern. This sialoglycoconjugation approach to construct protein conjugate vaccines will have more applications to combat SARS-CoV-2 and other diseases.
Collapse
Affiliation(s)
- Yu Wen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiao-Qian Peng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dong Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zhi-Ming Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hua-Wei Wei
- Jiangsu East-Mab Biomedical Technology Co. Ltd, Nantong 226499, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
4
|
Yu W, Shen L, Qi Q, Hu T. Conjugation with loxoribine and mannan improves the immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 fusion protein. Eur J Pharm Biopharm 2022; 172:193-202. [DOI: 10.1016/j.ejpb.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/01/2022] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
|
5
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
6
|
Humpierre AR, Zanuy A, Saenz M, Garrido R, Vasco AV, Pérez-Nicado R, Soroa-Milán Y, Santana-Mederos D, Westermann B, Vérez-Bencomo V, Méndez Y, García-Rivera D, Rivera DG. Expanding the Scope of Ugi Multicomponent Bioconjugation to Produce Pneumococcal Multivalent Glycoconjugates as Vaccine Candidates. Bioconjug Chem 2020; 31:2231-2240. [PMID: 32809806 DOI: 10.1021/acs.bioconjchem.0c00423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conjugate vaccines against encapsulated pathogens like Streptococcus pneumoniae face many challenges, including the existence of multiple serotypes with a diverse global distribution that constantly requires new formulations and higher coverage. Multivalency is usually achieved by combining capsular polysaccharide-protein conjugates from invasive serotypes, and for S. pneumoniae, this has evolved from 7- up to 20-valent vaccines. These glycoconjugate formulations often contain high concentrations of carrier proteins, which may negatively affect glycoconjugate immune response. This work broadens the scope of an efficient multicomponent strategy, leading to multivalent pneumococcal glycoconjugates assembled in a single synthetic operation. The bioconjugation method, based on the Ugi four-component reaction, enables the one-pot incorporation of two different polysaccharide antigens to a tetanus toxoid carrier, thus representing the fastest approach to achieve multivalency. The reported glycoconjugates incorporate three combinations of capsular polysaccharides 1, 6B, 14, and 18C from S. pneumoniae. The glycoconjugates were able to elicit functional specific antibodies against pneumococcal strains comparable to those shown by mixtures of the two monovalent glycoconjugates.
Collapse
Affiliation(s)
- Ana R Humpierre
- Finlay Institute of Vaccines, Ave 27 # 19805, Havana 10600, Cuba.,Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.,Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| | - Abel Zanuy
- Finlay Institute of Vaccines, Ave 27 # 19805, Havana 10600, Cuba
| | - Mirelys Saenz
- Finlay Institute of Vaccines, Ave 27 # 19805, Havana 10600, Cuba.,Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba
| | - Raine Garrido
- Finlay Institute of Vaccines, Ave 27 # 19805, Havana 10600, Cuba
| | - Aldrin V Vasco
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| | | | | | | | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| | | | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.,Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| | | | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.,Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| |
Collapse
|
7
|
Chatzikleanthous D, Schmidt ST, Buffi G, Paciello I, Cunliffe R, Carboni F, Romano MR, O'Hagan DT, D'Oro U, Woods S, Roberts CW, Perrie Y, Adamo R. Design of a novel vaccine nanotechnology-based delivery system comprising CpGODN-protein conjugate anchored to liposomes. J Control Release 2020; 323:125-137. [DOI: 10.1016/j.jconrel.2020.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022]
|
8
|
Chatzikleanthous D, Cunliffe R, Carboni F, Romano MR, O'Hagan DT, Roberts CW, Perrie Y, Adamo R. Synthesis of protein conjugates adsorbed on cationic liposomes surface. MethodsX 2020; 7:100942. [PMID: 32551244 PMCID: PMC7289768 DOI: 10.1016/j.mex.2020.100942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
The well-known Toll like receptor 9 (TLR9) agonist CpG ODN has shown promising results as vaccine adjuvant in preclinical and clinical studies, however its in vivo stability and potential systemic toxicity remain a concern. In an effort to overcome these issues, different strategies have been explored including conjugation of CpG ODN with proteins or encapsulation/adsorption of CpG ODN into/onto liposomes. Although these methods have resulted in enhanced immunopotency compared to co-administration of free CpG ODN and antigen, we believe that this effect could be further improved. Here, we designed a novel delivery system of CpG ODN based on its conjugation to serve as anchor for liposomes. Thiol-maleimide chemistry was utilised to covalently ligate model protein with the CpG ODN TLR9 agonist. Due to its negative charge, the protein conjugate readily electrostatically bound cationic liposomes composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol and dimethyldioctadecylammonium bromide (DDA) in a very high degree. The novel cationic liposomes-protein conjugate complex shared similar vesicle characteristics (size and charge) compared to free liposomes. The conjugation of CpG ODN to protein in conjunction with adsorption on cationic liposomes, could promote co-delivery leading to the induction of immune response at low antigen and CpG ODN doses.The CpG ODN Toll-like receptor (TLR) 9 agonist was conjugated to protein antigens via thiol-maleimide chemistry. Due to their negative charge, protein conjugates readily electrostatically bound cationic liposomes composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol and dimethyldioctadecylammonium bromide (DDA) resulting to the design of novel cationic liposomes-protein conjugate complexes. The method is suited for the liposomal delivery of a variety of adjuvant-protein conjugates.
Collapse
Affiliation(s)
- Despo Chatzikleanthous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, G4 0RE Glasgow, UK
| | - Robert Cunliffe
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, G4 0RE Glasgow, UK
| | | | | | | | - Craig W Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, G4 0RE Glasgow, UK
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, G4 0RE Glasgow, UK
| | | |
Collapse
|
9
|
Du JJ, Wang CW, Xu WB, Zhang L, Tang YK, Zhou SH, Gao XF, Yang GF, Guo J. Multifunctional Protein Conjugates with Built-in Adjuvant (Adjuvant-Protein-Antigen) as Cancer Vaccines Boost Potent Immune Responses. iScience 2020; 23:100935. [PMID: 32146328 PMCID: PMC7063246 DOI: 10.1016/j.isci.2020.100935] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/22/2019] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
Many cancer vaccines are not successful in clinical trials, mainly due to the challenges associated with breaking immune tolerance. Herein, we report a new strategy using an adjuvant-protein-antigen (three-in-one protein conjugates with built-in adjuvant) as an anticancer vaccine, in which both the adjuvant (small-molecule TLR7 agonist) and tumor-associated antigen (mucin 1, MUC1) are covalently conjugated to the same carrier protein (BSA). It is shown that the protein conjugates with built-in adjuvant can increase adjuvant's stimulation, prevent adjuvant's systemic toxicities, facilitate the codelivery of adjuvants and antigens, and enhance humoral and cellular immune responses. The IgG antibody titers elicited by the self-adjuvanting three-in-one protein conjugates were significantly higher than those elicited by the vaccine mixed with TLR7 agonist (more than 15-fold) or other traditional adjuvants. Importantly, the potent immune responses against cancer cells suggest that this new vaccine construct is an effective strategy for the personalized antitumor immunotherapy. Adjuvant-protein-antigen protein conjugates act as new cancer vaccine strategy Built-in adjuvant of TLR7 agonist can reduce toxicities and enhance immune stimulations Three-in-one protein conjugates boost potent immune responses against cancer cells
Collapse
Affiliation(s)
- Jing-Jing Du
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Chang-Wei Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Wen-Bo Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Lian Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yuan-Kai Tang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China.
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
10
|
Xu L, Li Z, Su Z, Yang Y, Ma G, Yu R, Zhang S. Development of meningococcal polysaccharide conjugate vaccine that can elicit long-lasting and strong cellular immune response with hepatitis B core antigen virus-like particles as a novel carrier protein. Vaccine 2019; 37:956-964. [PMID: 30655174 DOI: 10.1016/j.vaccine.2018.12.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 11/18/2018] [Accepted: 12/30/2018] [Indexed: 11/30/2022]
Abstract
Neisseria meningitidis caused meningitis is life-threatening acute infection with high fatality and high frequency of severe sequelae. Meningococcal capsular polysaccharides can be used to prevent meningococcal disease; while conjugating the polysaccharides to carrier protein was found necessary to improve the immunogenicity and induce memory responses in infants and young children. Nevertheless, repeated administration of glycoconjugate vaccines might lead to carrier-induced epitope suppression due to limited number of carrier proteins. Here in this study, full-length hepatitis B core antigen virus-like particles (HBc VLPs) was used as a novel potential carrier protein for conjugation of meningococcal group C polysaccharides (CPS) with heterobifunctional polyethylene glycol (PEG) of different length (2, 5 and 10 kDa) as linkers. The physiochemical properties of the CPS-PEG-HBc conjugate vaccines were fully characterized. The TEM, DLS, native agarose gel electrophoresis, and HPLC analyses all confirmed the successful conjugation. As compared to plain CPS and the physical mixture of CPS and HBc, the immunization with the conjugate vaccines can generate about 10 times increase in CPS specific IgG titers with a significant boosting effect. HBc conjugation induced a shift to a Th1 cellular immune type response, as assessed by the increased IgG2a subclass production. In addition, vaccination of the conjugate vaccines elicited much enhanced avidity functional antibody and long-lasting immunological memory. IgG titers elicited by CPS-P2k-HBc, CPS-P5k-HBc and CPS-P10k-HBc at week 18 maintained 38.1%, 17.9% and 33.3% of their peak values. All these results demonstrated that HBc VLPs can be used as potential carrier protein to develop polysaccharide conjugate vaccines effective in eliciting long-lasting and strong cellular immune response.
Collapse
Affiliation(s)
- Lingling Xu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanli Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Yu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
11
|
Conjugation of chitosan oligosaccharides via a carrier protein markedly improves immunogenicity of porcine circovirus vaccine. Glycoconj J 2018; 35:451-459. [PMID: 30051156 DOI: 10.1007/s10719-018-9830-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/27/2018] [Accepted: 06/13/2018] [Indexed: 11/27/2022]
Abstract
Porcine circovirus type 2 (PCV2)-associated diseases have led to huge economic losses in pig industry. Our laboratory previously found that conjugation of chitosan oligosaccharides (COS) enhanced the immunogenicity of PCV2 vaccine against infectious pathogens. In this study, an effective adjuvant system was developed by covalent conjugation of COS via a carrier protein (Ovalbumin, OVA) to further increase the immunogenicity of vaccine. Its effect on dendritic cells maturation was assessed in vitro and its immunogenicity was investigated in mice. The results indicated that, as compared to the PCV2 and COS-PCV2, COS-OVA-PCV2 stimulated dendritic cells to express higher maturation markers (CD80, CD86, CD40 and MHC class II) and remarkably promoted both humoral and cellular immunity against PCV2 by enhancing the lymphocyte proliferation and inducing a mixed Th1/Th2 response, including the increased production of PCV2-specific antibodies and raised levels of inflammatory cytokines. Furthermore, it displayed better immune-stimulating effects than the physical mixture of vaccine and ISA206 (a commercialized adjuvant). In conclusion, conjugation of COS via a carrier protein might be a promising strategy to enhance the immunogenicity of vaccines.
Collapse
|
12
|
Gadd AJR, Castelletto V, Kabova E, Shankland K, Perrie Y, Hamley I, Cobb AJA, Greco F, Edwards AD. High potency of lipid conjugated TLR7 agonist requires nanoparticulate or liposomal formulation. Eur J Pharm Sci 2018; 123:268-276. [PMID: 30048801 PMCID: PMC6137072 DOI: 10.1016/j.ejps.2018.07.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022]
Abstract
Conjugation of small molecule agonists of Toll-like receptor 7 (TLR7) to proteins, lipids, or polymers is known to modulate potency, and the physical form or formulation of these conjugates is likely to have a major effect on their immunostimulatory activity. Here, we studied the effect of formulation on potency of a 1,2‑di‑(9Z‑octadecenoyl)‑sn‑glycero‑3‑phosphoethanolamine (DOPE) conjugated TLR7 agonist (DOPE-TLR7a) alongside assessing physical form using Dynamic Light Scattering (DLS), Nanosight Particle Tracking (NTA) analysis and Small Angle X-ray Scattering (SAXS). A very high potency of DOPE-TLR7a conjugate (EC50 around 9 nM) was observed either when prepared by direct dilution from DMSO or when formulated into 400-700 nm large multilamella liposomes containing dimethyldioctadecylammonium bromide salt (DDA) and DOPE. When prepared by dissolution in DMSO followed by dilution in aqueous culture medium, 93 ± 5 nm nanoparticles were formed. Without dilution from solution in DMSO, no nanoparticles were observed and no immunostimulatory activity could be detected without this formulation step. SAXS analysis of the conjugate after DMSO dissolution/water dilution revealed a lamellar order with a layer spacing of 68.7 Å, which correlates with arrangement in groups of 3 bilayers. The addition of another immunostimulatory glycolipid, trehalose‑6,6‑dibehenate (TDB), to DOPE:DDA liposomes gave no further increase in immunostimulatory activity beyond that provided by incorporating DOPE-TLR7a. Given the importance of nanoparticle or liposomal formulation for activity, we conclude that the major mechanism for increased potency when TLR7 agonists are conjugated to macromolecules is through alteration of physical form.
Collapse
Affiliation(s)
- Adam J R Gadd
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Valeria Castelletto
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Elena Kabova
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Kenneth Shankland
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Ian Hamley
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Alexander J A Cobb
- Department of Chemistry, 7 Trinity Street, King's College London, London SE1 1DB, United Kingdom
| | - F Greco
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Alexander D Edwards
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom.
| |
Collapse
|
13
|
Zhang G, Jia P, Liu H, Hu T, Du Y. Conjugation of chitosan oligosaccharides enhances immune response to porcine circovirus vaccine by activating macrophages. Immunobiology 2018; 223:663-670. [PMID: 30005969 DOI: 10.1016/j.imbio.2018.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022]
Abstract
Porcine circovirus type 2 (PCV2)-associated diseases have led to great economic losses to the pig industry. Our lab previously found that conjugation of chitosan oligosaccharides (COS) or via a carrier protein enhanced the immunogenicity of PCV2 vaccine against infectious pathogens. However, precise mechanisms and signal transduction pathways underlying the efficacy of COS conjugation remains poorly defined. In this study, to better understand the effects and mechanism of COS conjugates maintain the adjuvant potential in vivo, we investigated its augmentation of macrophage function, including cell activation, NO production, cytokine production and phagocytosis. Additionally, the role of Toll-like receptors (TLR) proteins in this process was also assessed. The results indicate that, as compared to the PCV and PCV/COS, conjugation of COS effectively enhanced the NO production, cytokines generation and phagocytosis activity of macrophages. Noticeably, the generation of NO and proinflammatory cytokines was closely related to the TLR2/4 signaling pathways, strongly suggesting that conjugation of COS regulates innate and adaptive immunity by activation of macrophages, resulting in immune enhancement. In summary, the present study provides a potential mechanism of COS conjugation as a novel adjuvant to improve immune responses against various diseases.
Collapse
Affiliation(s)
- Guiqiang Zhang
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Peiyuan Jia
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hongtao Liu
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Tao Hu
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yuguang Du
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
14
|
Lodaya RN, Brito LA, Wu TYH, Miller AT, Otten GR, Singh M, O'Hagan DT. Stable Nanoemulsions for the Delivery of Small Molecule Immune Potentiators. J Pharm Sci 2018; 107:2310-2314. [PMID: 29883663 DOI: 10.1016/j.xphs.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/04/2018] [Accepted: 05/17/2018] [Indexed: 01/11/2023]
Abstract
Adjuvants are required to enhance immune responses to typically poorly immunogenic recombinant antigens. Toll-like receptor agonists (TLRa) have been widely evaluated as adjuvants because they activate the innate immune system. Currently, licensed vaccines adjuvanted with TLRa include the TLR4 agonist monophosphoryl lipid, while additional TLRa are in clinical development. Unfortunately, naturally derived TLRa are often complex and heterogeneous entities, which brings formulation challenges. Consequently, the use of synthetic small-molecule TLRa has significant advantages because they are well-defined discrete molecules, which can be chemically modified to modulate their physicochemical properties. We previously described the discovery of a family of TLR7 agonists based on a benzonaphthyridine scaffold. In addition, we described how Alum could be used to deliver these synthetic TLRa. An alternative adjuvant approach with enhanced potency over Alum are squalene containing oil-in-water emulsions, which have been included in licensed influenza vaccines, including Fluad (MF59 adjuvanted) and Pandemrix (AS03 adjuvanted). Here, we describe how to enable the co-delivery of a TLR7 agonist in a squalene-based oil-in-water emulsion, for adjuvant evaluation.
Collapse
Affiliation(s)
- Rushit N Lodaya
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Luis A Brito
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Tom Y H Wu
- Genomics Institute of Novartis Research Foundation (GNF), San Diego, California 92121
| | - Andrew T Miller
- Genomics Institute of Novartis Research Foundation (GNF), San Diego, California 92121
| | - Gillis R Otten
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Manmohan Singh
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | | |
Collapse
|
15
|
Méndez Y, Chang J, Humpierre AR, Zanuy A, Garrido R, Vasco AV, Pedroso J, Santana D, Rodríguez LM, García-Rivera D, Valdés Y, Vérez-Bencomo V, Rivera DG. Multicomponent polysaccharide-protein bioconjugation in the development of antibacterial glycoconjugate vaccine candidates. Chem Sci 2018; 9:2581-2588. [PMID: 29719713 PMCID: PMC5897956 DOI: 10.1039/c7sc05467j] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Abstract
A new synthetic strategy for the development of multivalent antibacterial glycoconjugate vaccines is described. The approach comprises the utilization of an isocyanide-based multicomponent process for the conjugation of functionalized capsular polysaccharides of S. pneumoniae and S. Typhi to carrier proteins such as diphtheria and tetanus toxoids. For the first time, oxo- and carboxylic acid-functionalized polysaccharides could be either independently or simultaneously conjugated to immunogenic proteins by means of the Ugi-multicomponent reaction, thus leading to mono- or multivalent unimolecular glycoconjugates as vaccine candidates. Despite the high molecular weight of the two or three reacting biomolecules, the multicomponent bioconjugation proved highly efficient and reproducible. The Ugi-derived glycoconjugates showed notable antigenicity and elicited good titers of functional specific antibodies. To our knowledge, this is the only bioconjugation method that enables the incorporation of two different polysaccharidic antigens to a carrier protein in a single step. Applications in the field of self-adjuvanting, eventually anticancer, multicomponent vaccines are foreseeable.
Collapse
Affiliation(s)
- Yanira Méndez
- Center for Natural Products Research , Faculty of Chemistry , University of Havana , Zapata y G , Havana 10400 , Cuba .
| | - Janoi Chang
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | - Ana R Humpierre
- Center for Natural Products Research , Faculty of Chemistry , University of Havana , Zapata y G , Havana 10400 , Cuba .
| | - Abel Zanuy
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | - Raine Garrido
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | - Aldrin V Vasco
- Center for Natural Products Research , Faculty of Chemistry , University of Havana , Zapata y G , Havana 10400 , Cuba .
- Department of Bioorganic Chemistry , Leibniz Institute of Plant Biochemistry , Weinberg 3 , 06120 , Halle/Saale , Germany
| | - Jessy Pedroso
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | - Darielys Santana
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | - Laura M Rodríguez
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | | | - Yury Valdés
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | | | - Daniel G Rivera
- Center for Natural Products Research , Faculty of Chemistry , University of Havana , Zapata y G , Havana 10400 , Cuba .
- Department of Bioorganic Chemistry , Leibniz Institute of Plant Biochemistry , Weinberg 3 , 06120 , Halle/Saale , Germany
| |
Collapse
|
16
|
Misiak A, Leuzzi R, Allen AC, Galletti B, Baudner BC, D'Oro U, O'Hagan DT, Pizza M, Seubert A, Mills KHG. Addition of a TLR7 agonist to an acellular pertussis vaccine enhances Th1 and Th17 responses and protective immunity in a mouse model. Vaccine 2017; 35:5256-5263. [PMID: 28823618 DOI: 10.1016/j.vaccine.2017.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/25/2017] [Accepted: 08/04/2017] [Indexed: 11/29/2022]
Abstract
A resurgence of whooping cough (pertussis) has been observed in recent years in a number of developed countries, despite widespread vaccine coverage. Although the exact reasons of the recurrence of pertussis are not clear, there are a number of potential causes, like antigenic variation in the circulating strains of Bordetella pertussis, changes in surveillance and diagnostic tools, and potential differences in protection afforded by current acellular pertussis (aP) vaccines compared to more reactogenic whole cell (wP) vaccines, which they replaced. Studies in animal models have shown that induction of cellular as well as humoral immune responses are key to conferring effective and long lasting protection against B. pertussis. wP vaccines induce robust Th1/Th17 responses, which are associated with good protection against lung infection. In contrast, aP vaccines induce mixed Th2/Th17 responses. One research option is to modify current aP vaccines with the intention of inducing protective T cell responses, without compromising on their low reactogenicity profile. Here we found that formulation of an aP vaccine with a novel adjuvant based on a Toll-like receptor 7 agonist (TLR7a) adsorbed to aluminum hydroxide (alum) enhanced B. pertussis-specific Th1 and Th17 responses and serum IgG2a/b antibodies, which had greater functional capacity than those induced by aP formulated with alum alone. Furthermore, addition of a TLR7a enhanced the protective efficacy of the aP vaccine against B. pertussis aerosol challenge; protection was comparable to that of a wP vaccine. These findings suggest that alum-TLR7a is a promising adjuvant for clinical development of next generation pertussis vaccines.
Collapse
Affiliation(s)
- Alicja Misiak
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | - Aideen C Allen
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | | | - Ugo D'Oro
- GSK Vaccines, Via Fiorentina 1, Siena 53100, Italy
| | | | | | - Anja Seubert
- GSK Vaccines, Via Fiorentina 1, Siena 53100, Italy.
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
17
|
Sun X, Yu W, Pang Q, Hu T. Conjugation Reaction with 8-Arm PEG Markedly Improves the Immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 Fusion Protein. Bioconjug Chem 2017; 28:1658-1668. [DOI: 10.1021/acs.bioconjchem.7b00131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaowei Sun
- College
of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Weili Yu
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Quanhai Pang
- College
of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Tao Hu
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Abstract
Since 2004, when the first synthetic glycoconjugate vaccine against the pneumonia and meningitis causing bacterium Haemophilus influenza type b (Hib) approved for human use in Cuba was reported, 34 million doses of the synthetic vaccine have been already distributed in several countries under the commercial name of Quimi-Hib. However, despite the success of this product, no other synthetic glycoconjugate vaccine has been licensed in the following 13 years. As well as avoiding the need to handle pathogens, synthetic glycoconjugates offer clear advantages in terms of product characterization and the possibility to understand the parameters influencing immunogenicity. Nevertheless, large scale application of synthetic sugars has been perceived as challenging because of manufacturing costs and process complexity compared to natural polysaccharides. Chemoenzymatic approaches, one-pot protocols, and automated solid-phase synthesis are rendering carbohydrate production considerably more attractive for industrialization. Here we identify three areas where chemical approaches can advance this progress: (i) chemical or enzymatic methods enabling the delivery of the minimal polysaccharide portion responsible for an effective immune response; (ii) site-selective chemical or enzymatic conjugation strategies for the exploration of the conjugation point in immune responses against carbohydrate-based vaccines, and the consistent preparation of more homogeneous products; (iii) multicomponent constructs targeting receptors responsible for immune response modulation in order to control its quality and magnitude. We discuss how synthesis of bacterial oligosaccharides is useful toward understanding the polysaccharide portion responsible for immunogenicity, and for developing robust and consistent alternatives to natural heterogeneous polysaccharides. The synthesis of sugar analogues can lead to the identification of hydrolytically more stable versions of oligosaccharide antigens. The study of bacterial polysaccharide biosynthesis aids the development of in vitro hazard-free oligosaccharide production. Novel site-selective conjugation methods contribute toward deciphering the role of conjugation sites in the immunogenicity of glycoconjugates and prove to be particularly useful when glycans are conjugated to protein serving as carrier and antigen. The orthogonal incorporation of two different carbohydrate haptens enables the reduction of vaccine components. Finally, coordinated conjugation of glycans and small molecule immunopotentiators supports simplification of vaccine formulation and localization of adjuvant. Synergistic advancement of these areas, combined with competitive manufacturing processes, will contribute to a better understanding of the features guiding the immunological activity of glycoconjugates and, ultimately, to the design of improved, safer vaccines.
Collapse
|
19
|
Chang X, Yu W, Ji S, Shen L, Tan A, Hu T. Conjugation of PEG-hexadecane markedly increases the immunogenicity of pneumococcal polysaccharide conjugate vaccine. Vaccine 2017; 35:1698-1704. [DOI: 10.1016/j.vaccine.2017.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/17/2022]
|